Published on DATE 2017 (https://past.date-conference.com/date17)

Goto Session:
- 1.1 Opening Session: Plenary, Awards Ceremony & Keynote Addresses
 - UB01 Session 1
 - 2.1 Executive Panel: The Electronics Innovation Landscape: Opportunities, Challenges and Strategies
 - 2.2 Stochastic, Approximate and Neural Computing
 - 2.3 Cache memory management for performance and reliability
 - 2.4 Performance and Power Analysis
 - 2.5 Reliability and Energy-Efficiency: Two Pillars of NoC Design
 - 2.6 Advancing Test for Mixed-Signal and Microfluidic Circuits and Systems
 - 2.7 EU Project Special Session: from Secure Clouds to reliable and variable HPC
 - 2.8a Smart Medical Devices
 - 2.8b Smart Medical Devices, Part 2
 - UB02 Session 2
 - 3.0 LUNCH TIME KEYNOTE SESSION: Precision Medicine: Where Engineering and Life Science meet
 - 3.1 IT&A Session: Parallel Ultra-Low-Power Computing for the IoT: Applications, Platforms, Circuits
 - 3.2 Hot Topic Session: New Benchmarking Vectors for Emerging Devices, Circuits, and Architectures: Energy, Delay, and ... Accuracy
 - 3.3 Hardware Trojans and Fault Attacks
 - 3.4 Guardbanding and Approximation
 - 3.5 Low-power brain inspired computing for embedded systems
 - 3.6 Mechanisms for hardware fault testing, recovery and metastability management
 - 3.7 Scheduling and Optimization
 - 3.8 Addressing Challenges in Today's Datacenter Systems' Design
 - 3.9 A tribute to Ralph Otten
 - UB03 Session 3
 - 4.1 IT&A Session: The Emergence of Silicon Photonics: From High Performance Computing to Data Centers and Quantum Computing
 - 4.2 Logic, Interconnects, Neurons: New Realizations
 - 4.3 Efficient memory design
 - 4.4 From functional validation to functional qualification
 - 4.5 Hot Topic Session: On How to Design and Manage Exascale Computing System Technologies
 - 4.6 Fault modeling, test generation and diagnosis
 - 4.7 Process variation management for today's and tomorrow's computing
 - 4.8 CV Fair DATE 2017
 - UB04 Session 4
 - 5.1 IoT Day: IoT Perspectives
 - 5.2 Emerging Computer Paradigms
 - 5.3 Hot Topic Session: I'm Gonna Make an Approximation IoT Can't Refuse - Approximate Computing for Improving Power Efficiency of IoT and HPC
 - 5.4 Solutions for efficient simulation and validation
 - 5.5 Hot Topic Session: Spintronics-based Computing
 - 5.6 Reuse and Integration of Test, Debug, and Reliability Infrastructure
 - 5.7 Schedulability Analysis
 - IP2 Interactive Presentations
 - UB05 Session 5
 - 6.1 IoT Day Hot Topic Session: IoT Enabling Technologies
 - 6.2 IT&A Session: Panel: Ultra-Low-Power (ULP) Autonomously Powered Systems
 - 6.3 Security Primitives
 - 6.4 High-performance Reconfigurable Computing
 - 6.5 Hot Topic Session: Memristor for Computing: Myth or Reality?
 - 6.6 Industrial Experiences & EU Projects
 - 6.7 Model-Based Design and Verification of Real-Time Systems
 - 6.8 HiPEAC: European Network on High Performance and Embedded Architecture and Compilation
 - UB06 Session 6
 - 7.0 LUNCH TIME KEYNOTE SESSION
 - UB07 Session 7
 - 7.1 IoT Day Hot Topic Session: IoT Deployment
 - 7.2 In-memory Computing and Security for Non-volatile Memory Technologies
 - 7.3 Optimizing performance, energy and predictability via hardware/software codesign
 - 7.4 Advances in Logic Synthesis
 - 7.5 Hot Topic Session: The Engineering Challenges for Quantum Computing
 - 7.6 Memory Reliability: Modeling and Mitigation
 - 7.7 Resource management and analysis for embedded architectures
 - 7.8 Smart Energy and Self-Powered Devices
1.1 Opening Session: Plenary, Awards Ceremony & Keynote Addresses

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>1.1.1</td>
<td>WELCOME ADDRESSES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speakers:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>David Atienza 1, Giorgio Di Natale 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1DATE 2017 General Chair, EPFL, CH; 2DATE 2017 Programme Chair, LIRMM, FR</td>
<td></td>
</tr>
<tr>
<td>08:45</td>
<td>1.1.2</td>
<td>PRESENTATION OF DISTINGUISHED AWARDS</td>
<td></td>
</tr>
</tbody>
</table>
KEYNOTE: DESIGN AUTOMATION IN THE ERA OF AI AND IOT: CHALLENGES AND PITFALLS
Speaker: Arvind Krishna, IBM Research, US
Abstract
The AI and IoT revolutions are twin phenomena that are reshaping business models, industries, and society. If we are to maximize their potential, we must overcome significant technical challenges with the help of the Design Automation and Test Community.

First, new computer architectures are required to accelerate solutions driven by cognitive computing, the term given to a comprehensive set of AI capabilities that includes not just machine learning but also data ingestion, data privacy, learning, reasoning, natural language, and conversation. These architectures must support each of these new technologies and manage extreme, cognitive workloads marked by unprecedented volumes of structured and unstructured data. This challenge poses important questions for the Design Automation and Test community about what new approaches can be taken.

A similar challenge is inherent in the rapid development of IoT, where the span of computing architecture varies from extremely low power constraints, limited bandwidth, and sporadic access at the "edge" of the network to the nearly infinite power and compute of data centers. This raises the question of how to maximize the design and placement of IoT systems, which will have to function for extended periods of time (up to ten years or more, like a pacemaker). Unlike smartphones, these systems can't simply be disposed of, which raises significant security concerns.

In his talk exploring these challenges, Dr. Krishna will emphasize that solutions can only come from an integrated hardware-software co-design approach. He will also highlight some of the leading-edge technologies IBM Research is developing to drive further innovation in the computing stack as the era governed by Moore's law comes to a close.

KEYNOTE: A NEW ERA OF HARDWARE MICROSERVICES IN THE CLOUD
Speaker: Doug Burger, Microsoft Research, US
Abstract
The Cloud is causing a major shift in both the business ecosystem and system infrastructures. The major hyperscale providers are building out highly-interconnected, worldwide computers at a scale that allows them to make significant first-party investments. This verticalization allows them to make cross-layer architectural changes more rapidly than would the old horizontal model. A second trend is the emergence of ultra-low latency requirements in the Cloud, moving storage, networking, and services from the millisecond to the microsecond regime. In this talk, I will describe how these architectural shifts are enabling the emergence of specialized hardware in datacenters, that enable services to be operated in the microsecond regime. On FPGAs, GPUs, and ASICs, these services can run with no CPU intervention, allowing much lower latencies and better cost structures than previously possible for key services such as deep learning. Over time this transition will enable a much broader collection of hardware IP to run at scale in the Cloud.

UB01 Session 1
Date: Tuesday 28 March 2017
Time: 10:30 - 12:30
Location / Room: Booth 1, Exhibition Area

NOXIM-XT: A BIT-ACCURATE POWER ESTIMATION SIMULATOR FOR NOCS
Presenter: Pierre Bomel, Université de Bretagne Sud, FR
Authors: André Rossel1, Johann Laurent2 and Erwan Moreac2
1LERIA, Université d'Angers, Angers, France, FR; 2Lab-STICC, Université de Bretagne Sud, Lorient, FR
Abstract
We have developed an enhanced version of Noxim (Noxim-XT) to estimate the energy consumption of a NoC in a SOC. Noxim-XT is used in a two-step methodology. First, applications are mapped on a SoC and their traffics are extracted by simulation with MPSoC Bench. Second, Noxim-XT tests various hardware configurations of the NoC, and for each configuration, the application's traffic is re-injected and replayed, an accurate performance and power breakdown is provided, and the user can choose different data coding strategies. With the help of Noxim XT, each configuration is bit-accurately estimated in terms of energy consumption. After simulation, a spatial mapping of the energy consumption is provided and highlights the hot-spots. Moreover, the new coding strategies allows significant energy saving. Noxim XT simulations and a FPGA-based prototype of a new coding strategy will be demonstrated at the U-booth to illustrate these works.

More information ...
Abstract

The unceasing shrinking process of CMOS technology is leading to its physical limits, impacting several aspects, such as performances, power consumption and many others. Alternative solutions are under investigation in order to overcome CMOS limitations. Among them, the memristor is one of the promising technologies. Several works have been proposed so far, describing how to synthesize boolean logic functions on memristors-based crossbar architecture. However, depending on the synthesis parameters, different architectures can be obtained. In this demo, we show a Design Space Exploration (DSE) that enhances an application with an adaptation layer in order to continuously tune the parameters according to the evolving situation. More information ...
2.1 Executive Panel: The Electronics Innovation Landscape: Opportunities, Challenges and Strategies

Date: Tuesday 28 March 2017
Time: 11:30 - 13:00
Location / Room: Auditorium A

Chair:
Alberto Sangiovanni-Vincentelli, UCB, US

From autonomous driving to big data, from machine learning to cyber-physical systems, from robotics to the internet of everything, from brain-machine interfaces to the human intranet, innovation is moving at a pace that has never been seen before. To face the large investments and increasing global competition, mergers and acquisitions have sped up in all areas including the semiconductor industry that has been possibly the most decisive enabling factors of these disruptive technologies. The panel will address what are the structural factors to sustain innovations and what are the strategies that some of important actors in the industrial and research sector are embracing. The panel will also address the opportunities and difficulties of the different regions of the world in the changing social and economic landscape. The panel will begin with an introductory presentation about the state of technology and innovations in the areas outlined above. Then executives from IBM, ST Microelectronics and Leti will address the problems to face and the strategies to embrace in a challenging competitive landscape.

Panelists:
- Arvind Krishna, Sr. VP, Head of Research, IBM, US
- Marie-Noëlle Semeria, CEO, CEA/Leti, FR
- Benedetto Vigna, EVP & GM, Analog & MEMS Group, STMicroelectronics, IT

13:00 End of session

Lunch Break in Garden Foyer
Keynote Lecture session 3.0 in "Garden Foyer" 1350 - 1420

Lunch Break in the Garden Foyer
On all conference days (Tuesday to Thursday), a buffet lunch will be offered in the Garden Foyer, in front of the session rooms. Kindly note that this is restricted to conference delegates possessing a lunch voucher only. When entering the lunch break area, delegates will be asked to present the corresponding lunch voucher of the day. Once the lunch area is being left, re-entrance is not allowed for the respective lunch.

2.2 Stochastic, Approximate and Neural Computing

Date: Tuesday 28 March 2017
Time: 11:30 - 13:00
Location / Room: 4BC
Stochastic and approximate computing is an approach developed to improve energy efficiency of computer hardware. First paper presents a framework for quantifying and managing accuracy in stochastic circuits design. Second paper deals with a new approximate multiplier design. Energy efficient hybrid stochastic-binary neural-networks are proposed in the third paper. The last paper addresses a new retraining method improving fault tolerance in RRAM crossbars.
Analyzing all the cache level configurations to determine and minimize the susceptibility of the caches to soft errors.

The bank placement in GPUs' last level cache, with the goal of maximizing the performance of the GPU's on-chip network.

Cache memory design optimizations and management can have a significant effect on cost, performance, and reliability.

Cristina Silvano, Politecnico di Milano, IT

Co-Chair:

Dionisios Pnevmatikatos, Technical University of Crete, GR

2.3 Cache memory management for performance and reliability

Date: Tuesday 28 March 2017

Location / Room: 2BC

Chair:

Dionisios Pnevmatikatos, Technical University of Crete, GR

Co-Chair:

Cristina Silvano, Politecnico di Milano, IT

Cache memory design optimizations and management can have a significant effect on cost, performance, and reliability. The first paper proposes an asymmetric cache management policy for GPGPUs with hybrid main memories that significantly improve performance for memory intensive workloads. The second paper targets the optimization of the bank placement in GPUs' last level cache, with the goal of maximizing the performance of the GPU's on-chip network. The third paper proposes a methodology for jointly analyzing all the cache level configurations to determine and minimize the susceptibility of the caches to soft errors.
2.4 Performance and Power Analysis

2.4.1 Performance and Power Analysis

Title: DROOP MITIGATING LAST LEVEL CACHE ARCHITECTURE FOR STTRAM

Authors:
Mohammad Sadrosadati, Sharif University of Technology, IR
Arun Subramaniam, Semeen Rehman, University of Michigan, US
Hazhir Bakhishi, University of Michigan, US
Hamid Sarbazi-Azad, University of Michigan, US

Abstract:
Spin-Transfer Torque magnetic Random Access Memory (STT-RAM) is one of the emerging technologies in the Domain of Non-volatile dense memories especially preferred for the last level cache (LLC). The amount of current needed to reorient the magnetization at present (~100μA per bit) is too high, especially for the write operation. When we perform a full cache line (512-bit) Write, this extremely high current compared to MRAM will result in a Voltage droop in the conventional cache architecture. Due to this droop, the write operation will fail half way through when we attempt to write in the farthest Bank of the cache from the supply. In this paper, we will be proposing a new cache architecture to mitigate this problem of droop and make the write operation successful. Instead of continuously writing the entire Cache line (512-bit) in a single bank, our architecture will be writing these 512-bits in multiple different locations across the cache in parts of 8 (64-bit each). The various simulation results obtained (both circuit and micro-architectural) comparing our proposed architecture against the conventional are presented in detail.

Download Paper (PDF; Only available from the DATE venue WiFi)

2.4.2 Performance and Power Analysis

Title: EFFECTIVE CACHE BANK PLACEMENT FOR GPUs

Authors:
Mohammad Sadrosadati, Sharif University of Technology, IR
Arun Subramaniam, Semeen Rehman, University of Michigan, US
Hazhir Bakhishi, University of Michigan, US
Hamid Sarbazi-Azad, University of Michigan, US

Abstract:
The placement of the Last Level Cache (LLC) banks in the GPU on-chip network can significantly affect the performance of memory-intensive workloads. In this paper, we attempt to offer a placement methodology for the LLC banks to maximize the performance of the on-chip network connecting the LLC banks to the streaming multiprocessors in GPUs. We argue that an efficient placement needs to be derived based on a novel metric that considers the latency hiding capability of the GPUs through thread level parallelism. To this end, we propose a throughput aware metric, called Effective Latency Impact (ELI). Moreover, we define an optimization problem to formulate our placement approach based on the ELI metric mathematically. To solve this optimization problem, we deploy a heuristic solution as this optimization problem is NP-hard. Experimental results show that our placement approach improves the performance by up to 15.7% compared to the state-of-the-art approaches.

Download Paper (PDF; Only available from the DATE venue WiFi)

2.4.3 Performance and Power Analysis

Title: SOFT ERROR-AWARE ARCHITECTURAL EXPLORATION FOR DESIGNING RELIABILITY ADAPTIVE CACHE HIERARCHIES IN MULTI-CORES

Authors:
Semeen Rehman, Technische Universitat Dresden, DE
Arun Subramaniam, Semeen Rehman, University of Michigan, US
Muhammad Shafique, Akash Kumar and Joerg Henkel

Abstract:
Mainstream multi-core processors employ large multi-level on-chip caches making them highly susceptible to soft errors. We demonstrate that designing a reliable cache hierarchy requires understanding the vulnerability interdependencies across different cache levels. This involves vulnerability analyses depending upon the parameters of different cache levels (partition size, line size, etc.) and the corresponding cache access patterns for different applications. This paper presents a novel soft error-aware cache architecture space exploration methodology and vulnera-bility analysis of multi-level caches considering their vulnerability interdependencies. Our technique significantly reduces exploration time while providing reliability-efficient cache configurations. We also show applicability/benefits for ECC-protected caches under multi-bit fault scenarios.

Download Paper (PDF; Only available from the DATE venue WiFi)

2.4.4 Performance and Power Analysis

Title: SHARED LAST-LEVEL CACHE MANAGEMENT FOR GPGPUS WITH HYBRID MAIN MEMORY

Authors:
Lei Ju, Shandong University, CN
Guan Wang, Xiaojun Cai, Lei Ju, Chuanqi Zang, Mengying Zhao and Zhiping Jia, Shandong University, CN

Abstract:
Memory intensive workloads become increasingly popular on general purpose graphics processing units (GPGPUs), and impose great challenges on the GPGPU memory subsystem design. On the other hand, with the recent development of non-volatile memory (NVM) technologies, hybrid memory combining both DRAM and NVM achieves high performance, low power and high density simultaneously, which provides a promising main memory design for GPGPUs. In this work, we explore the shared last-level cache management for GPGPUs with consideration of the underlying hybrid main memory. In order to improve the overall memory subsystem performance, we exploit the characteristics of both the asymmetric read/write latency of the hybrid main memory architecture, as well as the memory coalescing feature of GPGPU. In particular, to reduce the average cost of L2 cache misses, we prioritize cache blocks from DRAM or NVM based on observation that data from NVM part of main memory have large impact on the system performance. Furthermore, the cache management scheme also integrates the GPU memory coalescing and cache bypassing techniques to improve the overall cache hit ratio. Experimental results show that in the context of a hybrid main memory system, our proposed L2 cache management policy improves performance against the traditional LRU policy and a state-of-the-art GPU cache strategy EABP [20] by up to 27.76% and 14%, respectively.

Download Paper (PDF; Only available from the DATE venue WiFi)
2.5 Reliability and Energy-Efficiency: Two Pillars of NoC Design

Date: Tuesday 28 March 2017
Time: 11:30 - 13:00
Location / Room: 3C

Chair: Sebastien Le Beux, Ecole Central du Lyon, FR
This session addresses challenges related to energy efficiency and reliability of NoCs. The first paper proposes an analytical approach to evaluate the reliability of adaptive routing algorithms. In the second paper, an online monitoring and routing approach is proposed to address the aging-related degradation in electrical NoC. Finally, the third paper shows how to use network traffic-aware spatial parallelism to improve the energy efficiency of the Epiphany SoC.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30</td>
<td>2.5.1</td>
<td>RELIABILITY ASSESSMENT OF FAULT TOLERANT ROUTING ALGORITHMS IN NETWORKS-ON-CHIP: AN ANALYTIC APPROACH</td>
<td>Siddhartha Moriam, Technische Universität Dresden, DE</td>
</tr>
</tbody>
</table>

Abstract

Rapid scaling of transistor gate sizes has significantly increased the density of on-chip integrations and paved the way for many-core systems-on-chip with highly improved performances. The design of the interconnection network of these complex systems is a critical one and the network-on-chip is now the accepted efficient interconnect for such large core arrays. An unfortunate adverse effect of technology scaling is the increased susceptibility to failures resulting in failing links and routers in the network-on-chip. To keep the network connected, efficient fault adaptive routing algorithms are necessary to route around faults. To design and evaluate the fault resiliency of such adaptive routing algorithms, fast, accurate and flexible analytic models are required, especially in large networks for which simulations are extremely time costly. In this paper, we present an analytic approach to evaluate the reliability of adaptive routing algorithms based on algebraic manipulations of the channel dependency matrix. It allows also to evaluate the number of alternate paths between source-destination pairs, in the presence of any number of permanent faults in the network. The analytic model is general and can be adapted to evaluate network reliability for any network topology and with any adaptive routing algorithm based on the turn model. We present cycle-accurate simulations to compare the accuracy of the model for the 2-D mesh and the hexagonal networks. The model is able to estimate the network fault resilience with an accuracy of about 1% and more than 70 times faster than the cycle accurate simulation.

Download Paper (PDF; Only available from the DATE venue WiFi)

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00</td>
<td>2.5.2</td>
<td>ONLINE MONITORING AND ADAPTIVE ROUTING FOR AGING MITIGATION IN NOCS</td>
<td>Nader Bagherzadeh, University of California, Irvine, US</td>
</tr>
</tbody>
</table>

Abstract

Scalability of Network-on-Chip (NoC) as a promising solution for many-core systems can be jeopardized due to reliability challenges such as aging in advanced silicon technology. Previous mitigation techniques to protect NoC are either offline, while aging is strictly influenced by runtime operating conditions, or impose significant overheads to the system. This paper presents an online monitoring method through a Centralized Aging Table (CAT) for routers in NoCs. Router’s capacity in flits, which are the main stimuli in routers, is predictable and limited for a given period of time. Consequently, stress rate and temperature, which are the major sources of aging mechanisms such as Bias Temperature Instability (BTI) and Hot Carrier Injection (HCI), will be in the predictable ranges, as well. Hence, our methodology uses CAT which is populated by values that represent aging degradation for each different pair of stress and temperature ranges during a given period of time. Furthermore, utilizing CAT, we propose an online adaptive aging-aware routing algorithm in order to avoid highly aged routers which eventually leads to age balancing between routers. Additionally, our proposed routing algorithm reduces maximum age of routers by changing the shortest paths between source-destination pairs adaptively, considering routers’ ages across them in each given period of time. Extensive experimental analysis using gem5 simulator demonstrates that our online routing algorithm and monitoring methodology, CAT, improves delay degradation of maximum aged router and aging imbalance on average by 39% and 52% compared to XY routing, respectively. The impact of our proposed methodology on network latency, Energy-Delay-Product (EDP) and link utilization is negligible.

Download Paper (PDF; Only available from the DATE venue WiFi)

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30</td>
<td>2.5.3</td>
<td>EBSP: MANAGING NOC TRAFFIC FOR BSP WORKLOADS ON THE 16-CORE ADAPTEVA EPIPHANY-III PROCESSOR</td>
<td>Siddhartha 1 and Nachiket Kapre 2</td>
</tr>
</tbody>
</table>

Abstract

We can deliver high performance and energy efficient operation on the multi-core NoC-based Adapteva Epiphany-III SoC for bulk-synchronous workloads using our proposed EBSP communication API. We characterize and automate per-formation tuning of spatial parallelism for supporting (1) random access load-store style traffic suitable for irregular sparse computations, as well as (2) variable, data-dependent traffic patterns in neural networks or PageRank-style workloads in a manner tailored for the Epiphany NoC. We aggressively optimize traffic by exposing spatial communication structure to the fabric through offline pre-computation of destination addresses, un-rolling of message-passing loops, selective squelching of messages, and careful ordering of communication and compute. Using our approach, across a range of applications and datasets such as Sparse Matrix-Vector multiplication (Matrix Market datasets), PageRank (BerKStan SNAP dataset), and Izhikevich spiking neural evaluation, we deliver speedups of 6.5-10× while lowering power use by 2× over optimized ARM-based mappings. When compared to optimized OpenMP x86 mappings, we observe a 11-31× improvement in energy efficiency (GFLOP/s/W) for the Epiphany SoC. Epiphany is also able to beat state-of-the-art spatial FPGA (ZC706) and embedded GPU (Jetson TK1) mappings due to our communication optimizations. Our library is open-source and available at github.com/sidmontu/ebsp.git.

Download Paper (PDF; Only available from the DATE venue WiFi)

2.6 Advancing Test for Mixed-Signal and Microfluidic Circuits and Systems

Date: Tuesday 28 March 2017
Time: 11:30 - 13:00
Location / Room: 5A

Chair:
Andre Ivanov, Univ. BC, CA

Co-Chair:
Marie-Minerve Loyerat, Univ. Pierre et Marie Curie, FR

Papers in this session discuss latest advances and methodologies for test, including the application of machine learning and sensitivity analysis to mixed-signal circuits, and also presents novel solutions to the test of microfluidic systems.
Abstract

Testing analog, mixed-signal and RF circuits represents the main cost component for testing complex SoCs. A promising solution to alleviate this cost is the machine learning-based test strategy. These test techniques are an indirect test approach that replaces costly specification measurements by simpler signatures. Machine learning algorithms are used to map these signatures to the performance parameters. Although this approach has a number of undoubtable advantages, it also opens new issues that have to be addressed before it can be widely adopted by the industry. In this paper we present a machine learning-based test for a complex mixed-signal system -i.e. a state-of-the-art pipeline ADC- that includes digital calibration. This paper shows how the introduction of digital calibration for the ADC has a serious impact in the proposed test as calibration completely decouples signatures from the target specification in the presence of local mismatch.

Download Paper (PDF; Only available from the DATE venue WiFi)

Abstract

An extension of Cohn’s sensitivity theorem to mismatch analysis of 1-port resistor networks is proposed, and related to Cohn’s sensitivity theorem. This expression is then used to demonstrate matching properties of R-ladders. Experimental verification of this formula is done by comparing theoretical results to Monte-Carlo simulations of random R-networks up to 10 resistors, which are generated by a new graph-based algorithm. Further analysis is performed on this figure-of-merit for all generated networks, leading to more insights into matching properties of R-networks.

Download Paper (PDF; Only available from the DATE venue WiFi)

Abstract

A novel formulation using the concept of flow paths and cut-sets, and describe an ILP-based hierarchical strategy for generating compact test sets that can detect multiple faults in FPVAs. Simulation results demonstrate the efficacy of the proposed method in detecting manufacturing faults with only a small number of test vectors.

Download Paper (PDF; Only available from the DATE venue WiFi)

Abstract

Despite analog SPICE-like simulators have reached their maturity, most of them were not originally conceived for simulating faulty circuits. With the advent of smart systems, fault testing has to deal with models encompassing both analog and digital blocks. Due to their complexity, the industry is still lacking of effective testing approaches for these analog and mixed-signal (AMS) models. The current problem is the computational time required for implementing an automated pre and post-silicon design checking algorithms and (b) lack of controllability and observability of internal circuit nodes in post-silicon. While digital scan chains provide observability of internal digital circuit states, analog scan chains suffer from signal integrity, bandwidth and circuit loading issues. In this paper, we present a novel formulation using the concept of flow paths and cut-sets, and describe an ILP-based hierarchical strategy for generating compact test sets that can detect multiple faults in FPVAs. Simulation results demonstrate the efficacy of the proposed method in detecting manufacturing faults with only a small number of test vectors.

Download Paper (PDF; Only available from the DATE venue WiFi)

Abstract

High levels of integration in SoCs and SoPs is making pre as well as post-silicon validation of mixed-signal systems increasingly difficult due to: (a) lack of automated pre and post-silicon design checking algorithms and (b) lack of controllability and observability of internal circuit nodes in post-silicon. While digital scan chains provide observability of internal digital circuit states, analog scan chains suffer from signal integrity, bandwidth and circuit loading issues. In this paper, we propose a novel technique based on built-in state consistency checking that allows both pre as well as post-silicon validation of mixed-signal/RF systems without the need to rely on manually generated checks. The method is supported by a design-for-validation (DFV) methodology which systematically injects a minimum amount of circuitry into mixed-signal systems for design bug detection and diagnosis purposes. The core idea is to apply two spectrally-diverse stimuli to the circuit under test (CUT) in such a way that they result in the same circuit state (observed voltage/current values at internal or external circuit nodes). By comparing the resulting state values, design bugs are detected efficiently without the need for manually generated checks. No assumption is made about the nature of the detected bugs; the stimulus applied is steered towards those that are the most likely to detect design bugs. Test cases for both pre and post-silicon design bug detection and diagnosis prove the viability of the proposed BISCC approach.

Download Paper (PDF; Only available from the DATE venue WiFi)
2.7 EU Project Special Session: from Secure Clouds to reliable and variable HPC

Date: Tuesday 28 March 2017
Time: 11:30 - 13:00
Location / Room: 3B

Chair: Lorena Anghel, TIMA Laboratory, FR

Covering the major topics presented in DATE, the European Projects presented in this session show lessons learned, best practices, scientific methods and evaluation platforms, successful strategies and roadmaps solving research and industry concerns in Europe.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30</td>
<td>2.7.1</td>
<td>HARPA: TACKLING PHYSICALLY INDUCED PERFORMANCE VARIABILITY</td>
<td>Dimitrios Soudris, ICCS, GR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Nikolaos Zompakis and Dimitrios Soudris</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors: ICCS/NTUA, GR; NTUA, GR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: Continuously increasing application demands on both High Performance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computing (HPC) and Embedded Systems (ES) are driving the IC manufacturing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>industry on an ever-lasting scaling of devices in silicon. Nevertheless, integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and miniaturization of transistors comes with an important and non-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>negligible trade-off: time-zero and time-dependent performance variability.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increasing guard-bands to battle variability is not scalable, since worst-case design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>margins are prohibitive for downscaled technology nodes. This paper discusses the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FP7-612069-HARPA project of the European Commission which aims to enable next-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>generation embedded and high-performance heterogeneous many-cores to cost-effectively</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>confront variations by providing Dependable-Performance: correct functionality and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>timing guarantees throughout the expected lifetime of a platform under thermal,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>power, and energy constraints. The HARPA novelty is in seeking synergies in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>techniques that have been considered virtually exclusively in the ES or HPC domains</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(worst-case guaranteed partly proactive techniques in embedded, and dynamic best-effort</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>reactive techniques in high-performance).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF); Only available from the DATE venue WiFi</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>2.7.2</td>
<td>DYNAMIC SOFTWARE RANDOMISATION: LESSONS LEARNED FROM AN AEROSPACE CASE STUDY</td>
<td>Leonidas Kosmidis, Barcelona Supercomputing Center and Universitat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Leonidas Kosmidis, Barcelona Supercomputing Center and Universitat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Politècnica de Catalunya, ES</td>
<td>Politècnica de Catalunya, ES; Barcelona Supercomputing Center BSC-CN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors: Leonidas Kosmidis, Jaume Abella and Francisco Cazoria</td>
<td>Barcelona Supercomputing Center and I3A-CSIC, ES; Barcelona Superco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: Timing Validation and Verification (V&V) is an important step in</td>
<td>Supercomputing Center and I3A-CSIC, ES; Barcelona Supercomputing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>real-time system design, in which a system’s timing behaviour is assessed via Worst</td>
<td>Center and I3A-CSIC, ES; Barcelona Supercomputing Center and I3A-CSIC, ES;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Case Execution Time (WCET) estimation and scheduling analysis. For WCET estimation,</td>
<td>Barcelona Supercomputing Center and I3A-CSIC, ES; Barcelona Supercompu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>measurement-based timing analysis (MBTA) techniques are widely-used and well-</td>
<td>ting Center and I3A-CSIC, ES; Barcelona Supercomputing Center and I3A-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>established in industrial environments. However, the advent of complex processors</td>
<td>CSIC, ES; Barcelona Supercomputing Center and I3A-CSIC, ES; Barcelona</td>
</tr>
<tr>
<td></td>
<td></td>
<td>makes it more difficult for the user to provide evidence that the software is tested</td>
<td>Supercomputing Center and I3A-CSIC, ES; Barcelona Supercomputing Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>under stress conditions representative of those at system operation. Measurement-</td>
<td>and I3A-CSIC, ES; Barcelona Supercomputing Center and I3A-CSIC, ES; Bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Based Probabilistic Timing Analysis (MBPTA) is a variant of MBTA followed by the</td>
<td>celona Supercomputing Center and I3A-CSIC, ES; Barcelona Supercomputing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROXIMA European Project that facilitates formulating this representativeness argument.</td>
<td>Center and I3A-CSIC, ES; Barcelona Supercomputing Center and I3A-CSIC, ES;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MBPTA requires certain properties to be applicable, which can be obtained by</td>
<td>Barcelona Supercomputing Center and I3A-CSIC, ES; Barcelona Superco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selectively injecting randomisation in platform’s timing behaviour via hardware or</td>
<td>mputing Center and I3A-CSIC, ES; Barcelona Supercomputing Center and I3A-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>software means. In this paper, we assess the effectiveness of the PROXIMA’s dynamic</td>
<td>CSIC, ES; Barcelona Supercomputing Center and I3A-CSIC, ES; Barcelona</td>
</tr>
<tr>
<td></td>
<td></td>
<td>software randomisation (DSR) with a space industrial case study executed on a real</td>
<td>Supercomputing Center and I3A-CSIC, ES; Barcelona Supercomputing Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unmodified hardware platform and an industrial operating system. We present the</td>
<td>and I3A-CSIC, ES; Barcelona Supercomputing Center and I3A-CSIC, ES; Bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>challenges faced in its development, in order to achieve MBPTA compliance and the</td>
<td>celona Supercomputing Center and I3A-CSIC, ES; Barcelona Supercomputing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lessons learned from this process. Our results, obtained using a commercial timing</td>
<td>Center and I3A-CSIC, ES; Barcelona Supercomputing Center and I3A-CSIC, ES;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>analysis tool, indicate that DSR does not impact the average performance of the</td>
<td>Barcelona Supercomputing Center and I3A-CSIC, ES; Barcelona Supercompup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>application, while it enables the use of MBPTA. This results in tighter pWCET</td>
<td>ting Center and I3A-CSIC, ES; Barcelona Supercomputing Center and I3A-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>estimates compared to current industrial practice.</td>
<td>CSIC, ES; Barcelona Supercomputing Center and I3A-CSIC, ES; Barcelona</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF); Only available from the DATE venue WiFi</td>
<td>Supercomputing Center and I3A-CSIC, ES; Barcelona Supercomputing Center</td>
</tr>
<tr>
<td>12:15</td>
<td>2.7.3</td>
<td>READEX: LINKING TWO ENDS OF THE COMPUTING CONTINUUM TO IMPROVE ENERGY-EFFICIENCY IN</td>
<td>Per Gunnar Kjeldsberg, Norwegian University of Science and Technology,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DYNAMIC APPLICATIONS</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Per Gunnar Kjeldsberg, Andreas Gocht, Michael Gerndt, Riha Lubomir</td>
<td>Andreas Gocht, Michael Gerndt, Riha Lubomir, Joseph Schuchart and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4, Joseph Schuchart 4, and Umbreen Sabir Man</td>
<td>Umbreen Sabir Man</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors: Norwegian University of Science and Technology, NO; Technische</td>
<td>Norwegian University of Science and Technology, NO; Technische</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Universität Dresden, DE; Technische Universität München, DE; IT4Innovations,</td>
<td>Universität Dresden, DE; Technische Universität München, DE; IT4Innovations,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ostrava, CZ; Universität Stuttgart, DE</td>
<td>Ostrava, CZ; Universität Stuttgart, DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: In both the embedded systems and High Performance Computing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>domains, energy-efficiency has become one of the main design criteria. Efficiently</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>utilizing the resources provided in computing systems ranging from embedded systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to current petascale and future Exascale HPC systems will be a challenging task.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suboptimal designs can potentially cause large amounts of underutilized resources</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and wasted energy. In both domains, a promising potential for improving efficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of scalable applications stems from the significant degree of dynamic behaviour, e.g.,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>runtime alternation in application resource requirements and workloads. Manually</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>detecting and leveraging this dynamism to improve performance and energy-efficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>is a tedious task that is commonly neglected by developers. However, using an</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>automatic optimization approach, application dynamism can be analysed at design time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and used to optimize system configurations at runtime. The European Union Horizon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2020 READEX (Runtime Exploitation of Application Dynamism for Energy-efficient eKascale computing) project will develop a tools-aided auto-tuning methodology inspired by the system scenario methodology used in embedded systems. Dynamic behaviour of HPC applications will be exploited to achieve improved energy-efficiency and performance. Driven by a consortium of European experts from academia, HPC resource providers, and industry, the READEX project aims at developing the first of its kind generic framework to split design time and runtime automatic tuning while targeting heterogeneous system at the Exascale level. This paper describes plans for the project as well as early results achieved during its first year. Furthermore, it is shown how project results will be brought back into the embedded systems domain.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF); Only available from the DATE venue WiFi</td>
<td></td>
</tr>
</tbody>
</table>
13:00 1.6.0 COMPUTING WITH NANO-CROSSBAR ARRAYS: LOGIC SYNTHESIS AND FAULT TOLERANCE
Speaker: Mustafa Altun, Istanbul Technical University, TR
Authors: Mustafa Altun1, Valentina Ciriani2 and Mehdi Tahoori3
1Istanbul Technical University, TR; 2University of Milan, IT; 3Karlsruhe Institute of Technology, DE
Abstract
Nano-crossbar arrays have emerged as a strong candidate technology to replace CMOS in near future. They are regular and dense structures, and can be fabricated such that each crosspoint can be used as a conventional electronic component such as a diode, a FET, or a switch. This is a unique opportunity that allows us to integrate well developed conventional circuit design techniques into nano-crossbar arrays. Motivated by this, our project aims to develop a complete synthesis and performance optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer. First two work packages of the project are presented in this paper. These packages are on logic synthesis that aims to implement Boolean functions with nano-crossbar arrays with area optimization, and fault tolerance that aims to provide a full methodology in the presence of high fault densities and extreme parametric variations in nano-crossbar architectures.
Download Paper (PDF; Only available from the DATE venue WiFi)

13:02 1.6.2 WCTE-AWARE PARALLELIZATION OF MODEL-BASED APPLICATIONS FOR MULTI-CORES: THE ARGO APPROACH
Speaker: Steven Derrien, Universite de Rennes 1, FR
Authors: Steven Derrien1, Isabelle Puaut2, Panayiotis Alefragis3, Marcus Bednara4, Harald Bucher5, Clément David6, Yann Debray6, Umut Durak7, Isabelle Puaut1, Christian Ferdinand8, Damien Hardy2, Angeliki Kritikakou9, Gerard Rauwerda2, Simon Reder5, Martin Sicks5, Timo Stripf5, Kim Sunesen5, Timon ter Braak9, Nicoloas Voros3 and Jürgen Becker5
1IRISA, FR; 2University of Rennes 1 / IRISA, FR; 3TWN, GR; 4ISIS/Finhofer, DE; 5Karlsruhe Institute of Technology, DE; 6Scilab, FR; 7DLR, DE; 8Absint, FR; 9Recure systems, FR
Abstract
Parallel architectures are nowadays not only confined to the domain of high performance computing, they are also increasingly used in embedded time-critical systems. The ARGO H2020 project provides a programming paradigm and associated tool flow to exploit the full potential of architectures in terms of development productivity, time-to-market, exploitation of the platform computing power and guaranteed real-time performance. In this paper we give an overview of the objectives of ARGO and explore the challenges introduced by our approach.
Download Paper (PDF; Only available from the DATE venue WiFi)
EXPLORING THE UNKNOWN THROUGH SUCCESSIVE GENERATIONS OF LOW POWER AND LOW RESOURCE VERSATILE AGENTS

Speaker: Martin Andraud, Eindhoven University of Technology, NL
Authors: Martin Andraud\(^1\) and Marian Verhelst\(^2\)
\(^1\)Eindhoven University of Technology, NL; \(^2\)Katholieke Universiteit Leuven, BE

Abstract
The Phoenix project aims to develop a new approach to explore unknown environments, based on multiple measurement campaigns carried out by extremely tiny devices, called agents, that gather data from multiple sensors. These low power and low resource agents are configured specifically for each measurement campaign to achieve the exploration goal in the smallest number of iterations. Thus, the main design challenge is to build agents as much reconfigurable as possible. This paper introduces the Phoenix project in more details and presents first developments in the agent design.

Download Paper (PDF; Only available from the DATE venue WiFi)

2.8a Smart Medical Devices

Date: Tuesday 28 March 2017
Time: 11:30 - 12:30
Location / Room: Exhibition Theatre
Organiser: Patrick Mayor, EPFL, CH

The goal of this session is to present concrete examples of smart medical devices, such as a novel surgical robot for hearing implant surgery, a measurement module for the identification of cancer cells through elastic properties, as well as a sensing pad for non-invasive wound monitoring.

11:30 2.8a.1 HEARRESTORE
Speaker: Juan Ansó, UniBE, CH

11:50 2.8a.2 PATLISCI II
Speaker: Hans Peter Lang, UniBAS, CH

12:10 2.8a.3 FLUSITEX
Speaker: Daniel Ahmed, ETHZ, CH

12:30 End of session

13:00 Lunch Break in Garden Foyer
Keynote Lecture session 3.0 in "Garden Foyer" 1350 - 1420

Lunch Break in the Garden Foyer
On all conference days (Tuesday to Thursday), a buffet lunch will be offered in the Garden Foyer, in front of the session rooms. Kindly note that this is restricted to conference delegates possessing a lunch voucher only. When entering the lunch break area, delegates will be asked to present the corresponding lunch voucher of the day. Once the lunch area is being left, re-entrance is not allowed for the respective lunch.

2.8b Smart Medical Devices, Part 2

Date: Tuesday 28 March 2017
Time: 12:30 - 13:00
Location / Room: Exhibition Theatre
Organiser: John Zhao, MathWorks, US
MATLAB AND SIMULINK IN THE SMART DEVICES AND BIG DATA ERA

Speaker:
Stefano Olivieri, MathWorks Academia Group, US

Abstract
Smart connected devices and Internet of Things (IoT) are emerging technologies that are impacting diverse industries, including automotive, energy, healthcare, retail, smart manufacturing, smart buildings and homes, smart transportation, etc. Combining internet-connected devices with cloud computing, machine learning, and other data analytics approaches is enabling products and solutions that are transforming the way we live and work. For example, Smart Medical Devices are key components of new products and solutions that may help healthcare professionals to improve health outcomes from anywhere, leading to increased value for the patient.

However, a system developer working on such products and services faces challenges in capturing, storing, and analyzing the Big Data generated from a multitude of devices. Also, integrating Smart Devices, IoT and Big Data raises specific challenges for data acquisition, reduction, and transmission, using increasingly sophisticated technologies such as RFID tags, Wireless Sensor Nodes and mobile devices.

Using the development of a Smart Medical Device based on healthcare application as an example, this presentation will discuss how engineers and scientists creating smart devices and IoT systems can use MATLAB and Simulink to access and analyze huge data sets from devices, sensors, and databases; apply deep learning and other machine-learning techniques to develop predictive models; and design and test smart devices that wirelessly interact with cloud services like ThingSpeak™, an analytic IoT platform that can run MATLAB code on demand in the cloud.

WE DARE: WEARABLE ELECTRONICS DIRECTIONAL AUGMENTED REALITY

Presenter:
Davide Quaglia, University of Verona, IT

Abstract
Current augmented reality (AR) eyewear solutions require large form factors, weight, cost and energy that reduce usability. In fact, connectivity, image processing, localization, and direction evaluation lead to high processing and power requirements. A multi-antenna system, patented by the industrial partner, enables a new generation of smart eye-wear that elegantly requires less hardware, connectivity, and power to provide AR functionalities. They will allow users to directionally locate nearby radio emitting sources that highlight objects of interest (e.g., people or retail items) by using existing standards like Bluetooth Low Energy, Apple’s iBeacon and Google’s Eddystone. This booth will report the current level of research addressed by the Computer Science Department of University of Verona and the company Wagoo LLC. In the presented demo, different objects emit an “I am here” signal and a prototype of the smart glasses shows the information related to the observed object.

TTOL5G: MODEL-BASED DESIGN OF A 5G UPLINK DATA-LINK LAYER RECEIVER FROM UML/SYSML DIAGRAMS

Presenter:
Andrea Emri, Nokia Bell Labs France, FR

Authors:
Julien Lallet1, Imran Latif1, Ludovic Apvrille2, Renaud Pacalet2 and Adrien Canuel2
1Nokia Bell Labs France, FR; 2Télécom ParisTech, FR

Abstract
Future 5G networks are expected to provide an increase of 10x in data rates. To meet these requirements, the equipment of baseband stations will be designed using mixed architectures, i.e., DSPs, FPGAs. However, efficiently programming these architectures is not trivial due to the drastic increase in complexity of their design space. To overcome this issue, we need to have unified tools capable of rapidly exploring, partitioning and prototyping the mixed architecture designs of 5G systems. At DATE 2017 University Booth, we demonstrate such a unified tool and show our latest achievements in the automatic code generation engine of TTol5/IPIPLODOCUS, a UML/SysML framework for the hardware/software co-design of data-flow systems, to support mixed architectures. Our demonstration will show the full design and evaluation of a 5G data-link layer receiver for both a DSP-based and an IP-based designs. We will validate the effectiveness of our solution by comparing automated vs manual designs.

WORKCRAFT: TOOLSET FOR FORMAL SPECIFICATION, SYNTHESIS AND VERIFICATION OF CONCURRENT SYSTEMS

Presenter:
Danil Sokolov, Newcastle University, GB

Abstract
A large number of models that are employed in the field of concurrent systems design, such as Petri nets, gate-level circuits, dataflow structures have an underlying static graph structure. Their semantics, however, is defined using additional entities, e.g. tokens or node/arc states, which collectively form the overall state of the system. We jointly refer to such formalisms as interpreted graph models. This demo will show the use of an open-source cross-platform Workcraft framework for capturing, simulation, synthesis, and verification of such models. The focus of our case study will be on synthesis from technology-independent formal specifications to verifiable circuit implementations.

More information ...

MATLAB AND SIMULINK IN THE SMART DEVICES AND BIG DATA ERA

Abstract
Smart connected devices and Internet of Things (IoT) are emerging technologies that are impacting diverse industries, including automotive, energy, healthcare, retail, smart manufacturing, smart buildings and homes, smart transportation, etc. Combining internet-connected devices with cloud computing, machine learning, and other data analytics approaches is enabling products and solutions that are transforming the way we live and work. For example, Smart Medical Devices are key components of new products and solutions that may help healthcare professionals to improve health outcomes from anywhere, leading to increased value for the patient.

However, a system developer working on such products and services faces challenges in capturing, storing, and analyzing the Big Data generated from a multitude of devices. Also, integrating Smart Devices, IoT and Big Data raises specific challenges for data acquisition, reduction, and transmission, using increasingly sophisticated technologies such as RFID tags, Wireless Sensor Nodes and mobile devices.

Using the development of a Smart Medical Device based on healthcare application as an example, this presentation will discuss how engineers and scientists creating smart devices and IoT systems can use MATLAB and Simulink to access and analyze huge data sets from devices, sensors, and databases; apply deep learning and other machine-learning techniques to develop predictive models; and design and test smart devices that wirelessly interact with cloud services like ThingSpeak™, an analytic IoT platform that can run MATLAB code on demand in the cloud.

WE DARE: WEARABLE ELECTRONICS DIRECTIONAL AUGMENTED REALITY

Abstract
Current augmented reality (AR) eyewear solutions require large form factors, weight, cost and energy that reduce usability. In fact, connectivity, image processing, localization, and direction evaluation lead to high processing and power requirements. A multi-antenna system, patented by the industrial partner, enables a new generation of smart eye-wear that elegantly requires less hardware, connectivity, and power to provide AR functionalities. They will allow users to directionally locate nearby radio emitting sources that highlight objects of interest (e.g., people or retail items) by using existing standards like Bluetooth Low Energy, Apple’s iBeacon and Google’s Eddystone. This booth will report the current level of research addressed by the Computer Science Department of University of Verona and the company Wagoo LLC. In the presented demo, different objects emit an “I am here” signal and a prototype of the smart glasses shows the information related to the observed object.

TTOL5G: MODEL-BASED DESIGN OF A 5G UPLINK DATA-LINK LAYER RECEIVER FROM UML/SYSML DIAGRAMS

Abstract
Future 5G networks are expected to provide an increase of 10x in data rates. To meet these requirements, the equipment of baseband stations will be designed using mixed architectures, i.e., DSPs, FPGAs. However, efficiently programming these architectures is not trivial due to the drastic increase in complexity of their design space. To overcome this issue, we need to have unified tools capable of rapidly exploring, partitioning and prototyping the mixed architecture designs of 5G systems. At DATE 2017 University Booth, we demonstrate such a unified tool and show our latest achievements in the automatic code generation engine of TTol5/IPIPLODOCUS, a UML/SysML framework for the hardware/software co-design of data-flow systems, to support mixed architectures. Our demonstration will show the full design and evaluation of a 5G data-link layer receiver for both a DSP-based and an IP-based designs. We will validate the effectiveness of our solution by comparing automated vs manual designs.

WORKCRAFT: TOOLSET FOR FORMAL SPECIFICATION, SYNTHESIS AND VERIFICATION OF CONCURRENT SYSTEMS

Abstract
A large number of models that are employed in the field of concurrent systems design, such as Petri nets, gate-level circuits, dataflow structures have an underlying static graph structure. Their semantics, however, is defined using additional entities, e.g. tokens or node/arc states, which collectively form the overall state of the system. We jointly refer to such formalisms as interpreted graph models. This demo will show the use of an open-source cross-platform Workcraft framework for capturing, simulation, synthesis, and verification of such models. The focus of our case study will be on synthesis from technology-independent formal specifications to verifiable circuit implementations.

More information ...

MATLAB AND SIMULINK IN THE SMART DEVICES AND BIG DATA ERA

Abstract
Smart connected devices and Internet of Things (IoT) are emerging technologies that are impacting diverse industries, including automotive, energy, healthcare, retail, smart manufacturing, smart buildings and homes, smart transportation, etc. Combining internet-connected devices with cloud computing, machine learning, and other data analytics approaches is enabling products and solutions that are transforming the way we live and work. For example, Smart Medical Devices are key components of new products and solutions that may help healthcare professionals to improve health outcomes from anywhere, leading to increased value for the patient.

However, a system developer working on such products and services faces challenges in capturing, storing, and analyzing the Big Data generated from a multitude of devices. Also, integrating Smart Devices, IoT and Big Data raises specific challenges for data acquisition, reduction, and transmission, using increasingly sophisticated technologies such as RFID tags, Wireless Sensor Nodes and mobile devices.

Using the development of a Smart Medical Device based on healthcare application as an example, this presentation will discuss how engineers and scientists creating smart devices and IoT systems can use MATLAB and Simulink to access and analyze huge data sets from devices, sensors, and databases; apply deep learning and other machine-learning techniques to develop predictive models; and design and test smart devices that wirelessly interact with cloud services like ThingSpeak™, an analytic IoT platform that can run MATLAB code on demand in the cloud.

WE DARE: WEARABLE ELECTRONICS DIRECTIONAL AUGMENTED REALITY

Abstract
Current augmented reality (AR) eyewear solutions require large form factors, weight, cost and energy that reduce usability. In fact, connectivity, image processing, localization, and direction evaluation lead to high processing and power requirements. A multi-antenna system, patented by the industrial partner, enables a new generation of smart eye-wear that elegantly requires less hardware, connectivity, and power to provide AR functionalities. They will allow users to directionally locate nearby radio emitting sources that highlight objects of interest (e.g., people or retail items) by using existing standards like Bluetooth Low Energy, Apple’s iBeacon and Google’s Eddystone. This booth will report the current level of research addressed by the Computer Science Department of University of Verona and the company Wagoo LLC. In the presented demo, different objects emit an “I am here” signal and a prototype of the smart glasses shows the information related to the observed object.

TTOL5G: MODEL-BASED DESIGN OF A 5G UPLINK DATA-LINK LAYER RECEIVER FROM UML/SYSML DIAGRAMS

Abstract
Future 5G networks are expected to provide an increase of 10x in data rates. To meet these requirements, the equipment of baseband stations will be designed using mixed architectures, i.e., DSPs, FPGAs. However, efficiently programming these architectures is not trivial due to the drastic increase in complexity of their design space. To overcome this issue, we need to have unified tools capable of rapidly exploring, partitioning and prototyping the mixed architecture designs of 5G systems. At DATE 2017 University Booth, we demonstrate such a unified tool and show our latest achievements in the automatic code generation engine of TTol5/IPIPLODOCUS, a UML/SysML framework for the hardware/software co-design of data-flow systems, to support mixed architectures. Our demonstration will show the full design and evaluation of a 5G data-link layer receiver for both a DSP-based and an IP-based designs. We will validate the effectiveness of our solution by comparing automated vs manual designs.
MATISSE: A TARGET-AWARE COMPILER TO TRANSLATE MATLAB INTO C AND OPENCL

Presenter: Luis Reis, University of Porto, PT

Authors: João Bispo and João Cardoso, University of Porto / INESC-TEC, PT

Abstract: Many engineering, scientific and finance algorithms are prototyped and validated in array languages, such as MATLAB, before being converted to other languages such as C for use in production. As such, there has been substantial effort to develop compilers to perform this translation automatically. Alternative types of computation devices, such as GPGPUs and FPGAs, are becoming increasingly more popular, so it becomes critical to develop compilers that target these architectures. We have adapted MATISSE, our MATLAB-compatible compiler framework, to generate C and OpenCL code for these platforms. In this demonstration, we will show how our compiler works and what its capabilities are. We will also describe the main challenges of efficient code generation from MATLAB and how to overcome them.

More information ...

A VOLTAGE-SCALABLE FULLY DIGITAL ON-CHIP MEMORY FOR ULTRA-LOW-POWER IOT PROCESSORS

Presenter: Jun Shiomi, Kyoto University, JP

Authors: Tohru Ishihara and Hidetoshi Onodera, Kyoto University, JP

Abstract: A voltage-scalable RISC processor integrating standard-cell based memory (SCM) is demonstrated. Unlike conventional processors, the processor has Standard-Cell based Memories (SCMs) as an alternative to conventional SRAM macros, enabling it to operate at a 0.4 V single-supply voltage. The processor is implemented with the fully automated cell-based design, which leads to low design costs. By scaling the supply voltage and applying the back-gate biasing techniques, the power dissipation of the SCMs is less than 20 uW, enabling the SCMs to operate with ambient energy source. In this demonstration, the SCMs of the processor operates with a lemon battery as the ambient energy source.

More information ...

ACCURATORS: RECONFIGURABLE SELF-TIMED DATAFLOW ACCELERATOR & FAST NETWORK ANALYSIS IN SILICON

Presenter: Alessandro de Gennaro, Newcastle University, GB

Authors: Danil Sokolov and Andrey Mokhov, Newcastle University, GB

Abstract: Many real-life applications require dynamically reconfigurable pipelines to handle incoming data items differently depending on their values or current operating mode. A demo will show the benefits of an asynchronous accelerator for ordinal pattern encoding with reconfigurable pipeline depth. This was designed, simulated and verified using dataflow structure formalism in Workcraft toolset. The self-timed chip, fabricated in TSMC 90nm, shows high resilience to voltage variation and configurable accuracy of the results. Applications with underlying graph models foster the importance of a fast and flexible approach to graph analysis. To support medicine discovery biological systems are modelled by graphs, and drugs can disconnect some of the connections. A demo will show how graphs can be automatically converted into VHDL designs, which are synthesised into a FPGA for the analysis: thousand times faster than in software. Single stand will be used for both case studies.

More information ...

TIDES: NON-LINEAR WAVEFORMS FOR QUICK TRACE NAVIGATION

Presenter: Janina Stoppe, University of Bremen, DE

Author: Rolf Drechsler, University of Bremen / DFKI, DE

Abstract: System trace analysis is mostly done using waveform viewers — tools that relate signals and their assignments at certain times. While generic hardware design is subject to some innovative visualisation ideas and software visualisation has been a research topic for much longer, these classic tools have been part of the design process since the earlier days of hardware design -- and have not changed much over the decades. Instead, the currently available programs have evolved to look practically the same, all following a familiar pattern that has not changed since their initial appearance. We argue that there is still room for innovation beyond the very classic waveform display though. We implemented a proof-of-concept waveform viewer (codenamed Tides) that has several unique features that go beyond the standard set of features for waveform viewers.

More information ...

SEFILE: A SECURE FILESYSTEM IN USERSPACE VIA SECUBE™

Presenter: Giuseppe Airofarulla, CINI, IT

Authors: Paolo Prinetto1 and Antonio Varrile2

1CINI & Politecnico di Torino, IT; 2Bu5 Labs Ltd., IT

Abstract: The SECube™ Open Source platform is a combination of three main cores in a single-chip design. Low-power ARM Cortex-M4 processor, a flexible and fast Field-Programmable-Gate-Array (FPGA), and an EAL5+ certified Security Controller (SmartCard) are embedded in an extremely compact package. This makes it a unique Open Source security environment where each function can be optimized, executed, and verified on its proper hardware device. In this demo, we present a Windows wrapper for a Filesystem in Userspace (FUSE) with an HDD firewall resorting to the hardware built-in capabilities, and the software libraries, of the SECube™.

More information ...
LABSMILING: A FRAMEWORK, COMPOSED OF A REMOTELY ACCESSIBLE TESTBED AND RELATED SW TOOLS, FOR ANALYSIS AND DESIGN OF LOW DATA-RATE WIRELESS PERSONAL AREA NETWORKS BASED ON IEEE 802.15.4

Presenter:
Marco Santic, University of L’Aquila, IT

Authors:
Luigi Pomante, Walter Tiberti, Carlo Centofanti and Lorenzo Di Giuseppe, DEWS - Università di L’Aquila, IT

Abstract
Low data-rate wireless personal area networks (LR-WPANs) are even more present in the fields of IoT, wearable devices and health monitoring. The development, deployment and test of such systems, based on IEEE 802.15.4 standard (and its derivations, e.g. 15.4e), require the exploitation of a testbed when the network is not trivial and grows in complexity. This demo shows the framework of LabSmiling: a testbed and related SW tools that connect a meaningful (but still scalable) number of physical devices (sensor nodes) located in a real environment. It offers the following services: program, reset, switch on/off single devices; connect to devices up/down links to inject or receive commands/msgs/packets in/from the network; set devices as low level packet sniffers, allowing to test/debug protocol compliances or extensions. Advanced services are: possibility of design test scenarios for the evaluation of network metrics (throughput, latencies, etc.) and custom application verification.

More information ...

15:00 End of session
16:00 Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

3.0 LUNCH TIME KEYNOTE SESSION: Precision Medicine: Where Engineering and Life Science meet

Date: Tuesday 28 March 2017
Time: 13:50 - 14:20
Location / Room: Garden Foyer
Chair: David Atienza, EPFL, CH

As we witness the relentless growth of computing power, storage capacity and communication bandwidth, we also see a major trend in bio-medical sciences to become more quantitative and amenable to benefit from the support of electronic systems. Moreover, societal and economic needs push us to develop and adopt health-management approaches that are more effective, less expensive and flexible enough to be personalized to individual and community needs. Within this frame, precision medicine promises to better society by applying engineering technology to personalized health, with devices that are in/on the body and ubiquitously connected. Examples from the Swiss-wide Nano-Tera.ch program will show various techniques related to remote patient monitoring, emergency care as well as routine care. These examples show the advantages that stem from organized and optimized means to quantify clinical data, handle large data sets as well as controlling and personalizing therapy and drug administration.

Time	Label	Presentation Title	Authors

Abstract
As we witness the relentless growth of computing power, storage capacity and communication bandwidth, we also see a major trend in bio-medical sciences to become more quantitative and amenable to benefit from the support of electronic systems. Moreover, societal and economic needs push us to develop and adopt health-management approaches that are more effective, less expensive and flexible enough to be personalized to individual and community needs. Within this frame, precision medicine promises to better society by applying engineering technology to personalized health, with devices that are in/on the body and ubiquitously connected. Examples from the Swiss-wide Nano-Tera.ch program will show various techniques related to remote patient monitoring, emergency care as well as routine care. These examples show the advantages that stem from organized and optimized means to quantify clinical data, handle large data sets as well as controlling and personalizing therapy and drug administration. Electronic design automation is a key technology to realize systems for precision medicine. Examples of specific EDA tools and methods encompass physical design of integrated sensors and their coupling to electronics, simulation of complex systems with bio-chemical stimuli, synthesis of decision making circuitry based on plurality of inexact inputs, policies design for therapies exploiting online data acquisition, and verification of life-critical applications under broadly-varying and unpredictable input conditions. Overall, precision medicine represents an important and large market opportunity. EDA is a necessary underlying technology to realize the promises of better and less expensive care for everyone.

14:20 End of session
16:00 Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

3.1 IT&A Session: Parallel Ultra-Low-Power Computing for the IoT: Applications, Platforms, Circuits

Date: Tuesday 28 March 2017
Time: 14:30 - 16:00
Location / Room: 5BC

Organisers:
Luca Benini, ETHZ, CH
Davide Rossi, Università di Bologna, IT

Chair:
Luca Benini, ETHZ, CH

Co-Chair:
Davide Rossi, Università di Bologna, IT

This special session will give a deep dive into Ultra-low power computing for Internet-of-Things applications, starting from leading-edge MCU-based commercial solutions, moving to next generation highly-parallel ULP architectures based on open-source hardware & software, fast-forwarding to advanced research solutions based on new models of computations.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30</td>
<td>3.1.1</td>
<td>BETTER THAN WORST CASE SIGNOFF STRATEGIES FOR LOW POWER IOT DEVICES</td>
<td>Jose Pineda de Gyvez, NXP Semiconductors, NL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors:</td>
<td>Jose Pineda and Hamed Fatemi, NXP Semiconductors, NL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
<td>Portable consumer electronic devices are nowadays ubiquitous. Digital ubiquity, along with a lift in semiconductor utilization for consumer electronics, power autonomy, and device miniaturization are key challenges to attain digital convergence for seamless operability. Most of the state-of-the-art computing architectures are based on power-performance trade-offs. In fact, it is unacceptably acceptable to think that without power management any kind of competitive compute solution can be marketed in the entire application field. The relative slow innovation progress on battery technologies demands radical innovations for energy-efficient operation. The inability of battery technologies to keep pace with long operating times required by modern multi-purpose devices necessitates alternative (design) solutions that extend battery lifetime. In this presentation we will focus on signoff techniques aimed to yield designs with smaller area and lower power next to reducing signoff complexity because of sever process variability. More specifically, we make use of standard cell libraries characterized for lower power spread (e.g. -1σ corner), tighter voltage margin (e.g. Vdd-5%) and typical operating temperature instead of targeting the worst-case PVT corner (e.g. -3σ corner, Vdd-10%, 125°C). We evaluate the proposed techniques in a Cortex-M3 testchip designed in 40nm CMOS process. We will show measurement results that demonstrate the effectiveness of using better than worst case signoffs.</td>
</tr>
<tr>
<td>15:00</td>
<td>3.1.2</td>
<td>GAP: AN OPEN-SOURCE PULP-RISCV PLATFORM FOR NEAR-SENSOR ANALYTICS</td>
<td>Eric Flamand, GreenWaves Technologies, FR</td>
</tr>
<tr>
<td>15:30</td>
<td>3.1.3</td>
<td>ENERGY-QUALITY SCALABLE ADAPTIVE VLSI CIRCUITS AND SYSTEMS BEYOND APPROXIMATE COMPUTING</td>
<td>Massimo Alioto, National University of Singapore, SG</td>
</tr>
</tbody>
</table>

Abstract
In this paper, the concept of energy-quality (EQ) scalable systems is introduced and explored, as novel design dimension to scale down energy in integrated systems for the Internet of Things (IoT). EQ-scalable systems explicitly trade off energy and quality at different levels of abstraction ("vertically"), and sub-systems ("horizontally"), creating new opportunities to improve energy efficiency for a given task and expected "quality". The concept of quality slack, a taxonomy of techniques to trade off energy and quality and a general EQ-scalable architecture are presented. The generality of the EQ-scaling concept is shown through several examples, ranging from logic to analog circuits, to memories and Analog-Digital Converters. Challenges, opportunities and expected energy gains are discussed to gain an understanding of the potential of the EQ-scalable integrated circuits and systems. As a result, EQ scalable systems are expected to substantially improve the energy efficiency of systems for IoT, compensating the limited energy gains that will be offered by technology and voltage scaling.

Download Paper (PDF; Only available from the DATE venue WiFi)
End of session
Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

3.2 Hot Topic Session: New Benchmarking Vectors for Emerging Devices, Circuits, and Architectures: Energy, Delay, and ... Accuracy

Date: Tuesday 28 March 2017
Time: 14:30 - 16:00
Location / Room: 4BC

Organisers:
Xiaobo Sharon Hu, University of Notre Dame, US
Michael Niemier, University of Notre Dame, US

Chair:
Xiaobo Sharon Hu, University of Notre Dame, US

Co-Chair:
Pierre-Emmanuel Gaillardon, The University of Utah at Salt Lake City, US

There is ever-growing interest in alternative computational models (e.g., neural networks, etc.), as well as how emerging technologies can best be exploited to address application-level needs. This hot topic session addresses the above issues from the perspective of benchmarking. It considers the impact of emerging devices, circuits, and architectures at the application level in the context of new metrics and benchmarking methodologies being developed via the Semiconductor Research Corporation (SRC).

Subsequent presentations highlight benchmarking and design space exploration efforts that consider application-level energy and performance in the context of computational accuracy. They also highlight infrastructure that can be used to compare different devices, circuits, and architectures that ultimately address the same information processing task.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30</td>
<td>3.2.1</td>
<td>BEYOND-CMOS NON-BOOLEAN LOGIC BENCHMARKING: INSIGHTS AND FUTURE DIRECTIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Azad Naeemi, Georgia Institute of Technology, US</td>
<td>Authors: Chenyun Pan and Azad Naeemi, Georgia Institute of Technology, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
<td>Emerging technologies are facing significant challenges to compete with CMOS with respect to Boolean logic. There is an increasing need for using non-traditional circuits to realize the full potential of beyond-CMOS devices. This paper presents a uniform benchmarking methodology for non-Boolean computation based on the cellular neural network (CNN) for a variety of beyond-CMOS device technologies, including charge-based and spintronic devices. Three types of CNN implementations are benchmarked for a given input noise and recall accuracy target using analog, digital, and spintronic circuits. Results demonstrate that spintronic devices are promising candidates to implement CNNs, where up to 3× EDP improvement is predicted in domain wall devices compared to its conventional CMOS counterpart. This shows that alternative non-Boolean computing platforms are crucial for developing future emerging technologies. Download Paper (PDF; Only available from the DATE venue WiFi)</td>
</tr>
<tr>
<td>15:00</td>
<td>3.2.2</td>
<td>UNDERSTANDING THE DESIGN OF IBM NEUROSYNAPTIC SYSTEM AND ITS TRADEOFFS: A USER PERSPECTIVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Yiran Chen, Duke University, US</td>
<td>Authors: Hsin-Pai Cheng, Wei Wen, Chunpeng Wu, Sicheng Li, Hai (Helen) Li and Yiran Chen, University of Pittsburgh, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
<td>As a large-scale commercial spiking-based neuromorphic computing platform, IBM TrueNorth processor received tremendous attentions in society. However, one of the known issues in TrueNorth design is the limited precision of synaptic weights. The current workaround is running multiple neural network copies in which the average value of each synaptic weight is close to that in the original network. We theoretically analyze the impacts of low data precision in the TrueNorth chip on inference accuracy, core occupation, and performance, and present a probability-biased learning method to enhance the inference accuracy through reducing the random variance of each computation copy. Our experimental results proved that the proposed techniques considerably improve the computation accuracy of TrueNorth platform and reduce the incurred hard-ware and performance overheads. Among all the tested methods, L1TEA regularization achieved the best result, say, up to 2.74% accuracy enhancement when deploying MNIST application onto TrueNorth platform. In May 2016, IBM TrueNorth team imple-mented convolutional neural networks (CNN) on TrueNorth pro-cessor and coincidently use a similar method, say, trinary weights, {-1, 0, 1}. It achieves near state-of-the-art accuracy on 8 standard datasets. In addition, to further evaluate TrueNorth performance on CNN, we test similar deep convolutional networks on True North, GPU and FPGA. Among all, GPU has the highest through-put. But if we consider energy consumption, TrueNorth processor is the most energy efficient one, say, > 6000 frames/sec/Watt. Download Paper (PDF; Only available from the DATE venue WiFi)</td>
</tr>
</tbody>
</table>
3.2.3 Cellular Neural Network Friendly Convolutional Neural Networks - CNNS with CNNS

Speaker: Michael Niemier, University of Notre Dame, US
Authors: András Horváth, Michael Hillmer, Qiuwen Lou, X, Sharon Hu and Michael Niemier

Abstract

This paper will discuss the development and evaluation of a cellular neural network (CeNN)-friendly deep learning network that addresses the MNIST digit recognition problem. Prior work has shown that CeNNs leveraging emerging technologies such as tunnel transistors can improve energy or EDP of CeNNs, while simultaneously offering richer/more complex functionality. Important questions to address are what applications can benefit from CeNNs, and whether CeNNs can eventually outperform other alternatives at the application-level in terms of energy, performance, and accuracy. This paper begins to address these questions by using the MNIST problem as a case study.

Download Paper (PDF; Only available from the DATE venue WiFi)

3.3 Hardware Trojans and Fault Attacks

Date: Tuesday 28 March 2017
Time: 14:30 - 16:00
Location / Room: 2BC

Chair: Ilia Polian, University of Passau, DE
Co-Chair: Matthias Sauer, University of Freiburg, DE

This section focuses on two types of active attacks on system hardware modules: hardware Trojans (malicious modifications) and fault-injections into cryptographic modules. The papers cover Trojans that target coherence protocols in memory caches; Trojan detection based on measurement of path delays; detection of malware using machine learning; and fault attacks on the cryptographic hash function SHA-3.

3.3.1 Algebraic Fault Analysis of SHA-3

Speaker: Pei Luo, Northeastern University, US
Authors: Pei Luo, Konstantinos Athanasiou, Yunsi Fei and Thomas Wahl, Northeastern University, US

Abstract

This paper presents an efficient algebraic fault analysis on all four modes of SHA-3 under relaxed fault models. This is the first work to apply algebraic techniques on fault analysis of SHA-3. Results show that algebraic fault analysis on SHA-3 is very efficient and effective due to the clear algebraic properties of Keccak operations. Comparing with previous work on differential fault analysis of SHA-3, algebraic fault analysis can identify the injected faults with much higher rates, and recover an entire internal state of the penultimate round with much fewer fault injections.

Download Paper (PDF; Only available from the DATE venue WiFi)

3.3.2 Evaluating Coherence-Exploiting Hardware Trojan

Speaker: Minsu Kim, Korea University, KR
Authors: Minsu Kim, Sunhee Kong, Boeui Hong, Lei Xu, Weidong Shi and Taeweon Suh

Abstract

Increasing complexity of integrated circuits and IP-based hardware designs have created the risk of hardware Trojans. This paper introduces a new type of threat, a coherence-exploiting hardware Trojan. This Trojan can be maliciously implanted in master components in a system, and continuously injects memory transactions onto the main interconnect. The injected traffic forces the eviction of cache lines, taking advantage of cache coherence protocols. This type of Trojans insidiously slows down the system performance, incurring Denial-of-Service (DoS) attack. We used a Xilinx Zynq-7000 device to implement the Trojan and evaluate its severity. Experiments revealed that the system performance can be severely degraded as much as 258% with the Trojan. A countermeasure to annihilate the Trojan attack is proposed in detail. We also found that AXI version 3.0 supports a seemingly irrelevant invalidation protocol through ACP, opening a door for the potential Trojan attack.

Download Paper (PDF; Only available from the DATE venue WiFi)
3.4 Guardbanding and Approximation

Date: Tuesday 28 March 2017
Time: 14:30 - 16:00
Location / Room: 3A

Chair: Michael Glass, Ulm University, DE
Co-Chair: Yuko Hara-Azumi, Tokyo Institute of Technology, JP

This session starts with a guardbanding-based approach that uses cell libraries designed and classified for different temperature ranges for improving circuit timing as well as...
The first temperature-guardband optimization is based on thermal-aware logic synthesis and thermal-aware timing analysis. The optimized temperature-guardbands are obtained solely due to using our so-called thermal-aware cell libraries together with existing tools and not due to sacrificing timing constraints (i.e., no trade-offs). We demonstrate that temperature-guardbands can be optimized at design time through thermal-aware logic synthesis in which more resilient circuits against worst-case temperature are obtained. Our static guardband optimization leads to 18% smaller guardbands on average. We also demonstrate that thermal-aware timing analysis enables designers to accurately estimate the required guardbands for a wide range of temperatures without over/under-estimations. Therefore, temperature-guardbands can be optimized at design time through employing the small, yet sufficient guardband that corresponds to the current temperature rather than employing throughout a conservative guardband that corresponds to the worst-case temperature. Our daptive guardband optimization results, on average, in a 2.2% higher performance along with 9.2% less energy. Neither thermal-aware logic synthesis nor thermal-aware timing analysis would be possible without our thermal-aware cell libraries. They are compatible with use of existing commercial tools. Hence, they allow designers, for the first time, to automatically consider thermal concerns within their design tools even if they were not designed for that purpose. Download Software: This work is publicly available at http://ces.tec.kit.edu/dependable-hardware.php

Presentation Title

Authors

Hussam Amrouch, Karlsruhe Institute of Technology (KIT), DE

Benham Khaleghi and Joerg Henkel

Karlsruhe Institute of Technology, DE; Sharif University of Technology, IR

Abstract

We introduce the first temperature-guardband optimization based on thermal-aware logic synthesis and thermal-aware timing analysis. The optimized temperature-guardbands are obtained solely due to using our so-called thermal-aware cell libraries together with existing tools and not due to sacrificing timing constraints (i.e., no trade-offs). We demonstrate that temperature-guardbands can be optimized at design time through thermal-aware logic synthesis in which more resilient circuits against worst-case temperature are obtained. Our static guardband optimization leads to 18% smaller guardbands on average. We also demonstrate that thermal-aware timing analysis enables designers to accurately estimate the required guardbands for a wide range of temperatures without over/under-estimations. Therefore, temperature-guardbands can be optimized at design time through employing the small, yet sufficient guardband that corresponds to the current temperature rather than employing throughout a conservative guardband that corresponds to the worst-case temperature. Our daptive guardband optimization results, on average, in a 2.2% higher performance along with 9.2% less energy. Neither thermal-aware logic synthesis nor thermal-aware timing analysis would be possible without our thermal-aware cell libraries. They are compatible with use of existing commercial tools. Hence, they allow designers, for the first time, to automatically consider thermal concerns within their design tools even if they were not designed for that purpose. Download Software: This work is publicly available at http://ces.tec.kit.edu/dependable-hardware.php

Presentation Title

Authors

Benjamin Barrois, University of Rennes 1 / IRISA, FR

Benjamin Barrois, Olivier Senteley and Daniel Menard

University of Rennes - INRIA, FR; INRIA, FR; INSA Rennes, FR

Abstract

Many applications are error-resilient, allowing for the introduction of approximations in the calculations, as long as a certain accuracy target is met. Traditionally, fixed-point arithmetic is used to relax accuracy, by optimizing the bit-width. This arithmetic leads to important benefits in terms of delay, power and area. Lately, several hardware approximations have been invented, seeking the same performance benefits. However, a fair comparison between the usage of this new class of operators and classical fixed-point arithmetic with careful truncation or rounding, has never been performed. In this paper, we first compare approximate and fixed-point arithmetic operators in terms of power, area and delay, as well as in terms of induced error, using many state-of-the-art metrics and by emphasizing the issue of data sizing. To perform this analysis, we developed a design exploration framework, APXPERF, which guarantees that all operators are compared using the same operating conditions. Moreover, operators are compared in several classical real-life applications leveraging relevant metrics. In this paper, we show that considering a large set of parameters, existing approximate adders and multipliers tend to be dominated by truncated or rounded fixed-point ones. For a given accuracy level and when considering the whole computation data-path, fixed-point operators are several orders of magnitude more accurate while spending less energy to execute the application. A conclusion of this study is that the entropy of careful sizing is always lower than approximate operators, since it require significantly less bits to be processed in the data-path and stored. Approximated data therefore always contain on average a greater amount of costly erroneous, useless information.

Download Paper (PDF; Only available from the DATE venue WiFi)
GAUSSIAN MIXTURE ERROR ESTIMATION FOR APPROXIMATE CIRCUITS

Speaker: Amin Ghasemazar, The University of British Columbia, CA
Authors: Amin Ghasemazar and Mieszko Lis, University of British Columbia, CA

Abstract
In application domains where perceived quality is limited by human senses, where data are inherently noisy, or where models are naturally inexact, approximate computing offers an attractive tradeoff between accuracy and energy or performance. While several approximate functional units have been proposed to date, the question of how these techniques can be systematically integrated into a design flow remains open. Ideally, units like adders or multipliers could be automatically replaced with their approximate counterparts as part of the design flow. This, however, requires accurately modelling approximation errors to avoid compromising output quality. Prior proposals have either focused on describing errors per-bit or significantly limited estimation accuracy to reduce otherwise exponential storage requirements. When multiple approximate modules are chained, these limitations become critical, and propagated error estimates can be orders of magnitude off. In this paper, we propose an approach where both input distributions and approximation errors are modelled as Gaussian mixtures. This naturally represents the multiple sources of error that arise in many approximate circuits while maintaining reasonable memory requirements. Estimation accuracy is significantly better than prior art (up to 7.2× lower Hellinger distance) and errors can be accurately propagated through a cascade of approximate operations; estimates of quality metrics like MSE and MED are within a few percent of simulation-derived values.

Download Paper (PDF; Only available from the DATE venue WiFi)

ENHANCING SYMBOLIC SYSTEM SYNTHESIS THROUGH ASPMT WITH PARTIAL ASSIGNMENT EVALUATION

Speaker: Kai Neubauer, University of Rostock, DE
Authors: Kai Neubauer 1, Philipp Wanko 2, Torsten Schaub 2 and Christian Haubelt 1
1University of Rostock, DE; 2University of Potsdam, DE

Abstract
The design of embedded systems is becoming continuously more complex such that efficient design methods are becoming crucial for competitive results regarding design time and performance. Recently, combined Answer Set Programming (ASP) and Quantifier Free Integer Difference Logic (QF-IDL) solving has been shown to be a promising approach in system synthesis. However, this approach still has several restrictions limiting its applicability. In the paper at hand, we propose a novel ASP modulo theories (ASPmT) system synthesis approach, which (i) supports more sophisticated system models, (ii) tightly integrates the QF-IDL solving into the ASP solving, and (iii) makes use of partial assignment checking. As a result, more realistic systems are considered and an early exclusion of infeasible solutions improves the entire system synthesis.

Download Paper (PDF; Only available from the DATE venue WiFi)

Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

3.5 Low-power brain inspired computing for embedded systems

Date: Tuesday 28 March 2017
Time: 14:30 - 16:00
Location / Room: 3C
Chair: Johanna Sepulveda, TU Munich, DE
Co-Chair: Andrea Bartolini, Universita' di Bologna - ETH Zurich, IT

Neural Networks are promising techniques for bringing brain inspired computing into embedded platforms. Energy efficiency is a primary concern in these computing domain. This track combines low power design techniques such as approximate computing and compression with state-of-the-art hardware architectures.
APPROXIMATE COMPUTING FOR SPIKING NEURAL NETWORKS

Speaker: Sanchari Sen, Purdue University, US

Authors: Sanchari Sen, Swagath Venkataramani and Anand Raghunathan, Purdue University, US

Abstract

Spiking Neural Networks (SNNs) are widely regarded as the third generation of artificial neural networks, and are expected to drive new classes of recognition, data analytics and computer vision applications. However, large-scale SNNs (e.g., of the scale of the human visual cortex) are highly compute and data intensive, requiring new approaches to improve their efficiency. Complementary to prior efforts that focus on parallel software and the design of specialized hardware, we propose AxSNN, the first effort to apply approximate computing to improve the computational efficiency of evaluating SNNs. In SNNs, the inputs and outputs of neurons are encoded as a time series of spikes. A spike at a neuron's output triggers updates to the potentials (internal states) of neurons to which it is connected. AxSNN determines spike-triggered neuron updates that can be skipped with little or no impact on output quality and selectively skips them to improve both compute and memory energy. Neurons that can be approximated are identified by utilizing various static and dynamic parameters such as the average spiking rates and current potentials of neurons, and the weights of synaptic connections. Such a neuron is placed into one of many approximation modes, wherein the neuron is sensitive only to a subset of its inputs and sends spikes only to a subset of its outputs. A controller periodically updates the approximation modes of neurons in the network to achieve energy savings with minimal loss in quality. We apply AxSNN to both hardware and software implementations of SNNs. For hardware evaluation, we designed SNNAP, a Spiking Neural Network Approximate Processor that embodies the proposed approximation strategy, and synthesized it to 45nm technology. The software implementation of AxSNN was evaluated on a 2.7 GHz Intel Xeon server with 128 GB memory. Across a suite of 6 image recognition benchmarks, AxSNN achieves 1.4-5.5X reduction in scalar operations for network evaluation, which translates to 1.2-3.6X and 1.26-3.9X improvement in hardware and software energies respectively, for no loss in application quality. Progressively higher energy savings are achieved with modest reductions in output quality.

Download Paper (PDF; Only available from the DATE venue WiFi)

REAL-TIME ANOMALY DETECTION FOR STREAMING DATA USING BURST CODE ON A NEUROSYNAPTIC PROCESSOR

Speaker: Qinru Qiu, Syracuse University, US

Authors: Qinwen Chen and Qinru Qiu, Syracuse University, US

Abstract

Real-time anomaly detection for streaming data is a desirable feature for mobile devices or unmanned systems. The key challenge is how to deliver required performance under the stringent power constraint. To address the paradox between performance and power consumption, brain-inspired hardware, such as the IBM Neurosynaptic System, has been developed to enable low power implementation of large-scale neural models. Meanwhile, inspired by the operation and the massive parallel structure of human brain, carefully structured inference model has been demonstrated to give superior detection quality than many traditional models while facilitates neuromorphic implementation. Implementing inference based anomaly detection on the neurosynaptic processor is not straightforward due to hardware limitations. This work presents a design flow and component library that flexibly maps learned detection network to the TrueNorth architecture. Instead of traditional rate code, burst code is adopted in the design, which represents numerical value using the phase of a burst of spike trains. This does not only reduce the hardware complexity, but also increases the resilience to noise. A Corelet library, NeoInfer-TN, is developed for basic operations in burst code and two-phase pipelines are constructed based on the library components. The design can be configured for different tradeoffs between detection accuracy and throughput/energy. We evaluate the system using intrusion detection data streams. The results show higher detection rate than some conventional approaches and real-time performance, with only 50mW power consumption. Overall, it achieves 10^4-8 operations per watt-second.

Download Paper (PDF; Only available from the DATE venue WiFi)

FAST, LOW POWER EVALUATION OF ELEMENTARY FUNCTIONS USING RADIAL BASIS FUNCTION NETWORKS

Speaker: Parami Wijesinghe, Purdue University, US

Authors: Parami Wijesinghe, Charnika Liyanagedera and Kaushik Roy, Purdue University, US

Abstract

Fast and efficient implementation of elementary functions such as sin(), cos(), and log() are of ample importance in a large class of applications. The state of the art methods for function evaluation involves either expensive calculations such as multiplications, large number of iterations, or large Lookup-Tables (LUTs). Higher number of iterations leads to higher latency whereas large LUTs contribute to delay, higher area requirement and higher power consumption owing to data fetching and leakage. We propose a hardware architecture for evaluating mathematical functions, consisting a small LUT and a simple Radial Basis Function Network (RBFN), a type of an Artificial Neural Network (ANN). Our proposed method evaluates trigonometric, hyperbolic, exponential, logarithmic, and square root functions. This technique finds utility in applications where the highest priority is on performance and power consumption. In contrast to traditional ANNs, our approach does not involve multiplication when determining the post synaptic states of the network. Owing to the simplicity of the approach, we were able to attain more than 2.5x power benefits and more than 1.4x performance benefits when compared with traditional approaches, under the same accuracy conditions.

Download Paper (PDF; Only available from the DATE venue WiFi)
3.6 Mechanisms for hardware fault testing, recovery and metastability management

Date: Tuesday 28 March 2017
Time: 14:30 - 16:00
Location / Room: 5A

Chair:
Jaume Abella, Barcelona Supercomputing Center (BSC), ES

Co-Chair:
Maria K. Michael, University of Cyprus, CY

Papers in this session provide new solutions for dealing with hardware faults and metastability issues, including testing and diagnosing mechanisms for NoCs, fault recovery approaches for 3D ICs, and containment solutions for metastability in sorting networks

3.6.1 CHARKA: A RELIABILITY-AWARE TEST SCHEME FOR DIAGNOSIS OF CHANNEL SHORTS BEYOND MESH NOCS

Speaker: Santosh Biswas, IIT Guwahati, IN

Authors:
- Biswajit Bhowmik¹, Jatindra Kumar Deka² and Santosh Biswas²
- ¹IIT Guwahati, IN; ²IIT GUWAHATI, IN

Abstract
This paper presents a fast and low cost on-line scheme named "Charka" that analyzes short faults in channels of octagon NoCs. Experimental results demonstrate that the proposed scheme achieves 100% coverage metrics and its on-line evaluation reveals compelling effect of these faults on system performance. We observe that the proposed scheme is up to 9X faster while packet latency is improved by 13.79-21.17% and energy consumption is reduced by 17.57-24.97%. Further, the test area overhead is reduced by 13-26% that shows 52-57.77% improvement.

Download Paper (PDF; Only available from the DATE venue WiFi)

3.6.2 RECOVERY-AWARE PROACTIVE TSV REPAIR FOR ELECTROMIGRATION IN 3D ICs

Speaker: Shengcheng Wang, Chair of Dependable Nano Computing (CDNC), Karlsruhe Institute of Technology (KIT), DE

Authors:
- Shengcheng Wang¹, Hengyang Zhao², Sheldon Tan³ and Mehdi Tahoori¹
- ¹Karlsruhe Institute of Technology, DE; ²University of California, Riverside, US; ³University of California at Riverside, US

Abstract
Electromigration (EM) becomes a major reliability concern in three-dimensional integrated-circuits (3D ICs). To mitigate this problem, a typical solution is to use TSV redundancy in a reactive manner, maintaining the operability of a 3D chip in the presence of EM failures by detecting and replacing faulty TSVs with spares. In this work, we explore an alternative, more preferred approach to enhance the EM-related lifetime reliability of TSV grid, in which redundancy is used proactively to allow non-faulty TSVs to be temporarily deactivated. In this way, EM wear-out can be reversed by exploiting its recovery property. Applied to 3D benchmark designs, the recovery-aware proactive repair approach increases EM-related lifetime reliability (measured in mean-time-to-failure) of the entire TSV grid by up to 12x relative to the conventional reactive method, with less area overhead.

Download Paper (PDF; Only available from the DATE venue WiFi)

3.6.3 NEAR-OPTIMAL METASTABILITY-CONTAINING SORTING NETWORKS

Speaker: Johannes Bund, Saarland University, DE

Authors:
- Johannes Bund¹, Christoph Lenzen² and Moti Medina²
- ¹Saarland University, DE; ²MPI-INF, DE

Abstract
Metastability in digital circuits is a spurious mode of operation induced by violation of setup/hold times of stateful components. It cannot be avoided deterministically when transitioning from continuously-valued to (discrete) binary signals. However, in prior work (Lenzen & Medina ASYNC 2016) it has been shown that it is possible to fully and deterministically contain the effect of metastability in sorting networks. More specifically, the sorting operation incurs no loss of precision, i.e., any inaccuracy of the output originates from mapping the continuous input range to a finite domain. The downside of this prior result is inefficiency: for B-bit inputs, the circuit for a single comparison contains Theta(B^2) gates and has depth Theta(log B) depth. In this work, we present an improved solution with near-optimal Theta(B/log B) gates and asymptotically optimal Theta(log B) depth. On the practical side, our sorting networks improves over prior work for all input lengths B > 2, e.g., for 16-bit inputs we present an improvement of more than 70% w.r.t. the depth of the sorting network and more than 60% improvement w.r.t. the cost of the sorting network.

Download Paper (PDF; Only available from the DATE venue WiFi)
3DFAR: A THREE-DIMENSIONAL FABRIC FOR RELIABLE MULTICORE PROCESSORS

Valeria Bertacco, University of Michigan, US

Authors: Javad Bagherzadeh and Valeria Bertacco, University of Michigan, US

Abstract
In the past decade, silicon technology trends into the nanometer regime have led to significantly higher transistor failure rates. Moreover, these trends are expected to exacerbate with future devices. To enhance reliability, several approaches leverage the inherent core-level and processor-level redundancy present in large chip multiprocessors. However, all of these methods incur high overheads, making them impractical. In this paper, we propose 3DFAR, a novel architecture leveraging 3-dimensional fabrics layouts to efficiently enhance reliability in the presence of faults. Our key idea is based on a fine-grained reconfigurable pipeline for multicore processors, which minimizes routing delay among spare units of the same type by using physical layout locality and efficient interconnect switches, distributed over multiple vertical layers. Our evaluation shows that 3DFAR outperforms state-of-the-art reliable 2D solutions, at a minimal area cost of only 7% over an unprotected design.

EVALUATING IMPACT OF HUMAN ERRORS ON THE AVAILABILITY OF DATA STORAGE SYSTEMS

Hossein Asadi, Sharif University of Technology, IR

Authors: Mostafa Kishani, Reza Eftekhari and Hossein Asadi, Sharif University of Technology, IR

Abstract
In this paper, we investigate the effect of incorrect disk replacement service on the availability of data storage systems. To this end, we first conduct Monte Carlo simulations to evaluate the availability of disk subsystem by considering disk failures and incorrect disk replacement service. We also propose a Markov model that corroborates the Monte Carlo simulation results. We further extend the proposed model to consider the effect of automatic disk fail-over policy. The results obtained by the proposed model show that overlooking the impact of incorrect disk replacement can result up to three orders of magnitude unavailability underestimation. Moreover, this study suggests that by considering the effect of human errors, the conventional believes about the dependability of different RAID mechanisms should be revised. The results show that in the presence of human errors, RAID1 can result in lower availability compared to RAID5.

THE CONCEPT OF UNSCHEDULABILITY CORE FOR OPTIMIZING PRIORITY ASSIGNMENT IN REAL-TIME SYSTEMS

Yecheng Zhao, Virginia Polytechnic Institute and State University, US

Authors: Yecheng Zhao and Haibo Zeng, Virginia Tech, US

Abstract
In the design optimization of real-time systems, the schedulability analysis is used to define the feasibility region within which tasks meet their deadlines, so that optimization algorithms can find the best solution within the region. However, the complexity of current schedulability analysis techniques often makes it difficult to leverage existing optimization frameworks and scale to large designs. In this paper, we consider the design optimization problems for real-time systems scheduled with fixed priority, where task priority assignment is part of the decision variables. We propose the concept of unschedulability core, a compact representation of the schedulability conditions, and develop efficient algorithms for its calculation. We present a new optimization procedure based on a lazy constraint paradigm that leverages such a concept. Experimental results on two case studies show that the new optimization procedure provides optimal solutions, but is a few magnitudes faster than other exact algorithms (Branch-and-Bound, Integer Linear Programming).
3.7.2 UTILIZATION DIFFERENCE BASED PARTITIONED SCHEDULING OF MIXED-CRITICALITY SYSTEMS

Speaker: Saravanan Ramanathan, Nanyang Technological University, SG
Authors: Saravanan Ramanathan and Arvind Easwaran, Nanyang Technological University, SG

Abstract
Mixed-Criticality (MC) systems consolidate multiple functionalities with different criticalities onto a single hardware platform. Such systems improve the overall resource utilization while guaranteeing resources to critical tasks. In this paper, we focus on the problem of partitioned multiprocessor MC scheduling, in particular the problem of designing efficient partitioning strategies. We develop two new partitioning strategies based on the principle of evenly distributing the difference between total high-critical utilization and total low-critical utilization for the critical tasks among all processors. By balancing this difference, we are able to reduce the pessimism in uniprocessor MC schedulability tests that are applied on each processor, thus improving overall schedulability. To evaluate the schedulability performance of the proposed strategies, we compare them against existing partitioned algorithms using extensive experiments. We show that the proposed strategies are effective with both dynamic-priority Earliest Deadline First with Virtual Deadlines (EDF-VD) and fixed-priority Adaptive Mixed-Criticality (AMC) algorithms. Specifically, our results show that the proposed strategies improve schedulability by as much as 28.1% and 36.2% for implicit and constrained-deadline task systems respectively.

Download Paper (PDF; Only available from the DATE venue WiFi)

15:30 3.7.3 SCHEDULABILITY USING NATIVE NON-PREEMPTIVE GROUPS ON AN AUTOSAR/OSEK PLATFORM WITH CACHES

Speaker: Leo Hatvani, Technische Universiteit Eindhoven, NL
Authors: Leo Hanavi, Reinder J. Bril 1 and Sebastian Altmeier 2
1Technische Universiteit Eindhoven (TU/e), NL; 2University of Amsterdam (UvA), NL

Abstract
Fixed-priority preemption threshold scheduling (FPTS) is a limited preemptive scheduling scheme that generalizes both fixed-priority preemptive scheduling (FPSS) and fixed-priority non-preemptive scheduling (FPNS). By increasing the priority of tasks as they start executing, it reduces the set of tasks that can preempt any given task. A subset of FPTS task configurations can be implemented natively on any AUTOSAR/OSEK compatible platform by utilizing the platform’s native implementation of non-preemptive task groups via so-called internal resources. The limiting factor for this implementation is the number of internal resources that can be associated with any individual task. OSEK and consequently AUTOSAR limit this number to one internal resource per task. In this work, we investigate the impact of this limitation on the schedulability of task sets when cache related preemption delays are taken into account. We also consider the impact of this restriction on the stack size when the tasks are executed on a shared-stack system.

Download Paper (PDF; Only available from the DATE venue WiFi)

16:00 IP1-18, 637

GPUGUARD: TOWARDS SUPPORTING A PREDICTABLE EXECUTION MODEL FOR HETEROGENEOUS SOC

Speaker: Björn Forsberg, ETH Zürich, CH
Authors: Björn Forsberg 1, Andrea Marongiu 2 and Luca Benini 3
1ETH Zürich, CH; 2Swiss Federal Institute of Technology in Zurich (ETHZ), CH; 3Università di Bologna, IT

Abstract
The deployment of real-time workloads on commercial off-the-shelf (COTS) hardware is attractive, as it reduces the cost and time-to-market of new products. Most modern high-end embedded SoCs rely on a heterogeneous design, coupling a general-purpose multi-core CPU to a massively parallel accelerator, typically a programmable GPU, sharing a single global DRAM. However, because of non-predictable hardware arbiters designed to maximize average or peak performance, it is very difficult to provide timing guarantees on such systems. In this work we present our ongoing work on GPUGuard, a software technique that predictably arbitrates main memory usage in heterogeneous SoCs. A prototype implementation for the NVIDIA Tegra TX1 SoC shows that GPUGuard is able to reduce the adverse effects of memory sharing, while retaining a high throughput on both the CPU and the accelerator.

Download Paper (PDF; Only available from the DATE venue WiFi)

16:01 IP1-19, 226

A NON-INTRUSIVE, OPERATING SYSTEM INDEPENDENT SPINLOCK PROFILER FOR EMBEDDED MULTICORE SYSTEMS

Speaker: Lin Li, Infineon Technologies, DE
Authors: Lin Li 1, Philipp Wagner 2, Albrecht Mayer 1, Thomas Wild 2 and Andreas Herkersdorf 3
1Infineon Technologies, DE; 2Technical University of Munich, DE; 3TU München, DE

Abstract
Locks are widely used as a synchronization method to guarantee the mutual exclusion for accesses to shared resources in multi-core embedded systems. They have been studied for years to improve performance, fairness, predictability etc. and a variety of lock implementations optimized for different scenarios have been proposed. In practice, applying an appropriate lock type to a specific scenario is usually based on the developer’s hypothesis, which could mismatch the actual situation. A wrong lock type applied may result in lower performance and unfairness. Thus, a lock profiling tool is needed to increase the system transparency and guarantee the proper lock usage. In this paper, an operating-system-independent lock profiling approach is proposed as there are many different operating systems in the embedded field. This approach detects lock acquisition and lock releasing using hardware tracing based on hardware-level spinlock characteristics instead of specific libraries or APIs. The spinlocks are identified automatically: lock profiling statistics can be measured and performance-harmful lock behaviors are detected. With this information, the lock usage can be improved by the software developer. A prototype as a Java tool was implemented to conduct hardware tracing and analyze locks inside applications running on the Infineon AURIX microcontrollers.

Download Paper (PDF; Only available from the DATE venue WiFi)

16:00 End of session

Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

3.8 Addressing Challenges in Today’s Datacenter Systems’ Design
Time	Label	Presentation Title
14:30 | 3.8.1 | SERVER BENCHMARKING AND DESIGN WITH CLOUDSUITE 3.0
Speaker: Javier Picorel, EPFL, CH
Abstract: Since its inception, CloudSuite (cloudsuite.ch) has emerged as a popular suite of benchmarks both in industry and among academics for the performance evaluation of cloud services. The EuroCloud Server project blueprinted key optimizations in server SoCs based on the salient features of CloudSuite benchmarks that lead to an order of magnitude improvement in efficiency while preserving QoS. ARM-based server products (e.g., Cavium ThunderX) have now emerged following these guidelines and showcasing the improved efficiency. CloudSuite 3.0 is a major enhancement over prior releases both in benchmarks and infrastructure. It includes benchmarks that represent massive data manipulation with tight latency constraints such as in-memory data analytics using Apache Spark, a new real-time video streaming benchmark following today’s most popular video-sharing website setups, and a new web serving benchmark mirroring today’s multi-tier web server software stacks. To ease the deployment of CloudSuite into private and public cloud systems, the benchmarks are integrated into the Docker software container system and Google’s PerfKit Benchmark. Docker wraps each benchmark into a self-contained software package, guaranteeing the same execution regardless of the environment, while PerfKit automates the process of benchmarking cloud server systems with CloudSuite. CloudSuite 3.0 is supported to run both on real hardware and on our QEMU-based computer architecture simulation framework.

15:15 | 3.8.2 | PROTECTING DATA IN FARM AND RDMA NETWORKS WITH CATAPULT
Speaker: Greg O’Shea, Microsoft, US
Abstract: FaRM is an in-memory, transactional database that runs distributed across a cluster of Windows Servers that are connected by a high-speed Remote Direct Memory Access (RDMA) network. Data in FaRM are stored in DRAM and exposed directly to the L2 network by the server’s RDMA network adapters, so that other members of the FaRM cluster can access the data with great efficiency. RDMA enables a network adapter to directly access the memory of another server in the same Ethernet network bypassing the operating system in both servers. This enables low-latency and high-bandwidth data access across the entire cluster. However, RDMA provides no security: the data are also accessible to every other server attached to the same Ethernet network, and message transfers are vulnerable to replay and modification. We present our work to protect data in FaRM using a bump-in-the-wire firewall for RDMA. Based upon the FPGA cards widely deployed in Windows Servers within Microsoft, the firewall exists as a barrier between a FaRM server’s RDMA adapter and the local Ethernet switch. It prevents packets from outside the FaRM cluster from ever reaching the server’s RDMA adapter, and it protects RDMA packets between members of the FaRM cluster by encapsulating them in DTLS tunnels. We show that implementing a similar level of protection in software can be prohibitively expensive.

16:00 | End of session
Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

3.9 A tribute to Ralph Otten

Date: Tuesday 28 March 2017
Time: 14:30 - 16:00
Location / Room: Auditorium A
Organiser: Giovanni De Micheli, EPFL, CH
Chair: Michael Burstein, CEO Billy.com, CA
Co-Chair: Giovanni De Micheli, EPFL, CH

Ralph Otten
World renowned leaders in Physical Design will talk about accomplishments in this field over the last four decades, as a tribute to Ralph Otten, pioneer of this field and prematurely died in an accident.

Time	Label	Presentation Title
14:30 | 3.9.1 | CHIP DESIGN - PHYSICAL AND PHILOSOPHICAL
Author: Dave Liu, NTHU, TW

14:45 | 3.9.2 | AUTOMATIC FLOORPLAN DESIGN
Author: Martin Wong, University of Illinois at Urbana Champaign, US
15:00 3.9.3 THE EVOLUTION OF FLOORPLANNING
Author: Antun Domic, Synopsys, US

15:15 3.9.4 FROM SILICON COMPILER TO PHYSICAL SYNTHESIS: RALPH OTTEN’S CONTRIBUTIONS TO EDA
Author: Patrick Groeneweld, Synopsys, US

15:30 3.9.5 DEALING WITH EXPLODING DESIGN RULE NUMBERS AND COMPLEXITY
Author: Raul Camposano, Sage Design Automation, US

15:45 3.9.6 IN MEMORIAM OF RALPH OTTEN: BREAKING DOWN THE COMPLEXITY OF LAYOUT DESIGN UNDER MOORE’S LAW
Author: Jochen Jess, Eindhoven University of Technology, NL

16:00 End of session
Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00
More information ...
PULP: A ULTRA-LOW POWER PLATFORM FOR THE INTERNET-OF-THINGS

Presenters:
Francesco Conti, ETH Zurich, CH

Authors:
Stefan Mach, Florian Zaruba, Antonio Pullini, Daniele Palossi, Giovanni Rovere, Florian Glaser, Germain Haugou, Schekeb Fatehi and Luca Benni

Abstract
The PULP (Parallel Ultra-Low Power) platform strives to provide high performance for IoT nodes and endpoints within a very small power envelope. The PULP platform is based on a tightly-coupled multi-core cluster and on a modular architecture, which can support complex configurations with autonomous I/O without SW intervention, HW-accelerated execution of hot computation kernels, fine-grain event-based computation - but can also be deployed in very simple configuration, such as the open source PULPhino microcontroller. In this demonstration booth, we will showcase several prototypes using PULP chips in various configuration. Our prototypes perform demos such as real-time deep-learning based visual recognition from a low-power camera, and online biosignal acquisition and reconstruction on the same chip. Application scenarios for our technology include healthcare wearables, autonomous nano-UAVs, smart networked environmental sensors. More information ...
[P1-4] (Best Paper Award Candidate)

DROOP MITIGATING LAST LEVEL CACHE ARCHITECTURE FOR STTRAM

Speaker:
Swaroop Ghosh, Pennsylvania State University, US

Authors:
Radha Krishna Alur1 and Swaroop Ghosh2
1University of South Florida, US; 2Pennsylvania State University, US

Abstract
Spin-Transfer Torque magnetic Random Access Memory (STT-RAM) is one of the emerging technologies in the Domain of Non-volatile dense memories especially preferred for the last level cache (LLC). The amount of current needed to reorient the magnetization at present (~100μA per bit) is too high, especially for the Write operation. When we perform a full cache line (512-bit) Write, this extremely high current compared to MRAM will result in a Voltage drop in the conventional cache architecture. Due to this drop, the write operation will fail half way through when we attempt to write in the farthest Bank of the cache from the supply. In this paper, we will be proposing a new cache architecture to mitigate this problem of droop and make the write operation successful. Instead of continuously writing the entire Cache line (512-bit) in a single bank, our architecture will be writing these 512-bits in multiple different locations across the cache in parts of 8 (64-bit each). The various simulation results obtained (both circuit and micro-architectural) comparing our proposed architecture against the conventional are presented in detail. Download Paper (PDF; Only available from the DATE venue WiFi)

[P1-5]

MODELING INSTRUCTION CACHE AND INSTRUCTION BUFFER FOR PERFORMANCE ESTIMATION OF VLW ARCHITECTURES USING NATIVE SIMULATION

Speaker:
Omayma Matoussi, Grenoble INP, TIMA laboratory, FR

Authors:
Omayma Matoussi1 and Frédéric Pétrot2
1TIMA Laboratory at Grenoble, FR; 2TIMA Laboratory, Grenoble Institute of Technology, FR

Abstract
In this work, we propose an cache performance estimation approach that focuses on a component necessary to handle the instruction parallelism in a very long instruction word (VLW) processor: the instruction buffer (IB). Our annotation approach is founded on an intermediate level native simulation framework. It is evaluated with reference to a cycle accurate instruction set simulator leading to an average cycle count error of 9.3% and an average speedup of 10. Download Paper (PDF; Only available from the DATE venue WiFi)

[P1-6]

ANALOG FAULT TESTING THROUGH ABSTRACTION

Speaker:
Enrico Fraccaroli, Università degli Studi di Verona, IT

Authors:
Enrico Fraccaroli and Franco Fummi, Università degli Studi di Verona, IT

Abstract
Despite analog SPICE-like simulators have reached their maturity, most of them were not originally conceived for simulating faulty circuits. With the advent of smart systems, fault testing has to deal with models encompassing both analog and digital blocks. Due to their complexity, the industry is still lacking of effective testing approaches for these analog and mixed-signal (AMS) models. The current problem is the computational time required for implementing an analog fault simulation campaign. To this end, the work presented in this paper is an automatic procedure which: 1) injects faults in an analog circuit, 2) abstracts both faulty and fault-free models from the circuit to the functional level, 3) builds an efficient fault simulation framework. The processes of fault injection, faulty model abstraction and framework generation are reported in details, as well as how simulation is carried out. This abstraction process, which preserves the faulty behaviors, allows to reach a speed-up of some orders of magnitude and thus, making feasible an extensive analog faults campaign. Download Paper (PDF; Only available from the DATE venue WiFi)

[P1-7]

BISCC: EFFICIENT PRE THROUGH POST SILICON VALIDATION OF MIXED-SIGNAL/RF SYSTEMS USING BUILT IN STATE CONSISTENCY CHECKING

Speaker:
Abhijit Chatterjee, Georgia Institute of Technology, US

Authors:
Sabyasachi Deyati, Barry Muldrey1 and Abhijit Chatterjee2
1Georgia Institute of Technology, US; 2Georgia Tech, US

Abstract
High levels of integration in SoCs and SoPs is making pre as well as post-silicon validation of mixed-signal systems increasingly difficult due to: (a) lack of automated pre and post-silicon design checking algorithms and (b) lack of controllability and observability of internal circuit nodes in post-silicon. While digital scan chains provide observability of internal digital circuit states, analog scan chains suffer from signal integrity, bandwidth and circuit loading issues. In this paper, we propose a novel technique based on built-in state consistency checking that allows both pre as well as post-silicon validation of mixed-signal/RF systems without the need to rely on manually generated checks. The method is supported by a design-for-validation (DFV) methodology which systematically inserts a minimum amount of circuitry into mixed-signal systems for design bug detection and diagnosis purposes. The core idea is to apply two spectrally diverse stimuli to the circuit under test (CUT) in such a way that they result in the same circuit state (observed voltages/current values at internal or external circuit nodes). By comparing the resulting state values, design bugs are detected efficiently without the need for manually generated checks. No assumption is made about the nature of the detected bugs; the stimulus applied is steered towards those that are the most likely to detect design bugs. Test cases for both pre and post-silicon design bug detection and diagnosis prove the viability of the proposed BISCC approach. Download Paper (PDF; Only available from the DATE venue WiFi)

[P1-8]

COMPUTING WITH NANO-CROSSBAR ARRAYS: LOGIC SYNTHESIS AND FAULT TOLERANCE

Speaker:
Mustafa Altun, Istanbul Technical University, TR

Authors:
Mustafa Altun1, Valentina Ciriani2 and Mehdi Tahoori3
1Istanbul Technical University, TR; 2University of Milan, IT; 3Karlsruhe Institute of Technology, DE

Abstract
Nano-crossbar arrays have emerged as a strong candidate technology to replace CMOS in near future. They are regular and dense structures, and can be fabricated such that each crosspoint can be used as a conventional electronic component such as a diode, a FET, or a switch. This is a unique opportunity that allows us to integrate well developed conventional circuit design techniques into nano-crossbar arrays. Motivated by this, our project aims to develop a complete synthesis and performance optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer. First two work packages of the project are presented in this paper. These packages are on logic synthesis that aims to implement Boolean functions with nano-crossbar arrays with area optimization, and fault tolerance that aims to provide a full methodology in the presence of high fault densities and extreme parametric variations in nano-crossbar architectures. Download Paper (PDF; Only available from the DATE venue WiFi)
SECURECLOUD: SECURE BIG DATA PROCESSING IN UNTRUSTED CLOUDS

Speaker: Rafael Pires, University of Neuchâtel, CH

Abstract
We present the SecureCloud EU Horizon 2020 project, whose goal is to enable new big data applications that use sensitive data in the cloud without compromising data security and privacy. For this, SecureCloud designs and develops a layered architecture that allows for (i) the secure creation and deployment of secure micro-services; (ii) the secure integration of individual micro-services to full-fledged big data applications; and (iii) the secure execution of these applications within untrusted cloud environments. To provide security guarantees, SecureCloud leverages novel security mechanisms present in recent commodity CPUs, in particular, Intel’s Software Guard Extensions (SGX). SecureCloud applies this architecture to big data applications in the context of smart grids. We describe the SecureCloud approach, initial results, and considered use cases.

Download Paper (PDF; Only available from the DATE venue WiFi)

WCET-AWARE PARALLELIZATION OF MODEL-BASED APPLICATIONS FOR MULTI-CORES: THE ARGO APPROACH

Speaker: Steven Derrien, Université de Rennes 1, FR

Authors:
Steven Derrien1, Isabelle Puau2, Panayiotis Aifragias3, Marcus Bednara4, Harald Buccher5, Clément David6, Yann Debray7, Umut Duraik7, Imen Fassi2, Christian Ferdinand8, Damien Hardy2, Angeliki Kritikakou9, Gerard Rauwerda9, Simon Reder5, Martin Sicks9, Timo Stripf9, Kim Sunesen9, Timon ter Braak9, Nikolaos Voros3 and Jürgen Becker5

1IRISA, FR; 2University of Rennes 1 / IRISA, FR; 3TGW, GR; 4IS/FRanhofer, DE; 5Karlsruhe Institute of Technology, DE; 6Sceilab, FR; 7DLR, DE; 8Aabsint, FR; 9Recore systems, FR

Abstract
Parallel architectures are nowadays not only confined to the domain of high performance computing, they are also increasingly used in embedded time-critical systems. The ARGO H2020 project provides a programming paradigm and associated tool flow to exploit the full potential of architectures in terms of development productivity, time-to-market, exploitation of the platform computing power and guaranteed real-time performance. In this paper we give an overview of the objectives of ARGO and explore the challenges introduced by our approach.

Download Paper (PDF; Only available from the DATE venue WiFi)

EXPLORING THE UNKNOWN THROUGH SUCCESSIVE GENERATIONS OF LOW POWER AND LOW RESOURCE VERSATILE AGENTS

Speaker: Martin Andraud, Eindhoven University of Technology, NL

Authors:
Martin Andraud1 and Marian Verhelst2
1Eindhoven University of Technology, NL; 2Katholieke Universiteit Leuven, BE

Abstract
The Phoenix project aims to develop a new approach to explore unknown environments, based on multiple measurement campaigns carried out by extremely tiny devices, called agents, that gather data from multiple sensors. These low power and low resource agents are configured specifically for each measurement campaign to achieve the exploration goal in the smallest number of iterations. Thus, the main design challenge is to build agents as much reconfigurable as possible. This paper introduces the Phoenix project in more details and presents first developments in the agent design.

Download Paper (PDF; Only available from the DATE venue WiFi)

POWER PROFILING OF MICROCONTROLLER'S INSTRUCTION SET FOR RUNTIME HARDWARE TROJANS DETECTION WITHOUT GOLDEN CIRCUIT MODELS

Speaker: Falah Awwad, College of Engineering / Department of Electrical Engineering, UAE University, AE

Authors:
Faqih Khalid Lodhi1, Syed Rafay Hasan2, Osman Hasan3 and Falah Awwad1
1School of Electrical Engineering and Computer Science National University of Sciences and Technology (NUST), PK; 2Department of Electrical and Computer Engineering, Tennessee Technological University, US; 3College of Engineering, United Arab Emirates University, AE

Abstract
Globalization trends in integrated circuit (IC) design are leading to increased vulnerability of ICs against hardware Trojans (HT). Recently, several side channel parameters based techniques have been developed to detect these hardware Trojans that require golden circuit as a reference model, but due to the widespread usage of IP, most of the system-on-chip (SoC) do not have a golden reference. Hence in-circuit property (IP)-based SoC designs are considered as major concern for future integrated circuits. Most of the state-of-the-art runtime hardware Trojan detection techniques presume that Trojans will lead to anomaly in the SoC integration units. In this paper, we argue that an intelligent intruder may intrude the IP-based SoC without disturbing the normal SoC operation or violating any protocols. To overcome this limitation, we propose a methodology to extract the power profile of the micro-controllers instruction sets, which is in turn used to train a machine learning algorithm. In this technique, the power profile is obtained by extracting the power behavior of the micro-controllers for different assembly language instructions. This trained model is then embedded into the integrated circuits at the SoC integration level, which classifies the power profile during runtime to detect the intrusions. We applied our proposed technique on MCB051 micro-controller in VHDL, obtained the power profile of its instruction set and then applied deep learning, k-NN, decision tree and naive Bayesian based machine learning tools to train the models. The cross validation comparison of these learning algorithms, when applied to MCB051 Trojan benchmarks, shows that we can achieve 87% to 99% accuracy. To the best of our knowledge, this is the first work in which the power profile of a microprocessor’s instruction set is used in conjunction with machine learning for runtime HT detection.

Download Paper (PDF; Only available from the DATE venue WiFi)

ACCOUNTING FOR SYSTEMATIC ERRORS IN APPROXIMATE COMPUTING

Speaker: Martin Bruestel, Technical University Dresden, DE

Authors:
Martin Bruestel1 and Akash Kumar2
1Technical University Dresden, DE; 2Technische Universität Dresden, DE

Abstract
Approximate computing is gaining more and more attention as potential solution to the problem of increasing energy demand in computing. Several recent works focus on the application of deterministic approximate computing to arithmetic computations. Circuits for addition and multiplication are simplified, trading exactness for energy and/or speed. Recent approximation techniques for adders focus on modifications of individual full adders’ truth tables or shortening carry chains. While the resulting error is usually characterized with statistical measures over the range of possible input/output combinations, the actual adder is a static nonlinear system regarding arithmetic operations and signal processing. The resulting unexpected effects present a challenge for adopting approximate computing as a widespread and standard application-level optimization technique. This paper focuses on the deterministic effects of approximate multi-bit adders, which are especially evident for certain input data in an otherwise well specified systems, showing the necessity to look beyond purely statistical measures. We show which fundamental principles are violated depending on the chosen approximation scheme, and how this choice affects practical applications. This can serve as a basis for designers to make informed decisions about the use of approximate adders at the application level.

Download Paper (PDF; Only available from the DATE venue WiFi)
GAUSSIAN MIXTURE ERROR ESTIMATION FOR APPROXIMATE CIRCUITS

Speaker: Amin Ghasemazar, The University of British Columbia, CA
Authors: Amin Ghasemazar and Mieszko Lis, University of British Columbia, CA

Abstract:
In application domains where perceived quality is limited by human senses, where data are inherently noisy, or where models are naturally inexact, approximate computing offers an attractive tradeoff between accuracy and energy or performance. While several approximate functional units have been proposed to date, the question of how these techniques can be systematically integrated into a design flow remains open. Ideally, units like adders or multipliers could be automatically replaced with their approximate counterparts as part of the design flow. This, however, requires accurately modeling approximation errors to avoid compromising output quality. Prior proposals have either focused on describing errors per-bit or significantly limited estimation accuracy to reduce otherwise exponential storage requirements. When multiple approximate modules are chained, these limitations become critical, and propagated error estimates can be orders of magnitude off. In this paper, we propose an approach where both input distributions and approximation errors are modelled as Gaussian mixtures. This naturally represents the multiple sources of error that arise in many approximate circuits while maintaining reasonable memory requirements. Estimation accuracy is significantly better than prior art (up to 7.2× lower Hellinger distance) and errors can be accurately propagated through a cascade of approximate operations; estimates of quality metrics like MSE and MED are within a few percent of simulation-derived values.

Download Paper (PDF; Only available from the DATE venue WiFi)

ENHANCING SYMBOLIC SYSTEM SYNTHESIS THROUGH ASPMT WITH PARTIAL ASSIGNMENT EVALUATION

Speaker: Kai Neubauer, University of Rostock, DE
Authors: Kai Neubauer1, Philipp Wanko2, Torsten Schaub2 and Christian Haubelt 2
1University of Rostock, DE; 2University of Potsdam, DE

Abstract:
The design of embedded systems is becoming continuously more complex such that efficient design methods are becoming crucial for competitive results regarding design time and performance. Recently, combined Answer Set Programming (ASP) and Quantifier Free Integer Difference Logic (QF-IDL) solving has been shown to be a promising approach in system synthesis. However, this approach still has several restrictions limiting its applicability. In the paper at hand, we propose a novel ASP modulo theories (ASPmT) system synthesis approach, which (i) supports more sophisticated system models, (ii) tightly integrates the QF-IDL solving into the ASP solving, and (iii) makes use of partial assignment checking. As a result, more realistic systems are considered and an early exclusion of infeasible solutions improves the entire system synthesis.

Download Paper (PDF; Only available from the DATE venue WiFi)

3DFAR: A THREE-DIMENSIONAL FABRIC FOR RELIABLE MULTICORE PROCESSORS

Speaker: Valeria Bertacco, University of Michigan-, US
Authors: Javad Bagherzadeh and Valeria Bertacco, University of Michigan, US

Abstract:
In the past decade, silicon technology trends into the nanometer regime have led to significantly higher transistor failure rates. Moreover, these trends are expected to exacerbate with future devices. To enhance reliability, several approaches leverage the inherent core-level and processor-level redundancy present in large chip multiprocessors. However, all of these methods incur high overheads, making them impractical. In this paper, we propose 3DFAR, a novel architecture leveraging 3-dimensional fabrics layouts to efficiently enhance reliability in the presence of faults. Our key idea is based on a fine-grained reconfigurable pipeline for multicore processors, which minimizes routing delay among spare units of the same type by using physical layout locality and efficient interconnect switches, distributed over multiple vertical layers. Our evaluation shows that 3DFAR outperforms state-of-the-art reliable 2D solutions, at a minimal area cost of only 7% over an unprotected design.

Download Paper (PDF; Only available from the DATE venue WiFi)

EVALUATING IMPACT OF HUMAN ERRORS ON THE AVAILABILITY OF DATA STORAGE SYSTEMS

Speaker: Hossein Asadi, Sharif University of Technology, IR
Authors: Mostafa Kishani, Reza Eftekhari and Hossein Asadi, Sharif University of Technology, IR

Abstract:
In this paper, we investigate the effect of incorrect disk replacement service on the availability of data storage systems. To this end, we first conduct Monte Carlo simulations to evaluate the availability of disk subsystem by considering disk failures and incorrect disk replacement service. We also propose a Markov model that corroborates the Monte Carlo simulation results. We further extend the proposed model to consider the effect of automatic disk fail-over policy. The results obtained by the proposed model show that overlooking the impact of incorrect disk replacement can result up to three orders of magnitude unavailability underestimation. Moreover, this study suggests that by considering the effect of human errors, the conventional believes about the dependability of different RAID mechanisms should be revised. The results show that in the presence of human errors, RAID 1 can result in lower availability compared to RAID 5.

Download Paper (PDF; Only available from the DATE venue WiFi)

GPUGUARD: TOWARDS SUPPORTING A PREDICTABLE EXECUTION MODEL FOR HETEROGENEOUS SOC

Speaker: Björn Forsberg, ETH Zürich, CH
Authors: Björn Forsberg1, Andrea Marongiu2 and Luca Benini3
1ETH Zürich, CH; 2Swiss Federal Institute of Technology in Zurich (ETHZ), CH; 3Università di Bologna, IT

Abstract:
The deployment of real-time workloads on commercial off-the-shelf (COTS) hardware is attractive, as it reduces the cost and time-to-market of new products. Most modern high-end embedded SoCs rely on a heterogeneous design, coupling a general-purpose multi-core CPU to a massively parallel accelerator, typically a programmable GPU, sharing a single global DRAM. However, because of non-predictable hardware arbiters designed to maximize average or peak performance, it is very difficult to provide timing guarantees on such systems. In this work we present our ongoing work on GPUguard, a software technique that predictably arbitrates main memory usage in heterogeneous SoCs. A prototype implementation for the NVIDIA Tegra TX1 SoC shows that GPUguard is able to reduce the adverse effects of memory sharing, while retaining a high throughput on both the CPU and the accelerator.

Download Paper (PDF; Only available from the DATE venue WiFi)
4.1 IT&A Session: The Emergence of Silicon Photonics: From High Performance Computing to Data Centers and Quantum Computing

Date: Tuesday 28 March 2017
Time: 17:00 - 18:30
Location / Room: SBC
Organiser: Luca Carloni, Columbia University, US
Chair: Luca Carloni, Columbia University, US

Recent years have seen major progress in the design and manufacturing of silicon photonics devices. This session provides an overview of the potential that this emerging technology offers for three different types of system and discusses the most important challenges that remain to be addressed. The first talk shows how silicon photonics components can be used to realize energy-efficient high-bandwidth optical interconnection networks. The second talk presents which further advances in manufacturing, packages and testing are needed in order to realize silicon photonics based products for data centers. Finally, the last talk explains how the generation of optical quantum states on an integrated platform can enable future practical implementations of quantum information processing systems.

4.2 Logic, Interconnects, Neurons: New Realizations

Date: Tuesday 28 March 2017
Time: 17:00 - 18:30
Location / Room: 4BC

Presentation Title: ENERGY-PERFORMANCE OPTIMIZED DESIGN OF SILICON PHOTONIC INTERCONNECTION NETWORKS FOR HIGH-PERFORMANCE COMPUTING
Authors: Meisam Bahadori1, Sebastian Rumley1, Robert Polster1, Alexander Gazman1, Matt Traverso2, Mark Webster2, Kaushik Patel1 and Keren Bergman1
Abstract: We present detailed electrical and optical models of the elements that comprise a WDM silicon photonic link. The electronics is assumed to be based on 65 nm CMOS node and the optical modulators and demultiplexers are based on microring resonators. The goal of this study is to analyze the energy consumption and scalability of the link by finding the right combination of (number of channels X data rate per channel) that fully covers the available optical power budget. Based on the set of empirical and analytical models presented in this work, a maximum capacity of 0.75 Tbps can be envisioned for a point-to-point link with an energy consumption of 1.9 pJ/bit. Sub-pJ/bit energy consumption is also predicted for aggregated bitrates up to 0.35 Tbps.

Download Paper (PDF; Only available from the DATE venue WiFi)

Presentation Title: RAPID GROWTH OF IP TRAFFIC IS DRIVING ADOPTION OF SILICON PHOTONICS IN DATA CENTERS
Authors: Kaushik Patel, Cisco Systems, US

Presentation Title: GENERATION OF COMPLEX QUANTUM STATES VIA INTEGRATED FREQUENCY COMBS
Authors: Roberto Morandotti, INRS-EMT, CA
Abstract: The generation of quantum states on an integrated platform will enable low cost and accessible advances for quantum technologies such as secure communications and quantum computation. We demonstrate that integrated quantum frequency combs (based on high-Q microring resonators made from a CMOS-compatible, high-refractive-index glass platform) can enable, among others, the generation of heralded single photons, cross-polarized photon pairs, as well as bi- and multi-photon entangled qubit states over a broad frequency comb covering the S, C, L telecommunications band, constituting an important cornerstone for future practical implementations of photonic quantum information processing.

Download Paper (PDF; Only available from the DATE venue WiFi)

Presentation Title: END OF SESSION
Authors:

Exhibition Reception in Exhibition Area
The Exhibition Reception will take place on Tuesday in the exhibition area, where free drinks for all conference delegates and exhibition visitors will be offered. All exhibitors are welcome to also provide drinks and snacks for the attendees.
This session covers papers showing new approaches to realize optimized logic circuit using silicon nanowire reconfigurable transistors; intra- and inter-core optoelectronic interconnects for energy efficient communications; and magnetic skyrmions as novel nanoelectronic device for non-linear neuron networks.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00</td>
<td>4.2.1</td>
<td>EXPLOITING TRANSISTOR-LEVEL RECONFIGURATION TO OPTIMIZE COMBINATIONAL CIRCUITS</td>
<td>Michael Raitza1, Technische Universität Dresden, DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker:</td>
<td>Authors:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Michael Raitza1, Jens Trommer2, Akash Kumar3, Marcus Völp4, Dennis Walter5, Walter Weber6 and Thomas Mikolajick7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Technische Universität Dresden and CFAED, DE; 2Namlab gGmbH, DE; 3Technische Universität Dresden, DE; 4SNT University of Luxembourg, LU; 5Technische Universität Dresden, DE; 6Namlab GmbH and CFAED, DE; 7Namlab GmbH / TU Dresden, DE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silicon nanowire reconfigurable field effect transistors (SiNW RFETs) abolish the physical separation of n-type and p-type transistors by taking up both roles in a configurable way within a doping-free technology. However, the potential of transistor-level reconfigurability has not been demonstrated in larger circuits, so far. In this paper, we present first steps to a new compact and efficient design of combinational circuits by employing transistor-level reconfiguration. We contribute new basic gates realized with silicon nanowires, such as 2/3-XOR and MUX gates. Exemplifying our approach with 4-bit, 8-bit and 16-bit conditional carry adders, we were able to reduce the number of transistors to almost one half. With our current case study we show that SiNW technology can reduce the required chip area by 16%, despite larger size of the individual transistor, and improve circuit speed by 26%.</td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td>4.2.2</td>
<td>AUTOMATIC PLACE-AND-ROUTE OF EMERGING LED-DRIVEN WIRES WITHIN A MONOLITHICALLY-INTEGRATED CMOS+III-V PROCESS</td>
<td>Tushar Krishna, Georgia Institute of Technology, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker:</td>
<td>Authors:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tushar Krishna1, Arya Balachandran2, Siav Ben Chiai3, Li Zhang4, Bing Wang5, Cong Wang6, Kenneth Lee Gong Kian7, Jurgen Michel8 and Li-Shuian Peh9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Georgia Institute of Technology, US; 2INTU, SG; 3SMART, SG; 4MIT, US; 5Professor, National University of Singapore, SG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>We leverage a recently demonstrated CMOS compatible III-V and Si monolithic integrated process to design photonic links comprising LEDs and photodiodes, as direct replacements for on-chip electrical wires. To enable VLSI-scale design of chips with such LED links, we create a library of opto-electronic standard cells, and model waveguides as traditional metal layers. This lets us integrate LED links into a commercial place-and-route tool, which treats them as electrical cells and wires for the most part, reducing design effort. We also add support for automated replacement of electrical nets with LED links. We find that LED-interconnect based designs substantially lower energy consumption vs. electrical copper wires (~39% reduction in the Network-on-Chip, ~27% reduction within a processor core) while achieving the same latency and bandwidth, demonstrating the promise of LED-on-chip interconnects.</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>4.2.3</td>
<td>A TUNABLE MAGNETIC SKYRMION NEURON CLUSTER FOR ENERGY EFFICIENT ARTIFICIAL NEURAL NETWORK</td>
<td>Deliang Fan, University of Central Florida, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker:</td>
<td>Authors:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhezhi He1 and Deliang Fan2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Department of ECE, University of Central Florida, US; 2University of Central Florida, US</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Artificial neuron is one of the fundamental computing unit in brain-inspired artificial neural network. The standard CMOS based artificial neuron designs to implement non-linear neuron activation function typically consist of large number of transistors, which inevitably causes large area and power consumption. There is a need for novel nanoelectronic device that can intrinsically and efficiently implement such complex non-linear neuron activation function. Magnetic skyrmions are topologically stable chiral spin textures due to Dzyaloshinskii-Moriya interaction in bulk magnets or magnetic thin films. They are promising next-generation information carrier owing to ultra-small size (sub-10nm), high speed (>100m/s) with ultra-low depinning current density (MA/cm²) and high defect tolerance compared to conventional magnetic domain wall motion devices. In this work, to the best of our knowledge, we are the first to propose a threshold-tunable artificial neuron based on magnetic skyrmion. Meanwhile, we propose a Skyrmion Neuron Cluster (SNC) to approximate non-linear soft-limiting neuron activation functions, such as the most popular sigmoid function. The device to system simulation indicates that our proposed SNC leads to 98.74% recognition accuracy in deep learning Convolutional Neural Network (CNN) with MNIST handwritten digits dataset. Moreover, the energy consumption of our proposed SNC is only 3.1 fJ/step, which is more than two orders lower than that of CMOS counterpart.</td>
<td></td>
</tr>
<tr>
<td>18:30</td>
<td>IP2-1</td>
<td>COMPACT MODELING AND CIRCUIT-LEVEL SIMULATION OF SILICON NANOPHOTONIC INTERCONNECTS</td>
<td>Yuyang Wang, UC Santa Barbara, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker:</td>
<td>Authors:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rui Wu, Yuyang Wang, Zeyu Zhang, Chong Zhang, Clinton Schow, John Bowers and Kwang-Ting Cheng, UC Santa Barbara, US</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nanophotonic interconnects have been playing an increasingly important role in the datapath regime. Greater integration of silicon photonics demands modeling and simulation support for design validation, optimization and design space exploration. In this work, we develop compact models for a number of key photonic devices, which are extensively validated by the measurement data of a fabricated optical network-on-chip (ONoC). Implemented in SPICE-compatible Verilog-A, the models are used in circuit-level simulations of full optical links. The simulation results match well with the measurement data. Our model library and simulation approach enable the electro-optical (EO) co-simulation, allowing designers to include photonic devices in the whole system design space, and to co-optimize the transmitter, interconnect, and receiver jointly.</td>
<td></td>
</tr>
</tbody>
</table>

Download Paper (PDF; Only available from the DATE venue WiFi)
The third paper presents an energy-efficient memory hierarchy through software managed memories. The first two papers improve energy efficiency, with approximate caches on emerging technologies and with a novel DRAM tag-cache architecture. This session presents four papers on novel memory designs and efficient mapping in flash storage.
18:15 4.3.3

AN ENERGY-EFFICIENT MEMORY HIERARCHY FOR MULTI-ISSUE PROCESSORS

Speaker: Luigi Carro, Universidade Federal do Rio Grande do Sul, BR

Authors: Tiago Jost, Gabriel Nazar and Luigi Carro, UFRGS, BR

Abstract

Embedded processors must rely on the efficient use of instruction-level parallelism to answer the performance and energy needs of modern applications. However, a limiting factor to better use available resources inside the processor concerns memory bandwidth. Adding extra ports to allow for more data accesses drastically increases costs and energy. In this paper, we present a novel memory architecture system for embedded multi-issue processors that can overcome the limited memory bandwidth without adding extra ports to the system. We combine the use of software-managed memories (SMM) with the data cache to provide a system with a higher throughput without increasing the number of ports. Compiler-automated code transformations minimize the effort of programmers to benefit from the proposed architecture. Our experimental results show an average speedup of 1.17x, while consuming 69% less dynamic energy and an average 74.2% lower energy-delay product regarding data memory in comparison to a baseline processor.

Download Paper (PDF; Only available from the DATE venue WiFi)

18:18 4.3.4

MAPPING GRANULARITY ADAPTIVE FTL BASED ON FLASH PAGE RE-PROGRAMMING

Speaker: Yazhi Feng, Wuhan National Lab for Optoelectronics, School of Computer Science and Technology, Huazhong University of Science and Technology, CN

Authors: Yazhi Feng, Dan Feng, Chenye Yu, Wei Tong and Jingning Liu, Wuhan National Lab for Optoelectronics, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China, CN

Abstract

The page size of NAND flash continuously grows as the manufacturing process advances. While larger page can reduce the cost per bit and improve the throughput of NAND flash, it may waste the storage space and data transfer time. Meanwhile, it causes more frequent garbage collections when serving small write requests. To address the issues, we propose a Mapping Granularity Adaptive FTL (MGA-FTL) based on flash page re-programming feature. MGA-FTL enables a finer granularity NAND flash space management and exploits multiple subpage writes on a single flash page without erase. 2-Level Mapping is introduced to serve requests of different sizes in order to control the overhead of DRAM requirement. Meanwhile, the allocation strategy determines whether different logical pages can be mapped to a single physical page to balance the space utilization and performance. Subpage merging limits the number of associated physical pages to a logical page, which could reduce data fragmentation and improves the performance of read operations. We compared MGA-FTL with some typical FTLs, including page-level mapping FTL and sector-log mapping FTL. Experimental results show that MGA-FTL reduces the I/O response time, write amplification and the number of erasures by 53%, 30% and 40% respectively. Despite the overhead of fine-grained management, MGA-FTL increases no more than 16.5% DRAM requirement compared with a page-level mapping FTL. Unlike the subpage-level mapping, MGA-FTL only needs one third of DRAM space for storing mapping tables.

Download Paper (PDF; Only available from the DATE venue WiFi)
From functional validation to functional qualification

Date: Tuesday 28 March 2017
Time: 17:00 - 18:30
Location / Room: 3A

Chair:
Graziano Pravadelli, University of Verona, IT

Co-Chair:
Elena Ioana Vatajelu, TIMA, FR

The section presents techniques and tools to generate testcases for functional validation and to define coverage metrics for functional qualification.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>IP2-5</td>
<td>DATA FLOW TESTING FOR VIRTUAL PROTOTYPES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muhammad Hassan, University of Bremen, DE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data flow testing (DFT) has been shown to be an effective testing strategy. DFT features a high fault detection rate while avoiding the intense scalability problems to achieve full path coverage. In this paper we propose to apply data flow testing for SystemC virtual prototypes (VPs). Our contribution is twofold: First, we develop a set of SystemC specific coverage criteria for data flow testing. This requires to consider the SystemC semantics of using non-preemptive thread scheduling with shared memory communication and event-based synchronization. Second, we explain how to automatically compute the data flow coverage result for a given VP using a combination of static and dynamic analysis techniques. The coverage result provides clear suggestions for the testing engineer to add new testcases in order to improve the coverage result. Our experimental results on real-world VPs demonstrate the applicability and efficacy of our analysis approach and the SystemC specific coverage criteria to improve the testsuite.</td>
</tr>
</tbody>
</table>

Download Paper (PDF; Only available from the DATE venue WiFi)
17:30 4.4.2 MINIME-VALIDATOR: VALIDATING HARDWARE WITH SYNTHETIC PARALLEL TESTCASES
Speaker:
Alper Sen, Bogazici University, TR
Authors:
Alper Sen1, Etem Deniz2 and Brian Kahne3
1Bogazici University, TR; 2TUBITAK, TR; 3NXP, US
Abstract
Programming of multicore architectures with large number of cores is a huge burden on the programmer. Parallel patterns ease this burden by presenting the developer with a set of predefined programming patterns that implement best practices in parallel programming. Since the behavior of patterns is well-known and understood they can also lower the burden for verification. In this work, we present a toolset, MINIME-Validator, for generating synthetic parallel testcases from a newly defined Parallel Pattern Markup Language (PPML) that uses the concept of parallel patterns. Our testcases mimic the behavior of real customer applications while being much smaller and can be used to generate traffic and validate e.g. inter-processor communication architectures.
Experiments show that synthetic testcases can be used for finding representative hardware communication problems. To the best of our knowledge, this is the first time synthetic testcases using parallel programming patterns are used for hardware validation.
Download Paper (PDF; Only available from the DATE venue WiFi)

18:00 4.4.3 COST-EFFECTIVE ANALYSIS OF POST-SILICON FUNCTIONAL COVERAGE EVENTS
Speaker:
Avi Ziv, IBM Research - Haifa, IL
Authors:
Farimah Farahmandi1, Ronny Morad2, Avi Ziv2, Ziv Nevo2 and Prabhat Mishra1
1University of Florida, US; 2IBM Research - Haifa, IL
Abstract
Post-silicon validation is a major challenge due to the combined effects of debug complexity and observability constraints. Assertions as well as a wide variety of checks are used in pre-silicon stage to monitor certain functional scenarios. Pre-silicon checkers can be synthesized to coverage monitors in order to capture the coverage of certain events and improve the observability during post-silicon debug. Synthesizing thousands of coverage monitors can introduce unacceptable area and energy overhead. On the other hand, absence of coverage monitors would negatively impact post-silicon coverage analysis. In this paper, we propose a framework for cost-effective post-silicon coverage analysis by identifying hard-to-detect events coupled with trace-based coverage analysis. This paper makes three major contributions. We propose a method to utilize existing debug infrastructure to enable coverage analysis in the absence of synthesized coverage monitors. This analysis enables us to identify a small percentage of coverage monitors that need to be synthesized in order to provide a trade-off between observability versus design overhead. To improve the observability further, we also present an observability-aware trace signal selection algorithm that gives priority to signals associated with important coverage monitors with negligible effect on debug observability. Our experimental results demonstrate that an effective combination of coverage monitor selection and trace analysis can drastically reduce (up to 10 times) the required coverage monitors without sacrificing observability.
Download Paper (PDF; Only available from the DATE venue WiFi)

18:30 4.4.7 AUTOMATIC EQUIVALENCE CHECKING FOR SYSTEMC-TLM 2.0 MODELS AGAINST THEIR FORMAL SPECIFICATIONS
Speaker:
Mehran Goli, University of Bremen, DE
Authors:
Mehran Goli, Jannis Stoppe and Rolf Drechsler, University of Bremen, DE
Abstract
The necessity to handle the increasing complexity of digital circuits has led to the usage of more and more abstract design paradigms. In particular, the Electronic System Level (ESL) has become an area of active research and industrial application, especially via SystemC and its Transaction Level Modeling (TLM) framework. Additionally, the usage of formal specification languages such as the Unified Modeling Language (UML) prior to the implementation (even at higher abstraction levels) is now a broadly accepted workflow. Utilizing this layered approach leaves the translation from the specification to the implementation to the designer, leaving the question unanswered how the equivalence of these should be verified. This paper proposes a novel, non-intrusive and broadly applicable approach to automatically validate the equivalence of the structural and behavioral information of a SystemC-TLM 2.0 model and its formal specification.
Download Paper (PDF; Only available from the DATE venue WiFi)

18:31 4.4.9 HEAD-MOUNTED SENSORS AND WEARABLE COMPUTING FOR AUTOMATIC TUNNEL VISION ASSESSMENT
Speaker:
Josue Ortiz, Complutense University of Madrid, ES
Authors:
Josue Ortiz, Complutense University of Madrid, ES; 2Bogazici University, TR; 3Washington State University, US; 4IBM Research - Haifa, IL
Abstract
As the second leading cause of blindness worldwide, glaucoma impacts a large population of individuals over 40. Although visual acuity often remains unaffected in early stages of the disease, visual field loss, expressed by tunnel vision condition, gradually increases. Glaucoma often remains undetected until it has moved into advanced stages. In this paper, we introduce a wearable system for automatic tunnel vision detection using head-mounted sensors and machine learning techniques. We develop several tasks, including reading and observation, and estimate visual field loss by analyzing user’s head movements while performing the tasks. An integrated computational module takes sensor signals as input, passes the data through several automatic data processing phases, and returns a final result by merging task-level predictions. For validation purposes, a series of experiments is conducted with 10 participants using tunnel vision simulators. Our results demonstrate that the proposed system can detect mild and moderate tunnel vision with an accuracy of 93.3% using a leave-one-subject-out analysis.
Download Paper (PDF; Only available from the DATE venue WiFi)
integration and the speed of components have increased dramatically over the years. Moreover, To handle the stringent performance requirements of future exascale-class applications, High Performance Computing (HPC) systems need ultra-efficient heterogeneous compute nodes. However, we keep on adopting superseded approaches to the exploitation of these resources. In this session, the speakers will focus on this requirements providing insight on how to enable the definition and the efficient deployment of such a technology.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00</td>
<td>4.5.1</td>
<td>TOWARDS EXASCALE COMPUTING WITH HETEROGENEOUS ARCHITECTURES</td>
<td>Kenneth O’Brien, Xilinx Inc., IE;</td>
<td>Kenneth O’Brien, Xilinx Inc., IE;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1Xilinx, IE; 2Politecnico di Milano, IT</td>
<td>1Xilinx, IE; 2Politecnico di Milano, IT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:18</td>
<td>4.5.2</td>
<td>FROM EXAFLOP TO EXAFLOW</td>
<td>Tobias Becker, Maxeler Technologies, GB</td>
<td>Tobias Becker, Maxeler Technologies, GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1Maxeler Technologies, GB; 2Maxeler Technologies Ltd, GB;</td>
<td>1Maxeler Technologies, GB; 2Maxeler Technologies Ltd, GB;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3Politecnico di Milano, IT; 4Maxeler / Imperial College, GB</td>
<td>3Politecnico di Milano, IT; 4Maxeler / Imperial College, GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:36</td>
<td>4.5.3</td>
<td>HETEROGENEOUS EXASCALE SUPERCOMPUTING: THE ROLE OF CAD IN THE EXAFPGA PROJECT</td>
<td>Marco Santambrogio, Politecnico di Milano, IT</td>
<td>Marco Santambrogio, Politecnico di Milano, IT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:54</td>
<td>4.5.4</td>
<td>AN OPEN RECONFIGURABLE RESEARCH PLATFORM AS STEPPING STONE TO EXASCALE HIGH-PERFORMANCE COMPUTING</td>
<td>Dirk Stroobandt, Ghent University, BE</td>
<td>Dirk Stroobandt, Ghent University, BE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1Ghent University, BE; 2UvA, NL;</td>
<td>1Ghent University, BE; 2UvA, NL;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3Politecnico di Milano, IT; 4Imperial College London, GB;</td>
<td>3Politecnico di Milano, IT; 4Imperial College London, GB;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5Synelixis, GR; 6ECE Department, Technical University of Crete &</td>
<td>5Synelixis, GR; 6ECE Department, Technical University of Crete &</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FORTH-ICS, GR; 7Ruhri-University Bochum, DE;</td>
<td>FORTH-ICS, GR; 7Ruhri-University Bochum, DE;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8Maxeler Technologies, GB; 9University of Cambridge, GB</td>
<td>8Maxeler Technologies, GB; 9University of Cambridge, GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:12</td>
<td>4.5.5</td>
<td>GEOPM: A VEHICLE FOR EXASCALE COMMUNITY COLLABORATION TOWARD CO-DESIGNED ENERGY MANAGEMENT SOLUTIONS</td>
<td>Matthias Maiterth, Intel, US</td>
<td>Matthias Maiterth, Intel, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30</td>
<td></td>
<td>End of session</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The power scaling challenge associated with Exascale systems is a well-known issue. In this invited talk, we provide an overview of the Global Extensible Open Power Manager (GEOPM). GEOPM is an open source power management runtime framework which is being contributed to the HPC community to foster collaboration on new power management runtime techniques to address Exascale power challenges or enhance performance and power efficiency on today’s systems as well. Through GEOPM’s plug-in extensible architecture, it enables rapid prototyping of new runtime algorithms. This talk will cover GEOPM’s architecture, interfaces, and project status. For additional information, please visit: https://geopm.github.io/geopm/
4.6 Fault modeling, test generation and diagnosis

Date: Tuesday 28 March 2017
Time: 17:00 - 18:30
Location / Room: SA

Chair:
Stephan Eggersgluss, University of Bremen, DE

Co-Chair:
Martin Keim, Mentor, DE

This session includes a presentation about new SAT-based ATPG techniques for robust initialization of transistor stuck-open faults. Further, a diagnosis method for arbiter physical unclonable functions to identify systematic manufacturing issues is presented. The last paper analyzes failure modes of Flash memories and proposes suitable fault models.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00</td>
<td>4.6.1</td>
<td>FAST AND WAVEFORM-ACCURATE HAZARD-AWARE SAT-BASED TSOF ATPG</td>
<td>Jan Burchard, University of Freiburg, DE; Authors: Jan Burchard, Dominik Erb, Adit D. Singh, Sudhakar M. Reddy and Bernd Becker</td>
<td>RETRODMR: TROUBLESHOOTING NON-DETERMINISTIC FAULTS WITH RETROSPECTIVE DMR (Best Paper Award Candidate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
<td></td>
<td>Jan Burchard, University of Freiburg, DE; Authors: Jan Burchard, Dominik Erb, Adit D. Singh, Sudhakar M. Reddy and Bernd Becker</td>
</tr>
<tr>
<td>17:30</td>
<td>4.6.2</td>
<td>FAULT DIAGNOSIS OF ARBITER PHYSICAL UNCLONABLE FUNCTION</td>
<td>Authors: Jing Ye, Qingli Guo, Yu Hui and Xiaowei Li; State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, China; State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, China</td>
<td>FPGA-BASED FAILURE MODE TESTING AND ANALYSIS FOR MLC NAND FLASH MEMORY</td>
</tr>
<tr>
<td>18:00</td>
<td>4.6.3</td>
<td>FPGA-BASED FAILURE MODE TESTING AND ANALYSIS FOR MLC NAND FLASH MEMORY</td>
<td>Authors: Meng Zhang, Fei Wu, Qian Xia, He Huang, Jian Zhou and Changsheng Xie; Huazhong University of Science and Technology, China; University of Central Florida, USA</td>
<td>FPGA-BASED FAILURE MODE TESTING AND ANALYSIS FOR MLC NAND FLASH MEMORY</td>
</tr>
<tr>
<td>18:30</td>
<td>4.6.4</td>
<td>RETRODMR: TROUBLESHOOTING NON-DETERMINISTIC FAULTS WITH RETROSPECTIVE DMR</td>
<td>Authors: Ting Wang, The Chinese University of Hong Kong, HK; Authors: Ting Wang, Yannan Liu, Xiang Wu, Zhaobo Zhang, Zhiyuan Wang and Xilin Gu; The Chinese University of Hong Kong, HK; Huawei Technologies, Inc., US</td>
<td>FAST AND WAVEFORM-ACCURATE HAZARD-AWARE SAT-BASED TSOF ATPG</td>
</tr>
</tbody>
</table>
4.7 Process variation management for today’s and tomorrow’s computing

Date: Tuesday 28 March 2017
Time: 17:00 - 18:30
Location / Room: 3B

Chair: Muhammad Shafique, TU Wien, AT

The session covers variable-aware solutions at the system and circuit level. Firstly, neuromorphic circuits are addressed and its relation with process variation. After that, variability approaches while satisfying the same lifetime reliability constraints.

Time	Label	Presentation Title	Authors
18:31 | IP2-11 | CRITICAL PATH - ORIENTED THERMAL AWARE X-FILLING FOR HIGH UN-MODELED DEFECT COVERAGE | Fotios Vartziotis, Computer Engineering, T.E.I. of Epirus, Greece, GR

Authors:
FOTIOS VARTZIOTIS1 and Chrysovalantis Kavousianos2
1T.E.I of Epirus, University of Ioannina, GR; 2Department of Computer Science and Engineering, University of Ioannina, GR

Abstract
The thermal activity during testing can be considerably reduced by applying power-oriented filling of the unspecified bits of test vectors. However, traditional power-oriented X-fill methods do not correlate the thermal activity with delay failures, and they consume all the unspecified bits to reduce the power dissipation at every region of the core. Therefore, they adversely affect the un-modeled defect coverage of the generated test vectors. The proposed method identifies the unspecified bits that are more critical for delay failures, and it fills them in such a way as to create a thermal-safe neighborhood around the most critical regions of the core. For the rest of the unspecified bits a probabilistic model based on output deviations is adopted to increase the un-modeled defect coverage of the test vectors. Experimental results show that the thermal activity and the inter-connection delays of critical regions of the core are comparable to those of the power-oriented X-fill methods, while the un-modeled defect coverage is as high as that of the random-fill method.

Download Paper (PDF; Only available from the DATE venue WiFi)

18:32 | IP2-12 | A COMPREHENSIVE METHODOLOGY FOR STRESS PROCEDURES EVALUATION AND COMPARISON FOR BURN-IN OF AUTOMOTIVE SOC | Paolo Bernardi, Politecnico di Torino, IT

Authors:
Paolo Bernardi1, Davide Appello2, Giampaolo Giacopelli2, Alessandro Motta2, Alberto Pagni2, Giorgio Poliaccia1, Christian Rabbi2, Marco Restifo2, Prit Rubenb, Ernesto Sanchez1, Claudio Maria Villa2 and Federico Venni1
1Politecnico di Torino, IT; 2STMicroelectronics, IT; 3STMicroelettronics, IT; 4Tallinn University of Technology, EE

Abstract
Environmental and electrical stress phases are commonly applied to automotive devices during manufacturing test. The combination of thermal and electrical stress is used to give rise to early life latent failures that can be naturally found in a population of devices by accelerating aging processes through Burn-In test phases. This paper provides a methodology to evaluate and compare the stress procedures to be run during Burn-In; the proposed method takes into account several factors such as circuit activity, chip surface temperature and current consumption required by the stress procedure, and also considers Burn-In flow and tester limitations. A specific metric called Stress Coverage is suggested summing up all the stress contributions. Experimental results are gathered on an automotive device, showing the comparison between scan-based and functional stress run by a massively parallelized test equipment; reported figures and tables quantify the differences between the two approaches in terms of stress.

Download Paper (PDF; Only available from the DATE venue WiFi)

18:30 | | End of session |

Exhibition Reception in Exhibition Area

The Exhibition Reception will take place on Tuesday in the exhibition area, where free drinks for all conference delegates and exhibition visitors will be offered. All exhibitors are welcome to also provide drinks and snacks for the attendees.
APPLICATION PERFORMANCE IMPROVEMENT BY EXPLOITING PROCESS VARIABILITY ON FPGA DEVICES

Speaker: Konstantinos Maragos, National Technical University of Athens, GR

Authors:
- Konstantinos Maragos¹, George Lentaris¹, Kostas Siozios¹, Dimitrios Soudris¹ and Vasilis Pavlidis²
- ¹National Technical University of Athens, GR; ²The University of Manchester, GR

Abstract

Process variability is known to be increasing with technology scaling in IC fabrication, thereby degrading the overall performance of the manufactured devices. The current paper focuses on the variability effect in FPGAs and the possibility to boost the performance of each device at run-time, after fabrication, based on the individual characteristics of this device. First, we develop a sensing infrastructure involving a wide network of customized ring oscillators to measure intra-chip and inter-chip variability in 28nm FPGAs, i.e., in eight Xilinx Zynq XC7Z020T-1CSG324 devices. Second, we develop a closed-loop framework based on dynamic reconfiguration of clock tiles, I/O data sniffing, HW/SW communication, and verification with test vectors, to dynamically increase the operating frequency in Zynq while preserving its correctness. Our results show intra-chip variability in the area of 5.2% to 7.7% and inter-chip variability up to 17%. Our framework improves the performance of example FIR designs by up to 90.3% compared to the SW tool reports and shows speed difference among devices by up to 12.4%.

Download Paper (PDF; Only available from the DATE venue WiFi)

4.8 CV Fair DATE 2017

Date: Tuesday 28 March 2017
Time: 17:00 - 18:30
Location / Room: Exhibition Theatre

Organiser: Marisa Lopez-Vallejo, UPM, ES
Moderator: Marisa Lopez-Vallejo, UPM, ES

The Curriculum Vitae (also known as a vita or CV) is the first point of contact between employee and employer. It must provide a concise overview of academic background and achievements. Furthermore, it usually should catch the attention of the readers, get them to take a closer look at you and ultimately invite you for an interview. Philippe Ory, Head of the EPFL Career Center, will open this CV Fair with a talk on the key issues that must be addressed when writing a CV. Afterwards, organizations participating in the CV Fair will give a brief presentation with basic information about the company, potential positions or internships, what types of students are being sought, etc. The CV fair is designed to allow for students to engage in individual conversations with the company or organization team and ask specific questions that may have arisen during the presentation.

Time Label Presentation Title Authors

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00</td>
<td>4.8.1</td>
<td>OPENING</td>
<td>Philippe Ory, Head of the EPFL Career Center, CH</td>
</tr>
<tr>
<td>17:30</td>
<td>4.8.2</td>
<td>CADENCE PRESENTATION</td>
<td>Anton Klotz, Cadence Design Systems, DE</td>
</tr>
<tr>
<td>17:40</td>
<td>4.8.3</td>
<td>HIPEAC PRESENTATION</td>
<td>Xavier Salazar, Hipeac, ES</td>
</tr>
<tr>
<td>17:50</td>
<td>4.8.4</td>
<td>SMARTCARDIA PRESENTATION</td>
<td>Srinivasan Murali, SmartCardia, CH</td>
</tr>
<tr>
<td>18:00</td>
<td>4.8.5</td>
<td>NESPRESSO PRESENTATION</td>
<td>Martino Ruggiero, Nespresso, CH</td>
</tr>
<tr>
<td>18:10</td>
<td>4.8.6</td>
<td>NESTLé PRESENTATION</td>
<td>Gian Paolo Perrucci, Mobility and Apps Solution Manager at Nestlé, CH</td>
</tr>
<tr>
<td>18:20</td>
<td>4.8.7</td>
<td>GAIT UP PRESENTATION</td>
<td>Karim Kanoun, Mobile and Embedded Development Manager at Gait Up S.A., CH</td>
</tr>
<tr>
<td>18:30</td>
<td></td>
<td>End of session</td>
<td></td>
</tr>
</tbody>
</table>

Exhibition Reception in Exhibition Area
The Exhibition Reception will take place on Tuesday in the exhibition area, where free drinks for all conference delegates and exhibition visitors will be offered. All exhibitors are welcome to also provide drinks and snacks for the attendees.

UB04 Session 4

Date: Tuesday 28 March 2017
Time: 17:30 - 19:30
Location / Room: Booth 1, Exhibition Area
 UB04.1 NOXIM-XT: A BIT-ACCURATE POWER ESTIMATION SIMULATOR FOR NOCS

Presenter: Pierre Bornel, Université de Bretagne Sud, FR
Authors: André Rossi¹, Johann Laurent² and Erwan Moreac²
¹LERIA, Université d’Angers, Angers, France, FR; ²Lab-STICC, Université de Bretagne Sud, Lorient, FR

Abstract
We have developed an enhanced version of Noxim (Noxim-XT) to estimate the energy consumption of a NoC in a SOC. Noxim-XT is used in a two-step methodology. First, applications are mapped on a SoC and their traffics are extracted by simulation with MPSO-Bench. Second, Noxim-XT tests various hardware configurations of the NoC, and for each configuration, the application’s traffic is re-injected and replayed, an accurate performance and power breakdown is provided, and the user can choose different data coding strategies. With the help of Noxim XT, each configuration is bit-accurately estimated in terms of energy consumption. After simulation, a spatial mapping of the energy consumption is provided and highlights the hotspots. Moreover, the new coding strategies allows significant energy saving. Noxim XT simulations and a FPGA-based prototype of a new coding strategy will be demonstrated at the U-booth to illustrate these works.

More information ...

 UB04.2 RIMEDIO: WHEELCHAIR MOUNTED ROBOTIC ARM DEMONSTRATOR FOR PEOPLE WITH MOTOR SKILLS IMPAIRMENTS

Presenter: Alessandro Palla, University of Pisa, IT
Authors: Gabriele Meoni and Luca Fanucci, University of Pisa, IT

Abstract
People with reduced mobility experiment many issues in the interaction with the indoor and outdoor environment because of their disability. For those users even the simplest action might be a hard/impossible task to perform without the assistance of an external aid. We propose a simple and lightweight wheelchair mounted robotic arm with the focus on the human-machine interface that has to be simple and accessible for users with different kind of disabilities. The robotic arm is equipped with a 5 MP camera, force and proximity sensors and a 6 axis Inertial Measurement Unit on the end-effector that can be controlled using an app running on a tablet. When the user selects the object to reach (for instance a button) on the tablet screen, the arm autonomously carries out the task, using the camera image and the sensors measurements for autonomous navigation. The demonstrator consists in the robotic arm prototype, the Android tablet and a personal computer for arm setup and configuration.

More information ...

 UB04.3 OPENCTMOD: AN OPEN SOURCE COLLABORATIVE MATLAB TOOLBOX FOR THE DESIGN AND SIMULATION OF CONTINUOUS-TIME SIGMA DELTA MODULATORS

Presenter: Dang-Kien Germain Pham, LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France, FR
Author: Chadi Jabbour, LTCI, Télécom ParisTech, Université Paris-Saclay, FR

Abstract
Simulating Continuous Time (CT) Sigma Delta Modulators (SDM) is commonly done using block level systems such as Simulink which is a highly time consuming task even at system level. Therefore, the existing design tools for SDM are either discrete time oriented (Scheirer toolbox) or proprietary (Ulm toolbox). In this work, we propose a new Matlab/C toolbox for the design of CT SDM. Simulation is based on state space representation thereby allowing to support most of the existing SDM architectures. Moreover, the main non-idealities of the main blocks are modeled (opamp DC gain, finite GBW, DACs mismatch, ISI and quantizer offset). Besides, thanks to the modular and open source approach for this toolbox, every user can easily implement additional features and include it. During the forum, designs and simulations for various architectures of CT SDM will be performed to demonstrate the accuracy and efficiency of the proposed toolbox. The collaborative aspect will be also shown.

More information ...

 UB04.4 MATISSE: A TARGET-AWARE COMPILER TO TRANSLATE MATLAB INTO C AND OPENCL

Presenter: Luís Reis, University of Porto, PT
Authors: João Bispo and João Cardoso, University of Porto / INESC-TEC, PT

Abstract
Many engineering, scientific and finance algorithms are prototyped and validated in array languages, such as MATLAB, before being converted to other languages such as C for use in production. As such, there has been substantial effort to develop compilers to perform this translation automatically. Alternative types of computation devices, such as GPGPUs and FPGAs, are becoming increasingly more popular, so it becomes critical to develop compilers that target these architectures. We have adapted MATISSE, our MATLAB-compatible compiler framework, to generate C and OpenCL code for these platforms. In this demonstration, we will show how our compiler works and what its capabilities are. We will also describe the main challenges of efficient code generation from MATLAB and how to overcome them.

More information ...

 UB04.5 A VOLTAGE-SCALABLE FULLY DIGITAL ON-CHIP MEMORY FOR ULTRA-LOW-POWER IOT PROCESSORS

Presenter: Jun Shiomi, Kyoto University, JP
Authors: Tohru Ishihara and Hidetoshi Ondera, Kyoto University, JP

Abstract
A voltage-scalable RISC processor integrating standard-cell based memory (SCM) is demonstrated. Unlike conventional processors, the processor has Standard-Cell based memories (SCMs) as an alternative to conventional SRAM macros, enabling it to operate at a 0.4 V single-supply voltage. The processor is implemented with the fully automated cell-based design, which leads to low design costs. By scaling the supply voltage and applying the back-gate biasing techniques, the power dissipation of the SCMs is less than 20 uW, enabling the SCMs to operate with ambient energy source only. In this demonstration, the SCMs of the processor operates with a lemon battery as the ambient energy source.

More information ...

 UB04.6 GNOCs: AN ULTRA-FAST, HIGHLY EXTENSIBLE, CYCLE-ACCURATE GPU-BASED PARALLEL NETWORK-ON-CHIP SIMULATOR

Presenter: Amir CHARIF, TIMA, FR
Authors: Nacer-Eddine Zergainoh and Michael Nicolaidis, TIMA, FR

Abstract
With the continuous decrease in feature sizes and the recent emergence of 3D stacking, chips comprising thousands of nodes are becoming increasingly relevant, and state-of-the-art NoC simulators are unable to simulate such a high number of nodes in reasonable times. In this demo, we showcase GNOCs, the first detailed, modular and scalable parallel NoC simulator running fully on GPU (Graphics Processing Unit). Based on a unique design specifically tailored for GPU parallelism, GNOCs is able to achieve unprecedented speedups with no loss of accuracy. To enable quick and easy validation of novel ideas, the programming model was designed with high extensibility in mind. Currently, GNOCs accurately models a VC-based microarchitecture. It supports 2D and 3D mesh topologies with full or partial vertical connections. A variety of routing algorithms and synthetic traffic patterns, as well as dependency-driven trace-based simulation (Netrace), are implemented and will be demonstrated.

More information ...
ACCELERATORS: RECONFIGURABLE SELF-TIMED DATAFLOW ACCELERATOR & FAST NETWORK ANALYSIS IN SILICON

Presenter: Alessandro de Gennaro, Newcastle University, GB
Authors: Danil Sokolov and Andrey Mokhov, Newcastle University, GB

Abstract:
Many real-life applications require dynamically reconfigurable pipelines to handle incoming data items differently depending on their values or current operating mode. A demo will show the benefits of an asynchronous accelerator for ordinal pattern encoding with reconfigurable pipeline depth. This was designed, simulated and verified using dataflow structure formalism in Workcraft toolset. The self-timed chip, fabricated in TSMC 90nm, shows high resilience to voltage variation and configurable accuracy of the results. Applications with underlying graph models foster the importance of a fast and flexible approach to graph analysis. To support medicine discovery biological connections are modelled by graphs, and drugs can disconnect some of the connections. A demo will show how graphs can be automatically converted into VHDL designs, which are synthesised into a FPGA for the analysis: thousand times faster than in software. Single stand will be used for both case studies.

More information ...

SELINK: SECURING HTTP AND HTTPS-BASED COMMUNICATION VIA SECUBE™

Presenter: Airofarulla Giuseppe, CINI & Politecnico di Torino, IT
Authors: Paolo Prinetto1 and Antonio Varriale2
1Politecnico di Torino, IT; 2Blu5 Labs Ltd., IT

Abstract:
The SEcube™ Open Source platform is a combination of three main cores in a single-chip design. Low-power ARM Cortex-M4 processor, a flexible and fast Field-Programmable-Gate-Array (FPGA), and an EAL5+ certified Security Controller (SmartCard) are embedded in an extremely compact package. This makes it a unique Open Source security environment where each function can be optimized, executed, and verified on its proper hardware device. In this demo, we present a client-server HTTP and HTTPS-based application, for which the traffic is encrypted resorting to the hardware built-in capabilities, and the software libraries, of the SEcube™. By doing so, we show how communication can be secured from an attacker capable of inspecting, and tampering, the regular communication.

More information ...

GREENOPENHEVC: LOW POWER HEVC DECODER

Presenter: Menard Daniel, INSA Rennes, FR
Authors: Julien Heulot1, Erwan Nogues1, Maxime Pelcat2 and Wassim Hamidouche1
1INSA Rennes, IETR, UBL, FR; 2Institut Pascal, Université Clermont-Ferrand, FR

Abstract:
Video on mobile devices is a must-have feature with the predominance of new services and applications using video like streaming or conferencing. The new video standard HEVC is an appealing technology for service providers. Besides, with the recent progress of SoC, software video decoders are now a reality. The challenge is to provide power efficient design to fit with the compelling demand for long battery. We present here a practical set-up demonstrating that the new HEVC standard can be implemented in software on an embedded GPP multicore platform. Different techniques have been integrated to optimize the energy: data-level and thread level parallelisms, video aware Dynamic Voltage and Frequency Scaling. To push back the limits, algorithm level approximate computing is carried-out on the in-loop filtering. The subjective tests have demonstrated that the quality degradation is almost imperceptible. A mean power of less than 1 Watt is reported for a HD 1080p/24fps video decoding.

More information ...

19:30 End of session

Exhibition-Reception Exhibition Reception
Date: Tuesday 28 March 2017
Time: 18:30 - 19:30
Location / Room: Exhibition Area

The Exhibition Reception will take place on Tuesday in the exhibition area, where free drinks for all conference delegates and exhibition visitors will be offered. All exhibitors are welcome to also provide drinks and snacks for the attendees.

Time Label Presentation Title Authors
19:30 End of session

5.1 IoT Day: IoT Perspectives
Date: Wednesday 29 March 2017
Time: 08:30 - 10:00
Location / Room: SBC

Organisers:
Marilyn Wolf, Georgia Tech, US
Andreas Herkersdorf, TU Muenchen, DE

Chair:
Marilyn Wolf, Georgia Tech, US

Co-Chair:
Andreas Herkersdorf, TU Muenchen, DE

The DATE 2017 Special Day on IoT will be kicked-off by perspective talks from academia and industry sharing their views and experience from backgrounds of large distributed sensor networks and cognitive computing. The entire spectrum of IoT devices and computing, storage and communication infrastructure, from smallest form factor sensors to Cloud backbone systems will be considered.

Time Label Presentation Title Authors
<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>5.1.1</td>
<td>DESIGN FOR IOT</td>
<td>Lothar Thiele, Swiss Federal Institute of Technology Zurich, CH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
<td>If visions and forecasts of industry come true then we will be soon surrounded by billions of interconnected embedded devices. We will interact with them in a cyber-human symbiosis, they will not only observe us but also our environment, and they will be part of many visible and ubiquitous objects around us. We have the legitimate expectation that the individual devices as well as the overall system behaves in a reliable and predictable manner. This is an indispensable requirement as it is infeasible to constantly maintain such a large set of devices. In addition, there are many application domains where we rely on a correct and fault-free system behavior. We expect trustworthy results from sensing, computation, communication and actuation due to economic importance or even catastrophic consequences if the overall system is not working correctly, e.g., in industrial automation, distributed control of energy systems, surveillance, medical applications, or early warning scenarios in the context of building safety or environmental catastrophes. Finally, trustworthiness and reliability are mandatory for the societal acceptance of human-cyber interaction and cooperation. It will be argued that we need novel architectural concepts, an associated design process and validations strategies to satisfy the strongly conflicting requirements and associated design challenges of platforms for CPS: Handle at the same time limited available resources, adaptive run-time behavior, and predictability. These challenges concern all components of an IoT system, e.g., computation, storage, wireless communication, energy management, harvesting, sensing and sensor interfaces, and actuation. The talk will be driven by examples from various application domains such as smart watches, zero-power systems, environmental sensing, and air pollution sensing.</td>
</tr>
<tr>
<td>09:15</td>
<td>5.1.2</td>
<td>THE INTERNET OF THINGS IN THE COGNITIVE ERA</td>
<td>Alessandro Curioni, IBM Zurich Research, CH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
<td>Over next few years, the Internet of Things will become the biggest source of data on the planet. That’s where IBM’s Watson cognitive computing system comes in. Watson uses machine learning and other techniques to understand this data and turn it into insight, which can help automate tasks, enable manufacturers to design better products, innovate new services and enhance our overall quality of life. And with cognitive technologies, interactions with ‘things’ through natural language and voice commands will dramatically improve. This presentation will focus on how innovators in the design automation and embedded systems space can benefit from this trend and get access IBM Watson in the cloud.</td>
</tr>
</tbody>
</table>

5.2 Emerging Computer Paradigms

Date: Wednesday 29 March 2017
Time: 08:30 - 10:00
Location / Room: 4BC
Chair:
Jim Harkin, Ulster University, GB

This session presents recent advances in emerging computing strategies including Reversible Computing and Stochastic Computing with improvements in energy efficiency and reductions in computational complexity. An acceleration platform for the design exploration of Quantum Computers is also presented.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| 08:30 | 5.2.1 | MAKE IT REVERSIBLE: EFFICIENT EMBEDDING OF NON-REVERSIBLE FUNCTIONS | Alwin Zulehner, Johannes Kepler University, Linz, AT
Authors:
Alwin Zulehner¹ and Robert Wille²
¹Johannes Kepler University, AT; ²Johannes Kepler University Linz, AT
Abstract
Reversible computation became established as a promising concept due to its application in various areas like quantum computation, energy-aware circuits, and further areas. Unfortunately, most functions of interest are non-reversible. Therefore, a process called embedding has to be conducted to transform a non-reversible function into a reversible one - a coNP-hard problem. Existing solutions suffer from the resulting exponential complexity and, hence, are limited to rather small functions only. In this work, an approach is presented which tackles the problem in an entirely new fashion. We divide the embedding process into matrix operations, which can be conducted efficiently on a certain kind of decision diagram. Experiments show that improvements of several orders of magnitudes can be achieved using the proposed method. Moreover, for many benchmarks exact results can be obtained for the first time ever. |

Download Paper (PDF; Only available from the DATE venue WiFi)
5.3 Hot Topic Session: I'm Gonna Make an Approximation IoT Can't Refuse - Approximate Computing for Improving Power Efficiency of IoT and HPC

Date: Wednesday 29 March 2017
Time: 08:30 - 10:00
Location / Room: 2BC
Organiser: Vincent Camus, EPFL, CH
Power efficiency is the primary concern of IoT-related applications, both at the sensor node and on its cloud-computing counterpart. Unfortunately, achieving high efficiency and robustness requires complex and conflicting design constraints. Fortunately, the inherent error resiliency of many IoT applications allows the use of Approximate Computing techniques at both hardware and software levels, leading to great benefits on power efficiency while having a minimal impact on the applications.
LOCATION DETECTION FOR NAVIGATION USING IMUS WITH A MAP THROUGH COARSE-GRAINED MACHINE LEARNING

Author:
Chen Luo, Rice University, US
J. Jose Gonzales E. I., Chen Luo I., Anshumali Shrivastava I., Krishna Palem I., Moon Yongshik I, Soonhyun Noh I, Daedong Park I, and Seongsoo Hong I

Abstract
Location detection or localization supporting navigation has assumed significant importance in the recent past. In particular, techniques that exploit cheap inertial measurement units (IMU), the gyroscope and the accelerometer, have garnered attention, especially in an embedded computing context. However, these sensors measurements are quite unreliable, and it is widely believed that these sensors by themselves are too noisy for localization with acceptable accuracy. Consequently, several lines of work embody other costly alternatives to lower the impact of accumulated errors associated with IMU based approaches, invariably leading to very high energy costs resulting in lowered battery life. In this paper, we show that IMUs are sufficient by themselves if we augment them with known structural or geographical information about the physical area being explored by the user. By using the (em map) of the region being explored and the fact that humans typically walk in a structured manner, our approach sidesteps the challenges created by noise and concomitant accumulation of error. Specifically, we show that a simple coarse-grained machine learning approach mitigates the effect of the noisy perturbations in the information from our IMUs, provided we have accurate maps. Throughout, we rely on the principle of inexactness in an overarching manner and relax the need for absolute accuracy in return for significant lowering of resource (energy) costs. Notably, our approach is completely independent of any external guidance from sources including GPS, Bluetooth or WiFi support, and is this privacy preserving. Specifically, we show through experimental results that by relying on gyroscope and accelerometer data alone, we can correctly identify the path-segment where the user is walking/running on a known map, from sources including GPS, Bluetooth or WiFi support, and is this privacy preserving. Specifically, we show through experimental results that by relying on gyroscope and accelerometer data alone, we can correctly identify the path-segment where the user is walking/running on a known map, from sources including GPS, Bluetooth or WiFi support, and is this privacy preserving. Specifically, we show through experimental results that by relying on gyroscope and accelerometer data alone, we can correctly identify the path-segment where the user is walking/running on a known map, from sources including GPS, Bluetooth or WiFi support, and is this privacy preserving.

Download Paper (PDF; Only available from the DATE venue WiFi)

5.4 Solutions for efficient simulation and validation

Date: Wednesday 29 March 2017
Time: 08:30 - 10:00
Location / Room: 3A

Chair:
Daniel Grosse, University of Bremen, DE

Co-Chair:
Alper Sen, Bogazici University, TR

The section introduces system-level frameworks for addressing memory tracing, timing estimation, real-time verification, and reliability degradation.

PERFORMANCE IMPACTS AND LIMITATIONS OF HARDWARE MEMORY-ACCESS TRACE-COLLECTION

Speaker:
Graham Holland, Simon Fraser University, CA
Nicholas C. Doyle I, Eric Matthews I, Graham Holland I, Alexandra Fedorova I and Lesley Shannon 1
1Simon Fraser University, CA; 2University of British Columbia, CA

Abstract
In today's multicore architectures, complex interactions between applications in the memory system can have a significant, and highly variable, impact on application execution time. System designers typically use hardware counters to profile execution behaviours and diagnose performance problems. However, hardware counters are not always sufficient and some problems are best identified with full memory access traces. Collecting these traces in software is very expensive. Our work explores using dedicated hardware for memory-access trace collection. We focus on analyzing the limitations of hardware data collection and its impacts on application performance. The key feature of our study is that it is performed on actual hardware using two very different CPU platforms: 1) the PolyBlaze multicore soft processor and 2) the ARM Cortex-A9. In both cases, the data collection is implemented on an FPGA. Using micro-benchmarks designed to test the bounds of memory access behaviour, we illustrate the operational regions of data collection and the impact on system performance. By examining the bandwidth bottlenecks that limit the rate of data collection, as well as hardware architecture choices that can aggravate the impact on application performance, we provide guidelines that can be used to extrapolate our analysis to other systems and processor architectures.

Download Paper (PDF; Only available from the DATE venue WiFi)
Context-Sensitive Timing Automata for Fast Source Level Simulation

Speaker:
Nikolaos Tampouratzis, Technical University of Crete, GR

Authors:
Nikolaos Tampouratzis, Christoph Gerum, Alexander Viehl, Wolfgang Rosenstiel and Oliver Bringmann

Abstract:
We present a novel technique for efficient source level timing simulation of embedded software execution on a target platform. In contrast to existing approaches, the proposed technique can accurately approximate time without requiring a dynamic cache model. The dramatic reduction in simulation performance inherent to dynamic cache modeling is avoided. Consequently, our approach enables an exploitation of the performance potential of source level simulation for complex microarchitectures that include caches. Our approach is based on recent advances in context-sensitive binary level timing simulation. However, a direct application of the binary level approach to source level simulation reduces simulation performance similarly to dynamic cache modeling. To overcome this performance limitation, we contribute a novel pushdown automaton based simulation technique. The proposed context-sensitive timing automata enable an efficient evaluation of complex simulation logic with little overhead. Experimental results show that the proposed technique provides a speedup of an order of magnitude compared to existing context selection techniques and is similar to a state of the art accelerated cache simulation. The accelerated simulation is only applicable in specific circumstances, whereas the proposed approach does not suffer this limitation.

Download Paper (PDF; Only available from the DATE venue WiFi)

Speaker:
Saurav Ghosh, IIT Kharagpur, IN

Authors:
Saurav Kumar Ghosh and Dey Soumyajit

Abstract:
The development of highly reliable embedded control systems is typically performed following the model driven engineering paradigm. Such systems involve software control interaction of mechanical systems. The aging of the overall system depends on the physical aging or reliability decay of the underlying mechanical components. The reliability of such components degrade according to their rate of use, which again is governed by the software control logic and input environment. Such dependencies of component reliabilities make the problem of deriving system level reliability degradation using exact methods combinatorially intractable. Given the fact that model driven system design advocates the usage of initial high level system models, methods for early stage lifetime reliability and reliability degradation estimation based on such initial models should definitely aid in robust high assurance engineering of such software controlled physical systems. The present work proposes SERD, a lightweight, scalable simulation framework for embedded control systems. It can accommodate active as well as quiescent reliability decay rates of underlying mechanical components. It uses path based reliability modeling to estimate the reliability degradation of component based systems that are controlled by software logic. Its efficacy is further demonstrated using a thorough case study.

Download Paper (PDF; Only available from the DATE venue WiFi)

SERD: A Simulation Framework for Estimation of System Level Reliability Degradation

Speaker:
Saurav Ghosh, IIT Kharagpur, IN

Authors:
Saurav Kumar Ghosh and Dey Soumyajit

Abstract:
Development of highly reliable embedded control systems is typically performed following the model driven engineering paradigm. Such systems involve software control interaction of mechanical systems. The aging of the overall system depends on the physical aging or reliability decay of the underlying mechanical components. The reliability of such components degrade according to their rate of use, which again is governed by the software control logic and input environment. Such dependencies of component reliabilities make the problem of deriving system level reliability degradation using exact methods combinatorially intractable. Given the fact that model driven system design advocates the usage of initial high level system models, methods for early stage lifetime reliability and reliability degradation estimation based on such initial models should definitely aid in robust high assurance engineering of such software controlled physical systems. The present work proposes SERD, a lightweight, scalable simulation framework for embedded control systems. It can accommodate active as well as quiescent reliability decay rates of underlying mechanical components. It uses path based reliability modeling to estimate the reliability degradation of component based systems that are controlled by software logic. Its efficacy is further demonstrated using a thorough case study.

Download Paper (PDF; Only available from the DATE venue WiFi)

A Novel Way to Efficiently Simulate Complex Full Systems Incorporating Hardware Accelerators

Speaker:
Nicholas Tampouratzis, Technical University of Crete, GR

Authors:
Nicholas Tampouratzis, Konstantinos Georgopoulos and Ioannis Papaefstathiou

Abstract:
The breakdown of Dennard scaling coupled with the persistently growing transistor counts severely increased the importance of application-specific hardware accelerators; such an approach offers significant performance and energy benefits compared to general-purpose solutions. In order to thoroughly evaluate such architectures, the designer should perform a quite extensive design space exploration so as to evaluate the tradeoffs across the entire system. The design, until recently, has been predominantly done using Register Transfer Level (RTL) languages such as Verilog and VHDL, which, however, lead to a prohibitively long and costly design effort. In order to reduce the design time a wide range of both commercial and academic High-Level Synthesis (HLS) tools have emerged; most of those tools, handle hardware accelerators that are described in synthesizable SystemC. The problem today, however, is that most simulators used for evaluating the complete user applications (i.e. full-system CPU/Mems/Peripheral simulators) lack any type of SystemC accelerator support. Within this context this paper presents a novel simulation environment comprised of a generic SystemC accelerator and probably the most widely known fullsystem simulator (i.e. GEMS). The proposed system is the only solution supporting the very important feature of global synchronization across the integrated simulation; furthermore it has been evaluated based on two different computationally intensive use cases and the final results demonstrate that the presented approach is orders of magnitude faster than the existing ones.

Download Paper (PDF; Only available from the DATE venue WiFi)

Automatic Abstraction of Multi-Discipline Analog Models for Efficient Functional Simulation

Speaker:
Francesco Fummi, Università degli Studi di Verona, IT

Authors:
Enrico Fraccaroli, Michele Lora and Francesco Fummi

Abstract:
Multi-discipline models introduce complex problems, when inserted within virtual platforms of Smart Systems for functional validation. This paper lists the most common emerging problems and it proposes a set of solutions to them. It presents a set of techniques, unified in an automatic abstraction methodology, useful to achieve fast analog mixed-signal simulation even when different physical disciplines and modeling styles are combined into a single analog model. The paper makes use of a complex case study. It deals with multiple-discipline descriptions, non-electrical conservative models, non-linear equation systems, and mixed time/frequency domain models. The original component behavior has been modeled in Verilog-AMS by using electrical, mechanical and kinematic equations. Then, it has been abstracted and integrated within a virtual platform of a mixed-signal smart system for efficient functional simulation.

Download Paper (PDF; Only available from the DATE venue WiFi)
About devices, design and compact modeling aspects, and applications, permitting a full development platform from devices to circuit & systems based on spintronics.

Future challenges. Different computing paradigms will be involved in this special session benefiting from interesting nature of spintronics devices. The invited speakers will talk together the worldwide leading experts (from respectively USA, France, China, Japan and Germany) related to this hot topic to share the most recent results and discuss the memory based on the hybrid integration of MTJ have been commercialized since 2006 and used in a number of high-reliable applications.

Promising technologies to be part of the future of integrated systems. They provide non-volatility data, fast data access and low power operations. Indeed, MRAM or Magnetic Numerious reports or industrial and academic works on emerging research devices identified magnetic tunnel junction (MTJ) (one of applications of Spintronics) as one of the most

Weisheng Zhao, Beihang University, CN

Co-Chair:
Lionel Torres, LIRMM, CNRS/University of Montpellier, FR

Chair:
Weisheng Zhao, Beihang University, CN

Organisers:
Lionel Torres, LIRMM, CNRS/University of Montpellier, FR
Weisheng Zhao, Beihang University, CN

Location / Room:

Date:
Wednesday 29 March 2017

08:30 - 10:00

5.5 Hot Topic Session: Spintronics-based Computing

Organisers:
Lionel Torres, LIRMM, CNRS/University of Montpellier, FR
Weisheng Zhao, Beihang University, CN

Chair:
Lionel Torres, LIRMM, CNRS/University of Montpellier, FR

Co-Chair:
Weisheng Zhao, Beihang University, CN

Numerous reports or industrial and academic works on emerging research devices identified magnetic tunnel junction (MTJ) (one of applications of Spintronics) as one of the most promising technologies to be part of the future of integrated systems. They provide non-volatility data, fast data access and low power operations. Indeed, MRAM or Magnetic memory based on the hybrid integration of MTJ have been commercialized since 2006 and used in a number of high-reliable applications. The aim of this session is to bring together the worldwide leading experts (from respectively USA, France, China, Japan and Germany) related to this hot topic to share the most recent results and discuss the future challenges. Different computing paradigms will be involved in this special session benefiting from interesting nature of spintronics devices. The invited speakers will talk about devices, design and compact modeling aspects, and applications, permitting a full development platform from devices to circuit & systems based on spintronics.

Authors
Gopalakrishnan Srinivasan, Abhronil Sengupta and Kaushik Roy, Purdue University, US

Speaker
Kaushik Roy, Purdue University, US

Abstract
Biologically-inspired spiking neural networks (SNNs) have attracted significant research interest due to their inherent computational efficiency in performing classification and recognition tasks. The conventional CMOS-based implementations of large-scale SNNs are power intensive. This is a consequence of the fundamental mismatch between the technology used to realize the neurons and synapses, and the neuroscience mechanisms governing their operation, leading to area-expensive circuit designs. In this work, we present a three-terminal spintronic device, namely, the magnetic tunnel junction (MTJ)-heavy metal (HM) heterostructure that is inherently capable of emulating the neuronal and synaptic dynamics. We exploit the stochastic switching behavior of the MTJ in the presence of thermal noise to mimic the probabilistic spiking of cortical neurons, and the conditional change in the state of a binary synapse based on the pre- and post-synaptic spiking activity required for plasticity. We demonstrate the efficacy of a crossbar organization of our MTJ-HM based stochastic SNN in digit recognition using a comprehensive device-circuit-system simulation framework. The energy efficiency of the proposed system stems from the ultra-low switching energy of the MTJ-HM device, and the in-memory computation rendered possible by the localized arrangement of the computational units (neurons) and non-volatile synaptic memory in such crossbar architectures.

Download Paper (PDF; Only available from the DATE venue WiFi)
OPPORTUNISTIC WRITE FOR FAST AND RELIABLE STT-MRAM

Speaker: Mehdi Tahoori, Karlruhe Institute of Technology, DE
Authors: Sour Sayed1, Mojtaba Ebrahimi1, Rajendra Bishnoi1 and Mehdi Tahoori1
1Karlruhe Institute of Technology, DE; 2Karlruhe Institute of Technology, DE

Abstract
Due to the stochastic switching behavior of the bitcell in Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM), an excessive write margin is required to guarantee an acceptable level of reliability and yield. This prevents the usage of STT-MRAM in fast memories such as L1 or L2 caches. The excessive write margin of STT-MRAM can be reduced to a large extent by an opportunistic write (i.e., terminating the write process before all bit switchings are completed) and by reducing thermal stability factor. The bits with unfinished writes have to be processed by robust Error Correction Codes (ECCs). However, some recent research topics related to MTJ-based nonvolatile logic-circuit design and its application, such as a computer-aided-design (CAD) tool considering a stochastic MTJ-switching behavior and the application to a resilient "die-hard" VLSI processor against sudden power-supply outage, are also demonstrated.

Download Paper (PDF; Only available from the DATE venue WiFi)
This session deals with 3D reliability and repair, integration of compression into standard test infrastructure, and reusing silicon debug infrastructure to enhance functional performance.

5.6.1 FAULT CLUSTERING TECHNIQUE FOR 3D MEMORY BISR
Speaker: Tianjian Li, Shanghai Jiao Tong University, CN
Authors: Tianjian Li1, Yan Han1, Xiaoyao Liang1, Hsien-Hsin S. Lee2 and Li Jiang1
1Shanghai Jiao Tong University, CN; 2TSMC / Georgia Tech, TW; 3Department of Computer Science and Engineering, Shanghai Jiao Tong University, CN
Abstract
Three Dimensional (3D) memory has gained a great momentum because of its large storage capacity, bandwidth and etc. A critical challenge for 3D memory is the significant yield loss due to the disruptive integration process: any memory die that cannot be successfully repaired leads to the failure of the whole stack. The repair ratio of each die must be as high as possible to guarantee the overall yield. Existing memory repair methods, however, follow the traditional way of using redundancies: a redundant row/column replaces a row/column containing few or even one faulty cell. We propose a novel technique specifically in 3D memory that can overcome this limitation. It can cluster faulty cells across layers to the same row/column in the same memory array so that each redundant row/column can repair more "faults". Moreover, it can be applied to the existing repair algorithms. We design the BIST and BISR modules to implement the proposed repair technique. Experimental results show more than 71% enhancement of the repair ratio over the global 3D GESP solution and 80% redundancy-cost reduction, respectively.
Download Paper (PDF; Only available from the DATE venue WiFi)

5.6.2 ARCHITECTURAL EVALUATIONS ON TSV REDUNDANCY FOR RELIABILITY ENHANCEMENT
Speaker: Yen-Hao Chen, National Tsing Hua University, Taiwan, TW
Authors: Yen-liao Chen1, Chien-Pang Chiu1, Russell Barnes2 and TingTing Hwang1
1National Tsing Hua University, R.O.C, TW; 2University of California at Santa Barbara, US
Abstract
Three-dimensional Integrated Circuits (3D-ICs) is a next-generation technology that could be a solution to overcome the scaling problem. It stacks dies with Through-Silicon Vias (TSVs) so that signals can be transmitted through dies vertically. However, researchers have noticed that the aging effect due to the electromigration (EN) may result in faulty TSVs and affect the chip lifetime [1]. Several redundant TSV architectures have been proposed to address this issue. By replacing the faulty TSV with redundant TSVs which are added at design time, chips can achieve better reliability and longer lifetime. In this paper, we will study the tradeoff of various redundant TSV architectures in terms of effectiveness and cost. To allow the measurement of reliability more realistically, we propose a new standard, repair rate, to appraise the redundant TSV architectures. Moreover, to design a more flexible and efficient structure, we enhance the ring-based design [2] that can adjust the size of the TSV block and TSV redundancy.
Download Paper (PDF; Only available from the DATE venue WiFi)

5.6.3 REUSING TRACE BUFFERS TO ENHANCE CACHE PERFORMANCE
Speaker: Neetu Jindal, PhD, IN
Authors: Neetu Jindal1, Preeti Ranjan Panda and Smruti R. Sarangi, Indian Institute of Technology Delhi, IN
Abstract
With the increasing complexity of modern Systems-on-Chip, the possibility of functional errors escaping design verification is growing. Post-silicon validation targets the discovery of these errors in early hardware prototypes. Due to limited visibility and observability, dedicated design-for-debug (DFD) hardware such as trace buffers are inserted to aid post-silicon validation. In spite of its benefit, such hardware incurs area overheads, which impose size limitations. However, the overhead could be overcome if the area dedicated to DFD could be reused in-field. In this work, we present a novel method for reusing an existing trace buffer as a victim cache of a processor to enhance performance. The trace buffer storage space is reused for the victim cache, with a small additional controller logic. Experimental results on several benchmarks and trace buffer sizes show that the proposed approach can enhance the average performance by up to 8.3% over a baseline architecture. We also propose a strategy for dynamic power management of the structure, to enable saving energy with negligible impact on performance.
Download Paper (PDF; Only available from the DATE venue WiFi)

5.6.4 OPTIMIZATION OF RETARGETING FOR IEEE 1149.1 TAP CONTROLLERS WITH EMBEDDED COMPRESSION
Speaker: Sebastian Huhn, University of Bremen, DE
Authors: Sebastian Huhn1, Stephan Eggersglüß1, Krishnendu Chakrabarty2 and Rolf Drechsler3
1University of Bremen, DE; 2Duke University, US; 3University of Bremen/DFKI GmbH, DE
Abstract
We present a formal optimization technique that enables retargeting for codeword-based IEEE 1149.1-compliant TAP controllers. The proposed method addresses the problem of high test data volume and Test Application Time (TAT) for a system-on-chip design during board or in-field testing, as well as during debugging. This procedure determines an optimal set of codewords with respect to given hardware constraints, e.g., embedded dictionary size and the interface to the Test Data Register in the IEEE 1149.1 Std. A complete traversal of the spanned search space is possible through the use of formal methods. An optimal set of codewords can be determined, which is directly utilized for retargeting. The proposed method is evaluated using test data with high-entropy, which is known to be the least amenable to compression, as well as input data for debugging and Functional Verification (FV) test data. Our results show a compression ratio improvement of more than 30% and a reduction in TAT up to 20% compared to previous techniques.
Download Paper (PDF; Only available from the DATE venue WiFi)
NOVEL MAGNETIC BURN-IN FOR RETENTION TESTING OF STTRAM

Speaker:
Swaroop Ghosh, Pennsylvania State University, US

Authors:
Mohammed Nasim Imtiaz Khan, Anirudh Iyengar and Swaroop Ghosh, Pennsylvania State University, US

Abstract
Spin-Transfer Torque RAM (STTRAM) is an emerging Non-Volatile Memory (NVM) technology that has drawn significant attention due to complete elimination of bitcell leakage. However, it brings new challenges in characterizing the retention time of the array during test. Significant shift of retention time under static (process variation (PV)) and dynamic (voltage, temperature fluctuation) variability furthers this issue. In this paper, we propose a novel magnetic burn-in (MBI) test which can be implemented with minimal changes in the existing test flow to enable STTRAM retention testing at short test time. The magnetic burn-in is also combined with thermal burn-in (MBI+BI) for further compression of retention and test time. Simulation results indicate MBI with 220Oe (at 25°C) can improve the test time by 3.71x10^13 X while MBI+BI with 2200e at 125°C can improve the test time by 1.97x10^14X.

Download Paper (PDF; Only available from the DATE venue WiFi)
PROBABILISTIC SCHEDULABILITY ANALYSIS FOR FIXED PRIORITY MIXED CRITICALITY REAL-TIME SYSTEMS

Speaker: Yasmina Abdeddaim, Université Paris-Est, LGSM, ESIEE Paris, FR
Authors: Yasmina Abdeddaim¹ and Dorin Maxim²
¹Université Paris-Est, LGSM, ESIEE-Paris, FR; ²University of Lorraine - Loria - Inria Nancy Grand Est, FR

Abstract
In this paper we present a probabilistic response time analysis for mixed criticality real-time systems running on a single processor according to a fixed priority pre-emptive scheduling policy. The analysis extends the existing state of the art probabilistic analysis to the case of mixed criticalities, taking into account both the level of assurance at which each task needs to be certified, as well as the possible criticalities at which the system may execute. The proposed analysis is formally presented as well as explained with the aid of an illustrative example.

Download Paper (PDF; Only available from the DATE venue WiFi)

10:00 End of session
Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

IP2 Interactive Presentations

Date: Wednesday 29 March 2017
Time: 10:00 - 10:30
Location / Room: IP sessions (in front of rooms 4A and 5A)

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the morning. Additionally, each IP paper is briefly introduced in a one-minute presentation in a corresponding regular session, prior to the actual Interactive Presentation. At the end of each afternoon Interactive Presentations session the award 'Best IP of the Day' is given.

Label	Presentation Title	Authors
IP2-1 | COMPACT MODELING AND CIRCUIT-LEVEL SIMULATION OF SILICON NANOPHOTONIC INTERCONNECTS | Speaker: Yuyang Wang, UC Santa Barbara, US
Authors: Rui Wu, Yuyang Wang, Zeyu Zhang, Chong Zhang, Clint Schow, John Bowers and Kwang-Ting Cheng, UC Santa Barbara, US
Abstract
Nanophotonic interconnects have been playing an increasingly important role in the datacom regime. Greater integration of silicon photonics demands modeling and simulation support for design validation, optimization and design space exploration. In this work, we develop compact models for a number of key photonic devices, which are extensively validated by the measurement data of a fabricated optical network-on-chip (NoC). Implemented in SPICE-compatible Verilog-A, the models are used in circuit-level simulations of full optical links. The simulation results match well with the measurement data. Our model library and simulation approach enable the electro-optical (EO) co-simulation, allowing designers to include photonic devices in the whole system design space, and to co-optimize the transmitter, interconnect, and receiver jointly.

Download Paper (PDF; Only available from the DATE venue WiFi)

IP2-2 | A TRUE RANDOM NUMBER GENERATOR BASED ON PARALLEL STT-MTJS | Speaker: Yuanzhuo Qu, University of Alberta, CA
Authors: Yuanzhuo Qu¹, Jie Han¹, Bruce Cockburn¹, Yue Zhang² , Weisheng Zhao³ and Witold Pedrycz¹
¹University of Alberta, CA; ²Beihang University, CN
Abstract
Random number generators are an essential part of cryptographic systems. For the highest level of security, true random number generators (TRNG) are needed instead of pseudo-random number generators. In this paper, the stochastic behavior of the spin transfer torque magnetic tunnel junction (STT-MTJ) is utilized to produce a TRNG design. A parallel structure with multiple MTJs is proposed that minimizes device variation effects. The design is validated in a 28-nm CMOS process with Monte Carlo simulation using a compact model of the MTJ. The National Institute of Standards and Technology (NIST) statistical test suite is used to verify the randomness quality when generating encryption keys for the Transport Layer Security or Secure Sockets Layer (TLS/SSL) cryptographic protocol. This design has a generation speed of 177.8 Mbit/s, and an energy of 0.64 pJ is consumed to set up the state in one MTJ.

Download Paper (PDF; Only available from the DATE venue WiFi)
ENABLING AREA EFFICIENT RF ICS THROUGH MONOLITHIC 3D INTEGRATION
Speaker: Panagiotis Chaourani, KTH, Royal Institute of Technology, Stockholm, SE
Authors: Panagiotis Chaourani, Per-Erik Hellström, Sauli Rodriguez, Raul Onet and Ana Rusu, KTH, Royal Institute of Technology, SE
Abstract
The monolithic 3D (M3D) integration technology has emerged as a promising alternative to dimensional scaling thanks to the unprecedented integration density capabilities and the low interconnect parasitics that it offers. In order to support technological investigations and enable future M3D circuits, M3D design methodologies, flows and tools are essential. Prospective M3D digital applications have attracted a lot of scientific interest. This paper identifies the potential of M3D RF/analog circuits and presents the first attempt to demonstrate such circuits. Towards this, a M3D custom design platform, which is fully compatible with commercial design tools, is proposed and validated. The design platform includes process characteristics, device models, LVS and DRC rules and a parasitic extraction flow. The envisioned M3D structure is built on a commercial CMOS process that serves as the bottom tier, whereas a SiO2 process is used as top tier. To validate the proposed design flow and to investigate the potential of M3D RF/analog circuits, a RF front-end design for Zig-Bee WPAN applications is used as case-study. The M3D RF front-end circuit achieves 35.5 % area reduction, while showing similar performance with the original 2D circuit.
Download Paper (PDF; Only available from the DATE venue WiFi)

RECONFIGURABLE THRESHOLD LOGIC GATES USING OPTOELECTRONIC CAPACITORS
Speaker: Baris Taskin, Drexel University, US
Authors: Ragh Kuttappa, Lunal Khunou, Bahram Nabet and Baris Taskin, Drexel University, US
Abstract
This paper investigates the integration of optoelectronic devices with CMOS threshold logic gates to design reconfigurable Boolean functions. The weight of the optoelectronic cell can be altered by changing the optical power which is used to reconfigure the threshold logic (TL) gate. The proposed optoelectronic capacitor based TL (OECTL) gates are designed for i) simplistic AND/NAND gates and OR/NOR gates with large fan-in and ii) linearly separable Boolean functions that can be reconfigured to other linearly separable Boolean functions, constrained in reconfiguration by the specifics of TL operation. SPICE simulations in 65nm bulk CMOS technology with a Verilog-A model for the optoelectronic capacitor demonstrate i) AND/NAND gates and OR/NOR gates are 2X faster as fan-in increases and consumes low power ii) Boolean function can be reconfigured with 0.58X smaller delay and 0.46X lesser power of standard CMOS.
Download Paper (PDF; Only available from the DATE venue WiFi)

I-BEP: A NON-REDUNDANT AND HIGH-CONCURRENCY MEMORY PERSISTENCY MODEL
Speaker: Yuanchao Xu, Capital Normal University, CN
Authors: Yuanchao Xu, Zeyi Hou, Junfeng Yan, Lu Yang and Hu Wan, Capital Normal University, CN
Abstract
Byte-addressable, non-volatile memory (NVM) technologies enable fast persistent updates but incur potential data inconsistency upon a failure. Recent proposals present several persistency models to guarantee data consistency. However, they fail to express the minimal persist ordering as a result of inducing unnecessary ordering constraints. In this paper, we propose i-BEP, a non-redundant high concurrency memory persistency model, which expresses epoch dependency via persist directed acyclic graph instead of program order. Additionally, we propose two techniques, background persist and deferred eviction, to enhance the performance of i-BEP. We demonstrate that i-BEP can improve the performance by 15% for typical data structures on average over buffered epoch persistency (BEP) model.
Download Paper (PDF; Only available from the DATE venue WiFi)

SPMS: STRAND BASED PERSISTENT MEMORY SYSTEM
Speaker: Shuo Li, National University of Defense Technology, CN
Authors: Shuo Li1, Peng Wang2, Nong Xiao1, Guangyu Sun2 and Fang Liu1
1 National University of Defense Technology, CN; 2 Peking University, CN
Abstract
Emerging non-volatile memories enable persistent memory, which offers the opportunity to directly access persistent data structures residing in main memory. In order to keep persistent data consistent in case of system failures, most prior work relies on persist ordering constraints which incurs significant overheads. Strand persistency minimizes persist ordering constraints. However, there is still no proposed persistent memory design based on strand persistency due to its implementation complexity. In this work, we propose a novel persistent memory system based on strand persistency, called SPMS. SPMS consists of cacheline-based strand group tracking components, a volatile strand buffer and ultra-capacitors incorporated in persistent memory modules. SPMS can track each strand and guarantee its atomicity. In case of system failures, committed strands buffered in the strand buffer can be flushed back to persistent memory within the residual energy window provided by the ultra-capacitors. Our evaluations show that SPMS outperforms the state-of-the-art persistent memory system by 6.6% and has slightly better performance than the baseline without any consistency guarantee. What's more, SPMS reduces the persistent memory write traffic by 30%/1/, with the help of the strand buffer.
Download Paper (PDF; Only available from the DATE venue WiFi)

ARCHITECTING HIGH-SPEED COMMAND Schedulers FOR OPEN-ROW REAL-TIME SDRAM CONTROLLERS
Speaker: Leonardo Ecco, TU Braunschweig, DE
Authors: Leonardo Ecco1 and Rolf Ernst2
1 Institute of Computer and Network Engineering, TU Braunschweig, DE; 2 TU Braunschweig, DE
Abstract
As SDRAM modules get faster and their data buses wider, researchers proposed the use of the open-row policy in command schedulers for real-time SDRAM controllers. While the real-time properties of such schedulers have been thoroughly investigated, their hardware implementation was not. Hence, in this paper, we propose a highly-parallel and multi-stage architecture that implements a state-of-the-open-row real-time command scheduler. Moreover, we evaluate such architecture from the hardware overhead and performance perspectives.
Download Paper (PDF; Only available from the DATE venue WiFi)

AUTOMATIC EQUIVALENCE CHECKING FOR SYSTEMC-TLM 2.0 MODELS AGAINST THEIR FORMAL SPECIFICATIONS
Speaker: Mehran Goli, University of Bremen, DE
Authors: Mehran Goli, Jannis Stoppe and Rolf Drechsler, University of Bremen, DE
Abstract
The necessity to handle the increasing complexity of digital circuits has led to the usage of more and more abstract design paradigms. In particular, the Electronic System Level (ESL) has become an area of active research and industrial application, especially via SystemC and its Transaction Level Modeling (TLM) framework. Additionally, the usage of formal specification languages such as the Unified Modeling Language (UML) prior to the implementation (even at higher abstraction levels) is now a broadly accepted workflow. Utilizing this layered approach leaves the translation from the specification to the implementation to the designer, leaving the question unanswered how the equivalence of these should be verified. This paper proposes a novel, non-intrusive and broadly applicable approach to automatically validate the equivalence of the structural and behavioral information of a SystemC-TLM 2.0 model and its formal specification.
Download Paper (PDF; Only available from the DATE venue WiFi)
IP2-9
(Best Paper Award Candidate)
HEAD-MOUNTED SENSORS AND WEARABLE COMPUTING FOR AUTOMATIC TUNNEL VISION ASSESSMENT
Speaker: Josue Ortiz, Complutense University of Madrid, ES
Authors: Yuchao Ma and Hassan Ghasemzadeh, Washington State University, US
Abstract
As the second leading cause of blindness worldwide, glaucoma impacts a large population of individuals over 40. Although visual acuity often remains unaffected in early stages of the disease, visual field loss, expressed by tunnel vision condition, gradually increases. Glaucoma often remains undetected until it has moved into advanced stages. In this paper, we introduce a wearable system for automatic tunnel vision detection using head-mounted sensors and machine learning techniques. We develop several tasks, including reading and observation, and estimate visual field loss by analyzing user’s head movements while performing the tasks. An integrated computational module takes sensor signals as input, passes the data through several automatic data processing phases, and returns a final result by merging task-level predictions. For validation purposes, a series of experiments is conducted with 10 participants using tunnel vision simulators. Our results demonstrate that the proposed system can detect mild and moderate tunnel vision with an accuracy of 93.3% using a leave-one-subject-out analysis.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP2-10
(Best Paper Award Candidate)
RETRODMR: TROUBLESHOOTING NON-DETERMINISTIC FAULTS WITH RETROSPECTIVE DMR
Speaker: Ting Wang, The Chinese University of Hong Kong, HK
Authors:
Ting Wang¹, Yannan Liu², Zhaobo Zhang², Zhiyuan Wang² and Xini Gu²
¹The Chinese University of Hong Kong, HK; ²Huawei Technologies, Inc., US
Abstract
The most notorious faults for diagnosis in post-silicon validation are those that manifest themselves in a non-deterministic manner with system-level functional tests, where errors randomly appear from time to time even when applying the same workloads. In this work, we propose a novel diagnostic framework that resorts to dual-modal redundancy (DMR) for troubleshooting non-deterministic faults, namely RetroDMR. To be specific, we log the essential events (e.g., the sequence of thread migration) in the faulty run to record the mapping relationship between threads and their corresponding execution units. Then in the following diagnosis runs, we apply redundant multithreading (RMT) technique to reduce error detection latency, while at the same time we try to follow the thread migration sequence of the original run whenever possible. By doing so, RetroDMR significantly improves the reproduction rate and diagnosis resolution for non-deterministic faults, as demonstrated in our experimental results.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP2-11
CRITICAL PATH - ORIENTED THERMAL AWARE X-FILLING FOR HIGH UN-MODELED DEFECT COVERAGE
Speaker: Fotios Vartziotis, Computer Engineering, T.E.I. of Epirus, Greece, GR
Authors: FOTIOS VARTZIOTIS¹ and Chrysostomatis Kavoussianos²
¹T.E.I of Epirus, University of Ioannina, GR; ²Department of Computer Science and Engineering, University of Ioannina, GR
Abstract
The thermal activity during testing can be considerably reduced by applying power-oriented filling of the unspecified bits of test vectors. However, traditional power-oriented X-fill methods do not correlate the thermal activity with delay failures, and they consume all the unspecified bits to reduce the power dissipation at every region of the core. Therefore, they adversely affect the un-modeled defect coverage of the generated test vectors. The proposed method identifies the unspecified bits that are more critical for delay failures, and it fills them in such a way as to create a thermal safe neighborhood around the most critical regions of the core. For the rest of the unspecified bits a probabilistic model based on output deviations is adopted to increase the un-modeled defect coverage of the test vectors. Experimental results show that the thermal activity and the inter-connection delays of critical regions of the core are comparable to those of the power-oriented X-fill methods, while the un-modeled defect coverage is as high as that of the random-fill method.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP2-12
A COMPREHENSIVE METHODOLOGY FOR STRESS PROCEDURES EVALUATION AND COMPARISON FOR BURN-IN OF AUTOMOTIVE SOC
Speaker: Paolo Bernardi, Politecnico di Torino, IT
Authors: Paolo Bernardi¹, Davide Appello², Giampaolo Giacopelli³, Alessandro Motta², Alberto Pagani², Giorgio Pollaccia³, Christian Rabbi², Marco Restifo³, Prtit Ruberg³, Ernesto Sanchez³, Claudio Maria Villa² and Federico Venini³
¹Politecnico di Torino, IT; ²STMicroelectronics, IT; ³STMicroelectronics, IT; 4Tallinn University of Technology, EE
Abstract
Environmental and electrical stress phases are commonly applied to automotive devices during manufacturing test. The combination of thermal and electrical stress is used to give rise to early life latent failures that can be naturally found in a population of devices by accelerating aging processes through Burn-In test phases. This paper provides a methodology to evaluate and compare the stress procedure to be run during Burn-In; the proposed method takes into account several factors such as circuit activity, chip surface temperature and current consumption required by the stress procedure, and also considers Burn-In flow and tester limitations. A specific metric called Stress Coverage is suggested summing up all the stress contributions. Experimental results are gathered on an automotive device, showing the comparison between scan-based and functional stress run by a massively parallelized test equipment; reported figures and tables quantify the differences between the two approaches in terms of stress.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP2-13
ENERGY EFFICIENT STOCHASTIC COMPUTING WITH SOBOL SEQUENCES
Speaker: Siting Liu, University of Alberta, CA
Authors: Siting Liu and Jie Han, University of Alberta, CA
Abstract
Energy efficiency presents a significant challenge for stochastic computing (SC) due to the long random binary bit streams required for accurate computation. In this paper, a type of low discrepancy (LD) sequences, the Sobol sequence, is considered for energy-efficient implementations of SC circuits. The use of Sobol sequences improves the output accuracy of a stochastic circuit with a reduced sequence length compared to the use of another type of LD sequences, the Halton sequence, and conventional LFSR-generated pseudorandom sequences. The use of Sobol sequence generators cost less energy than the Halton counterparts when multiple random sequences are required in a circuit, thus the use of Sobol sequences can lead to a higher energy efficiency in an SC circuit than using Halton sequences.
Download Paper (PDF; Only available from the DATE venue WiFi)
IP2-14 LOGIC ANALYSIS AND VERIFICATION OF N-INPUT GENETIC LOGIC CIRCUITS
Speaker: Hasan Baig, Technical University of Denmark, DK
Authors: Hasan Baig and Jan Madsen, Technical University of Denmark, DK
Abstract: Nature is using genetic logic circuits to regulate the fundamental processes of life. These genetic logic circuits are triggered by a combination of external signals, such as chemicals, proteins, light and temperature, to emit signals to control other gene expressions or metabolic pathways accordingly. As compared to electronic circuits, genetic circuits exhibit stochastic behavior and do not always behave as intended. Therefore, there is a growing interest in being able to analyze and verify the logical behavior of a genetic circuit model, prior to its physical implementation in a laboratory. In this paper, we present an approach to analyze and verify the Boolean logic of a genetic circuit from the data obtained through stochastic analog circuit simulations. The usefulness of this analysis is demonstrated through different case studies illustrating how our approach can be used to verify the expected behavior of an n-input genetic logic circuit.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP2-15 A NOVEL WAY TO EFFICIENTLY SIMULATE COMPLEX FULL SYSTEMS INCORPORATING HARDWARE ACCELERATORS
Speaker: Nikolaos Tampouratzis, Technical University of Crete, GR
Authors: Nikolaos Tampouratzis1, Konstantinos Georgopoulos2 and Ioannis Papaefthathio2
1Technical University of Crete, GR; 2Telecommunication Systems Institute, Technical University of Crete, GR
Abstract: The breakdown of Dennard scaling coupled with the persistently growing transistor counts severely increased the importance of application-specific hardware acceleration; such an approach offers significant performance and energy benefits compared to general-purpose solutions. In order to thoroughly evaluate such architectures, the designer should perform a quite extensive design space exploration so as to evaluate the tradeoffs across the entire system. The design, until recently, has been predominantly done using Register Transfer Level (RTL) languages such as Verilog and VHDL, which, however, lead to a prohibitively long and costly design effort. In order to reduce the design time a wide range of both commercial and academic High-Level Synthesis (HLS) tools have emerged; most of those tools, handle hardware accelerators that are described in synthesizable SystemC. The problem today, however, is that most simulators used for evaluating the complete user applications (i.e. full-system CPU/Mem/Peripheral simulators) lack any type of SystemC accelerator support. Within this context this paper presents a novel simulation environment comprised of a generic SystemC accelerator and probably the most widely known fullsystem simulator (i.e. GEN5). The proposed system is the only solution supporting the very important feature of global synchronization across the integrated simulation; furthermore it has been evaluated based on two different computationally intensive use cases and the final results demonstrate that the presented approach is orders of magnitude faster than the existing ones.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP2-16 AUTOMATIC ABSTRACTION OF MULTI-DISCIPLINE ANALOG MODELS FOR EFFICIENT FUNCTIONAL SIMULATION
Speaker: Franco Fummi, Università degli Studi di Verona, IT
Authors: Enrico Fraccaroli1, Michele Lora1 and Franco Fummi2
1University of Verona, IT; 2Università di Verona, IT
Abstract: Multi-discipline components introduce problems when inserted within virtual platforms of Smart Systems for functional validation. This paper lists the most common emerging problems and it proposes a new solution as a set of problems to them. It presents a set of techniques, unified in an automatic abstraction methodology, useful to achieve fast analog mixed-signal simulation even when different physical disciplines and modeling styles are combined into a single analog model. The paper makes use of a complex case study. It deals with multiple-discipline descriptions, non-electrical conservative models, non-linear equation systems, and mixed time/frequency domain models. The original component behavior has been modeled in Verilog-AMS by using electrical, mechanical and kinematic equations. Then, it has been abstracted and integrated within a virtual platform of a mixed-signal smart system for efficient functional simulation.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP2-17 NOVEL MAGNETIC BURN-IN FOR RETENTION TESTING OF STRAM
Speaker: Swaroop Ghosh, Pennsylvania State University, US
Authors: Mohammad Nasim Imtiaz Khan, Anirudh Iyengar and Swaroop Ghosh, Pennsylvania State University, US
Abstract: Spin-Transfer Torque RAM (STTRAM) is an emerging Non-Volatile Memory (NVM) technology that has drawn significant attention due to complete elimination of bitcell leakage. However, it brings new challenges in characterizing the retention time of the array during test. Significant shift of retention time under static (process variation (PV)) and dynamic (voltage, temperature fluctuation) variability furthers this issue. In this paper, we propose a novel mag-netic burn-in (MBI) test which can be implemented with minimal changes in the existing test flow to enable STTRAM retention testing at short test time. The magnetic burn-in is also combined with thermal burn-in (MBI+BI) for further compression of retention and test time. Simula-tion results indicate MBI with 220Oe (at 25C) can improve the test time by 3.71x1013 X while MBI+BI with 2200e at 125C can improve the test time by 1.97x1014 X.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP2-19 AUTOMATIC CONSTRUCTION OF MODELS FOR ANALYTIC SYSTEM-LEVEL DESIGN SPACE EXPLORATION PROBLEMS
Speaker: Seyed-Hosein Attarzadeh-Niaiki, Shahid Beheshti University (SBU), IR
Authors: Seyed-Hosein Attarzadeh-Niaiki1 and Ingo Sander2
1Shahid Beheshti University (SBU), IR; 2KTH Royal Institute of Technology, SE
Abstract: Due to the variety of application models and also the target platforms used in embedded electronic system design, it is challenging to formulate a generic and extensible analytic design-space exploration (DSE) framework. Current approaches support a restricted class of application and platform models and are difficult to extend. This paper proposes a framework for automatic construction of system-level DSE problem models based on a coherent, constraint-based representation of system functionality, flexible target platforms, and binding policies. Heterogeneous semantics is captured using constraints on logical clocks. The applicability of this method is demonstrated by constructing DSE problem models from different combinations of application and platforms models. Time-triggered and untimed models of the system functionality and heterogeneous target platforms are used for this purpose. Another potential advantage of this approach is that constructed models can be solved using a variety of standard and ad-hoc solvers and search heuristics.
Download Paper (PDF; Only available from the DATE venue WiFi)
NOXIM-XT: A BIT-ACCURATE POWER ESTIMATION SIMULATOR FOR NOCS

Presenter: Pierre Bomel, Université de Bretagne Sud, FR
Authors: André Ross1, Johann Laurent2 and Erwan Morec2
1LERIA, Université d’Angers, Angers, France; 2Lab-STICC, Université de Bretagne Sud, Lorient, FR

Abstract
We have developed an enhanced version of Noxim (Noxim-XT) to estimate the energy consumption of a NoC in a SOC. Noxim-XT is used in a two-step methodology. First, applications are mapped on a SoC and their traffics are extracted by simulation with MPSOCBench. Second, Noxim-XT tests various hardware configurations of the NoC, and for each configuration, the application’s traffic is re-injected and replayed, an accurate performance and power breakdown is provided, and the user can choose different data coding strategies. With the help of Noxim XT, each configuration is bit-accurately estimated in terms of energy consumption. After simulation, a spatial mapping of the energy consumption is provided and highlights the hot-spots. Moreover, the new coding strategies allow significant energy saving. Noxim XT simulations and a FPGA-based prototype of a new coding strategy will be demonstrated at the U-booth to illustrate these works.

More information ...

MATISSE: A TARGET-AWARE COMPILER TO TRANSLATE MATLAB INTO C AND OPENCL

Presenter: Luís Reis, University of Porto, PT
Authors: João Bispo and João Cardoso, University of Porto / INESC-TEC, PT

Abstract
Many engineering, scientific and finance algorithms are prototyped and validated in array languages, such as MATLAB, before being converted to other languages such as C for use in production. As such, there has been substantial effort to develop compilers to perform this translation automatically. Alternative types of computation devices, such as GPGPUs and FPGAs, are becoming increasingly more popular, so it becomes critical to develop compilers that target these architectures. We have adapted MATISSE, our MATLAB-compatible compiler framework, to generate C and OpenCL code for these platforms. In this demonstration, we will show how our compiler works and what its capabilities are. We will also describe the main challenges of efficient code generation from MATLAB and how to overcome them.

More information ...

SCCHARTS: SYNCHRONOUS STATECHARTS FOR SAFETY-CRITICAL APPLICATIONS

Presenter: Reinhard von Hanxleden, Kiel University, DE
Authors: Michael Mender1, Christian Motika2, Christoph Daniel Schulze2 and Steven Smyth2
1Bamberg University, DE; 2Kiel University, DE

Abstract
We present a visual language, SCCharts, designed for specifying safety-critical reactive systems. SCCharts use a statechart notation and provide determinate concurrency based on a synchronous model of computation (MoC), without restrictions common to previous synchronous MoCs. Specifically, we lift earlier limitations on sequential accesses to shared variables, by leveraging the sequentially constructive MoC. For further details, see [von Hanxleden et al., PLDI’14] and http://www.sccharts.com. The SCCharts demonstrator is an Eclipse Rich Client and part of KIELER (http://www.rtbsys.informatik.uni-kiel.de/en/research/kieler). The demonstration shows how to write an SCChart model using a textual notation, from which a visual model is generated on the fly using the Eclipse Layout Kernel (ELK). We also present a compilation chain that allows efficient synthesis of software and hardware.

More information ...

MULTI-CORE VERIFICATION: COMBINING MICROTESK AND SPIN FOR VERIFICATION OF MULTI-CORE MICROPROCESSORS

Presenter: Mikhail Chupilko, ISPRAS, RU
Authors: Alexander Kamkin, Mikhail Lebedev and Andrei Tatarnikov, ISPRAS, RU

Abstract
The complexity of modern cache coherence protocols (CCP) in multi-core microprocessors prevents from complete verification of shared memory subsystems by means of random test-program generators (TPG). The following steps are suggested to target the problem. The first step is to separately specify CCP features and generate CCP-specific events to be used in TPG when generating a test program (TP). The protocol is specified in Promela, with Spin making a test template (TT). Spin also produces UVR (or C+TESK) testbench to make the execution of the resulting TPs to be controllable and deterministic. The second step is to let TPG produce the memory access instructions causing desired CCP-specific behavior. As a TPG we use MicroTESK. Its Ruby-based TTs abstractly describe future TPs. MicroTESK processes that TT making TP with CCP-specific events. The resulting TP is executed together with the testbench to exactly reproduce the situation Spin had found to be important for such a protocol.

More information ...
The introduction and broad scale rollout of IoT applications puts pressing demands on semiconductor base technologies for computation, communication and sensing in terms of lowest cost, power dissipation, dependability, security and the ability to integrate heterogeneous devices and technologies. This session presents three research-oriented perspectives on the challenging aspects of IoT enabling technologies.

More information...
Presentation Title

11:00 6.1.1 ULTRA-LOW-POWER CIRCUITS FOR IOT APPLICATIONS

Author: Georges Gielen, Katholieke Universiteit Leuven, BE

Abstract

IoT applications require ultra-low-power hardware solutions that communicate wirelessly. Challenges and some solutions in designing these will be highlighted.

11:30 6.1.2 STRUCTURAL HEALTH MONITORING FOR SMART CITIES: A HW/SW CODESIGN PERSPECTIVE

Author: Jiang Xu, Hong Kong University of Science and Technology, HK

Abstract

The structural integrity of civil structures is vital to economic prosperity and public safety. In developed countries and regions, a large number of transportation and residential infrastructures are aging rapidly. There is an urgent need and rapidly increasing demand for the ability to monitor the health conditions of civil structures in a real-time and distributed manner. This talk will share our experiences on developing large scale structural health monitoring systems from a HW/SW codesign perspective.

12:00 6.1.3 SECURITY IN THE INTERNET OF THINGS: A CHALLENGE OF SCALE

Speaker and Author: Patrick Schaumont, Virginia Tech, US

Abstract

Technological scaling has offered a windfall of benefits to electronics design. Increased transistor density has offered an exponential increase in computing capabilities over time, but without a corresponding increase in system cost. Information security has its own success story with scaling. Cryptographic algorithms become exponentially harder to break through a mere linear increase in encryption complexity or in key-length. In the Internet of Things, scaling is as much a security liability as it is an advantage. These security liabilities are new, poorly understood and poorly regulated. Some examples include the following: privacy of IoT data in the cloud; the safety consequences of poor information security in cyber-physical systems; the liabilities of long-lifetime devices that use outdated or poorly tested information security; the performance-limited information security in devices that run on the outskirts of the IoT using nothing but harvested energy. In this contribution we consider the security landscape for IoT. We consider the technological consequences of securely extending the Internet into the physical world of things. We identify current limitations, ongoing research efforts, and open challenges for the design community.

Download Paper (PDF; Only available from the DATE venue WiFi)

End of session

Lunch Break in Garden Foyer

Keynote Lecture session 7.0 in “Garden Foyer” 1350 - 1420

Keynote Lecture session 7.0

Date: Wednesday 29 March 2017

Time: 11:00 - 12:30

Location / Room: 4BC

Chair: Jamil Kawa, Synopsys, US

In this executive session, we will discuss the prominent features and requirements of today’s autonomously powered systems and deliberate over various visions of what needs to happen next to take autonomously powered systems from their embryonic state to an advanced efficient state that is well thought through and efficiently architectured.

Moderator:

☐ Jamil Kawa, Synopsys, US

Panelists:

☐ Mario Konijnenburg, IMEC, BE
☐ Christoph Heer, Intel, DE
☐ Yankin Tanurhan, Synopsys, US
☐ Ali Keshavarzi, Cypress Semiconductor, US

12:30 End of session

Lunch Break in Garden Foyer

Keynote Lecture session 7.0 in “Garden Foyer” 1350 - 1420

Keynote Lecture session 7.0

6.3 Security Primitives

Date: Wednesday 29 March 2017

Time: 11:00 - 12:30

Location / Room: 2BC

Chair: Berndt Gammel, Infineon Technologies, DE

Co-Chair: Tim Güneysu, University of Bremen & DFKI, DE

This session discusses the implementation of basic primitives that are necessary building blocks for the secure systems: Physical unclonable functions (PUFs) are used for creating secret values which then are used as keys in cryptographic algorithms. Logical and physical security of these systems fundamentally relies on the presence of high quality random numbers.
11:00 6.3.1 SENSITIZED PATH PUF: A LIGHTWEIGHT EMBEDDED PHYSICAL UNCLONABLE FUNCTION

Speaker: Matthias Sauer, University of Freiburg, DE
Authors: Matthias Sauer1, Pascal Raaila1, Linus Feiten1, Bernd Becker1, Ulrich Rührmair2 and Ilia Polian3
1University of Freiburg, DE; 2TU München, DE; 3University of Passau, DE

Abstract
Physical unclonable functions (PUFs) can be used for a number of security applications, including secure on-chip generation of secret keys. We introduce an embedded PUF concept called sensitized path PUF (SP-PUF) that is based on extracting entropy out of inherent timing variability of modules already present in the circuit. The new PUF sensitizes paths of nearly identical lengths and generates response bits by racing transitions through different paths against each other. SP-PUF has lower area overhead and higher speed than earlier embedded PUFs and requires no helper data stored in non-volatile memory beyond standard error-correction information for fuzzy extraction. Compared with standalone PUFs, the new design intrinsically and inseparably intertwines PUF behavior with functional circuitry, thus complicating invasive attacks or simplifying their detection. Moreover, SP-PUF can naturally define the contribution of a digital block to a system-wide “fusion PUF”. We present a systematic design flow to turn an arbitrary (sufficiently complex) circuit into an SP-PUF. The flow leverages state-of-the-art sensitization algorithms, formal filtering based on statistical analysis, and MAXSAT-based optimization of SP-PUF’s area overhead. Experiments show that SP-PUF extracts 256-bit keys with perfect reliability and nearly perfect uniqueness after fuzzy extraction for the majority of standard benchmarks circuits.

Download Paper (PDF; Only available from the DATE venue WiFi)

11:30 6.3.2 TEMPERATURE AWARE PHASE/FREQUENCY DETECTOR-BASED RO-PUFS EXPLOITING BULK-CONTROLLED OSCILLATORS

Speaker: Sha Tao, Royal Institute of Technology (KTH), SE
Authors: Sha Tao and Elena Dubrova, Royal Institute of Technology (KTH), SE

Abstract
Physical unclonable functions (PUFs) are promising hardware security primitives suitable for low-cost cryptographic applications. Ring oscillator (RO) PUF is a well-received silicon PUF solution due to its ease of implementation and entropy evaluation. However, the responses of RO-PUFs are susceptible to environmental changes, in particular, to temperature variations. Additionally, a conventional RO-PUF implementation is usually more power-hungry than other PUF alternatives. This paper explores circuit-level techniques to design low-power RO-PUFs with enhanced thermal stability. We introduce a power-efficient approach based on a phase/frequency detector (PFD) to perform pairwise comparisons of ROs. We also propose a temperature compensated bulk-controlled oscillator (BCO) and investigate its feasibility and usage in PUF-based RO-PUFs. Evaluation results demonstrate that the proposed techniques can effectively reduce the thermally induced errors in PUF responses while imposing a low power overhead. The PFD-based BCO-PUF is one of the best among existing RO-PUFs in terms of power efficiency.

Download Paper (PDF; Only available from the DATE venue WiFi)

12:00 6.3.3 CHACHA20-POLY1305 AUTHENTICATED ENCRYPTION FOR HIGH-SPEED EMBEDDED IOT APPLICATIONS

Speaker: Fabrizio De Santis, Technische Universität München, DE
Authors: Fabrizio De Santis, Andreas Schauer and Georg Sigl, Technische Universität München, DE

Abstract
The ChaCha20 stream cipher and the Poly1305 authenticator are cryptographic algorithms designed by Daniel J. Bernstein with the aim of ensuring high-security margins, while achieving high performance on a broad range of software platforms. % In response to the concerns raised about the reliability of the existing IETF/TLS cipher suite, its performance on software platforms, and the ease to realize secure implementations thereof, the IETF has recently published the RFC7905 and RFC7539 to promote the use and standardization of the ChaCha20 stream cipher and Poly1305 authenticator in the TLS protocol. % Most interestingly, the RFC7539 specifies how to combine together the ChaCha20 stream cipher and Poly1305 authenticator to construct an Authenticated Encryption with Associated Data (AEAD) scheme to provide confidentiality, integrity, and authenticity of data. % In this work, we present compact, constant-time, and fast implementations of the ChaCha20 stream cipher, Poly1305-ChaCha20 authenticator, and ChaCha20-Poly1305 AEAD scheme for ARM Cortex-M4 processors, aimed at evaluating the suitability of such algorithms for high-speed and lightweight IoT applications, e.g. to deploy fast and secure TLS connections between IoT nodes and remote cloud servers, when AES hardware acceleration capabilities are not available.

Download Paper (PDF; Only available from the DATE venue WiFi)

12:15 6.3.4 TOWARDS POST-QUANTUM SECURITY FOR IOT ENDPOINTS WITH NTRU

Speaker: Johanna Sepulveda, TU Munich, DE
Authors: Oscar M. Guillen1, Thomas Poppelmann2, Jose M. Bermudo Mera1, Elena Fuentes Bongenaar3, Georg Sigl1 and Johanna Sepulveda1
1TU München, DE; 2Infineon Technologies, DE; 3Radboud University, NL

Abstract
The NTRU cryptosystem is one of the main alternatives for practical implementations of post-quantum, public-key cryptography. In this work, we analyze the feasibility of employing the NTRU encryption scheme, NTRUencrypt, in resource constrained devices such as those used for Internet-of-Things endpoints. We present an analysis of NTRUencrypt’s advantages over other cryptosystems for use in such devices. We describe four different NTRUencrypt implementations on an ARM Cortex M0-based microcontroller, compare their results, and show that NTRUencrypt is suitable for use in battery-operated devices. We present performance and memory footprint figures for different security parameters, as well as energy consumption in a resource constrained microcontroller to backup these claims. Furthermore, to the best of our knowledge, in this work we present the first time-independent implementation of NTRUencrypt.

Download Paper (PDF; Only available from the DATE venue WiFi)

12:30 6.3.5 LEVERAGING AGING EFFECT TO IMPROVE SRAM-BASED TRUE RANDOM NUMBER GENERATORS

Speaker: Mohammad Saber Golanbari, Karlsruhe Institute of Technology (KIT), DE
Authors: Saman Kiameh1, Mohammad Saber Golanbari2 and Mehdi Tahoori3
1Karlsruhe Institute of Technology (KIT), DE; 2Karlsruhe Institute of Technology, DE

Abstract
The start-up value of SRAM cells can be used as the random number vector or a seed for the generation of a pseudo random number. However, the randomness of the generated number is pretty low since many of the cells will have their state skewed toward zero or one. In this paper, we propose an approach to increase the randomness of SRAM-based True Random Number Generators (TRNGs) by leveraging transistor aging impact. The idea is to iteratively power-up the SRAM cells and put them under accelerated aging to make the cells less skewed and hence obtaining a more random vector. The simulation results show that the min-entropy of SRAM-based TRNG increases by 10X using this approach.

Download Paper (PDF; Only available from the DATE venue WiFi)
OPERAND SIZE RECONFIGURATION FOR BIG DATA PROCESSING IN MEMORY

Speaker: Paulo Cesar Santos1, Geraldo Francisco de Oliveira Junior 2, Diego Gomes Tomé 3, Marco Antonio Zanata Alves 3, Eduardo Cunha de Almeida 3 and Luigi Carro 4
Authors: 1UFRGS - Universidade Federal do Rio Grande do Sul, BR; 2Universidade Federal do Rio Grande do Sul, BR; 3UFPR, BR; 4UFRGS, BR

Abstract
 Nowadays, applications that predominantly perform lookups over large databases are becoming more popular with column-stores as the database system architecture of choice. For these applications, Hybrid Memory Cubes (HMCs) can provide bandwidth of up to 320 GB/s and represents the best choice to keep the throughput for these ever increasing databases. However, even with the high available memory bandwidth and processing power, in order to achieve the peak performance, data movements through the memory hierarchy consumes an unnecessary amount of time and energy. In order to accelerate database operations, and reduce the energy consumption of the system, this paper presents the Reconfigurable Vector Unit (RVU) that enables massive and adaptive in-memory processing, extending the native HMC instructions and also increasing its effectiveness. RVU enables the programmer to reconfigure it to perform as a large vector unit or multiple small vectors units to better adjust for the application needs during different computation phases. Due to its adaptability, RVU is capable of achieving performance increase of 27x on average and reduce the energy consumption in 29% when compared to an x86 processor with 16 cores. Compared with the state-of-the-art mechanism capable of performing large vector operations with fixed size, inside the HMC, RVU performed up to 12% better in terms of performance and improve in 53% the energy consumption.

Download Paper (PDF; Only available from the DATE venue WiFi)
Both today's technology and computer architectures are facing serious challenges/walls making them incapable to deliver the right computing power at pre-defined constraints for emerging applications such as big-data. However, a solution may be at your fingertips. This session discusses the emerging memristor device in enabling new memory and processing paradigms such as memory intensive architectures and neuromorphic computing, due to its unique properties like the tight integration with CMOS and the ability to learn and adapt.
6.6 Industrial Experiences & EU Projects

Date: Wednesday 29 March 2017
Location / Room: 5A

Chair:
Eugenio Villar, University of Cantabria, ES

This session addresses industrial research and practice on architecture, design, timing analysis techniques and analogue circuit sizing. The session will be rounded-off by presentations of two European projects about to start, addressing cross-layer design of reconfigurable CPS and IoT for smart wearable applications.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00</td>
<td>6.6.1</td>
<td>AN ASYNCHRONOUS NOC ROUTER IN A 14NM FINFET LIBRARY: COMPARISON TO AN INDUSTRIAL SYNCHRONOUS COUNTERPART</td>
<td>Wayne Burleson, Advanced Micro Devices, Inc., US; Menbere Tekleyohannes, University of Kaiserslautern, DE; Mohammad Sadri, STMicroelectronics, FR; Martin Klein, Wipotec GmbH, DE; Michael Siegrist, University of Ferrara, IT; Christian Weis, Advanced Micro Devices, US; Norbert Wehn, University of Kaiserslautern, DE</td>
</tr>
<tr>
<td>11:15</td>
<td>6.6.2</td>
<td>AN ADVANCED EMBEDDED ARCHITECTURE FOR CONNECTED COMPONENT ANALYSIS IN INDUSTRIAL APPLICATIONS</td>
<td>Menbere Tekleyohannes, University of Kaiserslautern, DE; Mohammad Sadri, STMicroelectronics, FR; Martin Klein, Wipotec GmbH, DE; Michael Siegrist, University of Ferrara, IT; Christian Weis, Advanced Micro Devices, US; Norbert Wehn, University of Kaiserslautern, DE</td>
</tr>
<tr>
<td>11:30</td>
<td>6.6.3</td>
<td>WORKLOAD DEPENDENT RELIABILITY TIMING ANALYSIS FLOW</td>
<td>Ajith Sivadasan, TIMA Labs, FR; Ajith Sivadasan, 1, Armelle Notin, 2, Vincent Huard, 2, Etienne Maurin, 2, Florian Cacho, 2, Sidi Ahmed Benhassain 3 and Lorena Anghel 4</td>
</tr>
</tbody>
</table>
6.7 Model-Based Design and Verification of Real-Time Systems

Date: Wednesday 29 March 2017
Time: 11:00 - 12:30
Location / Room: 3B

Chair: Alain Girault, INRIA, FR
Co-Chair: Amir Amini Far, IPFL Lausanne, CH

This session provides an overview of recent advances in model based design of embedded real-time systems. The first paper proposes an optimal deployment for data-flow applications on many-core chips. The second paper addresses the issue of simulation-based verification of embedded systems. It considers aspects of model based design of control systems in the context of event based real-time simulation. Last, but not least, the third paper discusses the workload monitoring of real-time systems by relying on a run-time feedback instead of offline assumptions.

Time	Label	Presentation Title	Authors
11:45 | 6.6.4 | PROBABILISTIC TIMING ANALYSIS ON TIME-RANDOMIZED PLATFORMS FOR THE SPACE DOMAIN | Francisco J. Cazorla, Barcelona Supercomputing Center and Spanish National Research Council (IIIA-CSIC), ES; Mikel Fernandez1, David Morales2, Leonidas Kosmidis3, Alen Bardizbanyan4, Ian Broster5, Carlos Hernandez1, Eduardo Quinones1, Jaume Abella1, Francisco Cazorla1, Paulo Machado8 and Luca Fossati8 |
12:00 | 6.6.5 | CROSS-LAYER DESIGN OF RECONFIGURABLE CYBER-PHYSICAL SYSTEMS | Michael Mani, IBM Research, IL |
12:15 | 6.6.6 | INSPEX: DESIGN AND INTEGRATION OF A PORTABLE/WEARABLE SMART SPATIAL EXPLORATION SYSTEM | Suzanne Lesecq, CEA, LETI, Minatec Campus, FR |
12:30 | IP3-5, 948 | A GENERIC TOPOLOGY SELECTION METHOD FOR ANALOG CIRCUITS WITH EMBEDDED CIRCUIT SIZING DEMONSTRATED ON THE OTA EXAMPLE | Andreas Gerlach, Robert Bosch Centre for Power Electronics, DE; Andreas Gerlach1, Thoralf Rosahl2, Frank-Thomas Etlich2 and Jürgen Scheibe1 |
12:30 | | End of session |
12:45 | | Lunch Break in Garden Foyer |
13:00 | | Keynote Lecture session 7.0 in "Garden Foyer" 1350 - 1420 |
13:15 | | Lunch Break in the Garden Foyer |

Lunch Break in the Garden Foyer
On all conference days (Tuesday to Thursday), a buffet lunch will be offered in the Garden Foyer, in front of the session rooms. Kindly note that this is restricted to conference delegates possessing a lunch voucher only. When entering the lunch break area, delegates will be asked to present the corresponding lunch voucher of the day. Once the lunch area is being left, re-entrance is not allowed for the respective lunch.
researcher summer school and two Computing Systems Weeks, which are networking and knowledge-exchange gatherings. We also produce a biennial technology roadmap, the HiPEAC Vision, which recommends future actions and priorities for the European computing systems community and is a key source of reference for the European Commission. In this session, after a brief introduction to HiPEAC, we highlight some of our members’ innovative and groundbreaking research and development activities.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00</td>
<td>6.8.1</td>
<td>ACCELERATED DATA CENTERS FOR CLOUD COMPUTING: THE VINEYARD PLATFORM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Dimitrios Soudris, National Technical Univ. of Athens and ICCS, GR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: VINEYARD aims to develop the technology and the ecosystem that will enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the efficient integration of the hardware acceleration in the data centres,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>seamlessly. The deployment of energy-efficient hardware accelerators will be used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to improve significantly the performance of cloud computing applications and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reduce the energy consumption in data centres.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VINEYARD is developing an integrated framework for energy-efficient data centres</td>
</tr>
<tr>
<td></td>
<td></td>
<td>based on programmable hardware accelerators. It is working towards a high-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>level programming framework that allows end-users to seamlessly utilize these</td>
</tr>
<tr>
<td></td>
<td></td>
<td>accelerators in heterogeneous computing systems by using typical data-centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster frameworks (i.e. Spark). VINEYARD is also developing two types of novel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>energy-efficient servers integrating two kinds of hardware accelerators:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>programmable dataflow-based accelerators and FPGA-based accelerators. The servers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>coupled with dataflow-based accelerators are suitable for cloud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>computing applications that can be represented in dataflow graphs while the latter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>will be used for accelerating applications that need tight communication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>between the processor and the hardware accelerators.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VINEYARD also fosters the establishment of an ecosystem that will empower open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>innovation based on hardware accelerators as data-centre plugins, thereby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>facilitating innovative enterprises (large industries, SMEs, and creative start-ups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to develop novel solutions using VINEYARD’s leading edge developments.</td>
</tr>
<tr>
<td>11:15</td>
<td>6.8.2</td>
<td>HIGH-PERFORMANCE PARALLELISATION OF REAL-TIME APPLICATIONS WITH THE UPSCALE SDK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Luis Miguel Pinho, Polytechnic of Porto, PT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: Nowadays, the prevalence of computing systems in our lives is so ubiquitous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>that it would not be far-fetched to state that we live in a cyber-physical world</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dominated by computer systems. These systems demand for more and more computational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>performance to process large amounts of data from multiple data sources, some of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>them with guaranteed processing response times. In other words, systems are required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to deliver their results within pre-defined (and sometimes extremely short) time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bounds. Examples can be found for instance in intelligent transportation systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for fuel consumption reduction in cities or railway, or autonomous driving of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vehicles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To cope with such performance requirements, chip designers produced chips with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dozens or hundreds of cores, interconnected with complex networks on chip.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unfortunately, the parallelization of the computing activities brings many</td>
</tr>
<tr>
<td></td>
<td></td>
<td>challenges, among which how to provide timing guarantees, as the timing behaviour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of the system running within a many-core processor depends on interactions on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shared resources that are most of the time not known by the system designer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P-SO C R A T E S (Parallel Software Framework for Time-Critical Many-core Systems)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is an FP7 European project, which developed a novel methodology to facilitate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the deployment of standardized parallel architectures for real-time applications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This methodology was implemented (based on existing models and components) to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>provide an integrated software development kit, the UpScale SDK, to fully exploit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the huge performance opportunities brought by the most advanced many-core processors,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>whilst ensuring a predictable performance and maintaining (or even reducing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>development costs of applications. The presentation will provide an overview of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UpScale SDK, its underlying methodology, and the results of its application on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>relevant industrial use-cases.</td>
</tr>
<tr>
<td>11:30</td>
<td>6.8.3</td>
<td>POWER-AWARE SOFTWARE MAPPING OF PARALLEL APPLICATIONS ONTO HETEROGENEOUS MPSOCs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Gereon Onnebrink, RWTH Aachen University, DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: With the ever-increasing need of computational power, heterogeneous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>multi- and many-processor SoCs provide the best trade-off between performance, cost,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and power. However, one of the biggest hurdles to exploit multicore architectures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from the SW side is how to efficiently develop performance and power co-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>optimised parallel applications. Making the right decisions in the vast SW design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>space can hardly be done by the programmer in a reasonable time frame,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>especially, when performing a manual design process. Considering an application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>that has been properly partitioned into multiple concurrent tasks, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>programmed in a parallel language, the process of mapping those tasks onto the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>processors with the optimal voltage and frequency setting is a huge challenge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for a certain design goal. An automatic approach is needed that determines the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>optimal decision, given an optimisation constraint. A great amount of research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>has been conducted at ICE aiming to optimise the performance of a parallelised</td>
</tr>
<tr>
<td></td>
<td></td>
<td>application. The Silexica GmbH, a VC-backed spin-off from ICE, continues on this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>track of producing novel compiler technology and tools for programming embedded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>multicore platforms, and offers the tools and knowledge to the industry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In order to co-optimise for power, accurate power modelling has to be integrated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>into the existing performance driven framework. ICE’s electronic system-level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>power estimation methodology is a more than consequent starting point. The</td>
</tr>
<tr>
<td></td>
<td></td>
<td>methodology takes the available power information from a reference power trace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and back-annotates it to determine the coefficients of a linear power model.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Several case studies have shown power estimation errors with less than 5%.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Based on the power modelling capability, a novel power-aware SW mapping heuristic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>has been implemented. This algorithm is verified in several case studies and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>used to identify the gain of sophisticated power management techniques by providing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the power-performance trade-off.</td>
</tr>
<tr>
<td>11:45</td>
<td>6.8.4</td>
<td>OVERVIEW OF MANGO: EXPLORING MANYCORE ARCHITECTURES FOR NEXT-GENERATION HPC SYSTEMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: José Flich, Technical University of Valencia, ES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: The performance/power efficiency wall poses the major challenge faced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nowadays by HPC. Looking straight at the heart of the problem, the hurdle to the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>full exploitation of today computing technologies ultimately lies in the gap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>between the applications’ demand and the underlying computing architecture: the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>closer the computing system matches the structure of the application, the most</td>
</tr>
<tr>
<td></td>
<td></td>
<td>efficiently the available computing power is exploited. Consequently, enabling a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>deeper customization of architectures to applications is the main pathway towards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>computation power efficiency. In addition to mere performance and power-efficiency,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>it is of paramount importance to meet new nonfunctional requirements posed by</td>
</tr>
<tr>
<td></td>
<td></td>
<td>emerging classes of applications. In particular, a growing number of HPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>applications demand some form of time-predictability, or more generally Quality-of-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service (QoS), particularly in those scenarios where correctness depends on both</td>
</tr>
<tr>
<td></td>
<td></td>
<td>performance and timing requirements and the failure to meet either of them is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>critical. The MANGO project builds on these considerations and will set inherent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>architecture-level support for application-based customization as one of its</td>
</tr>
<tr>
<td></td>
<td></td>
<td>underlying pillars. In addition, an heterogeneous platform for HPC architecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exploration will be deployed.</td>
</tr>
<tr>
<td>Time</td>
<td>Label</td>
<td>Presentation Title</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>12:00</td>
<td>6.8.5</td>
<td>GREENOPENHEVC: LOW POWER HEVC DECODER</td>
</tr>
</tbody>
</table>

Authors
Menard Daniel, INSa Rennes, FR

Abstract
Video on mobile devices is a must-have feature with the prominence of new services and applications using video like streaming or conferencing. The new video standard HEVC is an appealing technology for service providers. Besides, with the recent progress of SoC, software video decoders are now a reality. The challenge is to provide power efficient design to fit with the compelling demand for long battery. We present here a practical set-up demonstrating that the new HEVC standard can be implemented in software on an embedded GPP multicore platform.

More information

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:15</td>
<td>6.8.6</td>
<td>EYES OF THINGS</td>
</tr>
</tbody>
</table>

Speaker
Matteo Sorci, nVISO, CH

Abstract
Currently, computer vision is rapidly moving beyond academic research and factory automation. With the appropriate platforms and tools, the emerging possibilities are endless in terms of wearable applications, augmented reality, surveillance, ambient-assisted living, etc.

Vision, our richest sensor, allows mining big data from reality. While the number of image sensors deployed across all products in the world is a small fraction of the total number of sensors deployed, the amount of data generated by them dwarfs the amount of data generated by all other types of sensors combined. This has a cost, vision is arguably the most demanding sensor in terms of power consumption and required processing power.

Our objective in this project is to build a power-size-cost-programmability optimized core vision platform that can work independently and also embedded into all types of artefacts. The envisioned open hardware is being combined with carefully designed APIs that maximize inferred information per milliwatt and adapt the quality of inferred results to each particular application. This will not only mean more hours of continuous operation, it will allow to create novel applications and services that go beyond what current vision systems can do, which are either personal/mobile or "always-on" but not both at the same time.

UB06 Session 6

Date: Wednesday 29 March 2017
Time: 12:00 - 14:00
Location / Room: Booth 1, Exhibition Area

<table>
<thead>
<tr>
<th>Label</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>UB06.1</td>
<td>NOXIM-XT: A BIT-ACCURATE POWER ESTIMATION SIMULATOR FOR NOCS</td>
</tr>
</tbody>
</table>

Presenter
Pierre Bomel, Université de Bretagne Sud, FR

Authors
André Rossi1, Johann Laurent2 and Erwan Moreac2

1LERIA, Université d’Angers, Angers, France, FR; 2Lab-STICC, Université de Bretagne Sud, Lorient, FR

Abstract
We have developed an enhanced version of Noxim (Noxim-XT) to estimate the energy consumption of a NoC in a SOC. Noxim-XT is used in a two-step methodology. First, applications are mapped on a SoC and their traffics are extracted by simulation with MPSOCBench. Second, Noxim-XT tests various hardware configurations of the NoC, and for each configuration, the application’s traffic is re-injected and replayed, an accurate performance and power breakdown is provided, and the user can choose different data coding strategies. With the help of Noxim XT, each configuration is bit-accurately estimated in terms of energy consumption. After simulation, a spatial mapping of the energy consumption is provided and highlights the hot-spots. Moreover, the new coding strategies allows significant energy saving. Noxim XT simulations and a FPGA-based prototype of a new coding strategy will be demonstrated at the U-booth to illustrate these works.

More information

<table>
<thead>
<tr>
<th>Label</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>UB06.2</td>
<td>GREENOPENHEVC: LOW POWER HEVC DECODER</td>
</tr>
</tbody>
</table>

Presenter
Menard Daniel, INSa Rennes, FR

Authors
Julien Heuot1, Erwan Nogues1, Maxime Pelcat2 and Wassim Hamidouche1

1INSa Rennes, IETR, UBL, FR; 2Institut Pascal, Université Clermont-Ferrand, FR

Abstract
Video on mobile devices is a must-have feature with the prominence of new services and applications using video like streaming or conferencing. The new video standard HEVC is an appealing technology for service providers. Besides, with the recent progress of SoC, software video decoders are now a reality. The challenge is to provide power efficient design to fit with the compelling demand for long battery. We present here a practical set-up demonstrating that the new HEVC standard can be implemented in software on an embedded GPP multicore platform. Different techniques have been integrated to optimize the energy: data-level and thread level parallelisms, video aware Dynamic Voltage and Frequency Scaling. To push back the limits, algorithmic level approximations computing is carried-out on the in-loop filtering. The subjective tests have demonstrated that the quality degradation is almost imperceptible. A mean power of less than 1 Watt is reported for a HD 1080p/24fps video decoding.

More information
UB06.3 TTOOLS5G: MODEL-BASED DESIGN OF A 5G UPLINK DATA-LINK LAYER RECEIVER FROM UML/SYSML DIAGRAMS

Presenter: Andrea Emrich, Nokia Bell Labs France, FR
Authors: Julien Lallement, Imran Latifi, Ludovic Aprvillier, Renaud Pascal and Adrien Canuel
Abstract: Future 5G networks are expected to provide an increase of 10x in data rates. To meet these requirements, the equipment of baseband stations will be designed using mixed architectures, i.e., DSPs, FPGAs. However, efficiently programming these architectures is not trivial due to the drastic increase in complexity of their design space. To overcome this issue, we need to have unified tools capable of rapidly exploring, partitioning and prototyping the mixed architecture designs of 5G systems. At DATE 2017 University Booth, we demonstrate such a unified tool and show our latest achievements in the automatic code generation engine of TTools/DEPLOYDOCUS, a UML/SysML framework for the hardware/software co-design of data-flow systems, to support mixed architectures. Our demonstration will show the full design and evaluation of a 5G data-link layer receiver for both a DSP-based and an IP-based designs. We will validate the effectiveness of our solution by comparing automated vs manual designs.

More information ...

UB06.4 WE DARE: WEARABLE ELECTRONICS DIRECTIONAL AUGMENTED REALITY

Presenter: Davide Quaglia, University of Verona, IT
Authors: Gianluca Benedetti and Walter Vendraminsetto
Abstract: Current augmented reality (AR) wearables solutions require large form factors, weight, cost and energy that reduce usability. In fact, connectivity, image processing, localization, and direction evaluation lead to high processing and power requirements. A multi-antenna system, patented by the industrial partner, enables a new generation of smart eye-wear that elegantly requires less hardware, connectivity, and power to provide AR functionalities. They will allow users to directionally locate nearby radio emitting sources that highlight objects of interest (e.g., people or retail items) by using existing standards like Bluetooth Low Energy, Apple's iBeacon and Google's Eddystone. This booth will report the current level of research addressed by the Computer Science Department of University of Verona and the company Wagoo LLC. In the presented demo, different objects emit an "I am here" signal and a prototype of the smart glasses shows the information related to the observed object.

More information ...

UB06.5 ITMD: RUN-TIME MANAGEMENT OF CONCURRENT MULTI-THREADED APPLICATIONS ON HETEROGENEOUS MULTI-CORES

Presenter: Karunakar Reddy Basireddy, University of Southampton, GB
Authors: Amit Singh, Bashir M. Al-Hashimi and Geoff V. Merrett, University of Southampton, GB
Abstract: Heterogeneous multi-cores often need to deal with multiple applications having different performance requirements concurrently, which generate varying and mixed workloads. Runtime management is required for adapting to such performance requirements and workload variabilities, and to achieve energy efficiency. It is challenging to efficiently exploit different types of cores simultaneously and DVFS potential of cores. We present a run-time management approach that first selects thread-to-core mapping based on the performance requirements and resource availability. Then, it applies online adaptation by adjusting the voltage-frequency (V-F) levels to achieve energy optimization. We demonstrate the proposed run-time management approach on the Odroid-XU3, with various combinations of multi-threaded applications from PARSEC and SPLASH benchmarks. Results show an average improvement in energy efficiency up to 33% compared to existing approaches.

More information ...

UB06.6 BRAIN TO COMPUTER CONNECTIONS: A FAST TIME-DOMAIN APPROACH FOR BCI TRAINING

Presenter: Vito Leonardo Gallo, Politecnico di Bari, Italy, IT
Authors: Valerio Francesco Annese and Daniela De Venuto, Politecnico di Bari, IT
Abstract: We present a P300-based Brain Computer Interface (BCI) approach for the brain control of external devices through an innovative approach. The herein proposed HW/SW system acquires the signal from 6 EEG channels and synchronizes them with ad-hoc designed visual stimuli that evokes the P300 signal. The BCI signal processing comprises: (i) a Machine Learning stage, which is based on an algorithm (t-RIDE), which calibrates the system in ~190s; (ii) a smart approach for the time-domain features extraction greatly reduces the computational effort, speeding up the classification and finally (iii) the on-line classification, which is entrusted to a linear classifier. Note-worthy results obtained in experimental setup are: (i) P300 spatio-temporal characterization in 1.95s, (ii) classification accuracy of 80.5±4.1% on single-trial, (iii) real time classification in 22ms (WC). As a PoC, supporting videos will show how the BCI outcomes can pilot a prototype car.

More information ...

UB06.7 PER: METHOD AND TOOL FOR ANALYZING THE INTERPLAY BETWEEN PERFORMANCE, ENERGY AND SCALING IN MULTI- AND MANY-CORE PLATFORMS

Presenter: Fei Xia, Newcastle University, GB
Authors: Ashur Raffeev, Alexander Romanovsky and Alex Yakovlev, Newcastle University, GB
Abstract: Parallelization has been used to maintain a reasonable balance between energy consumption and performance in computing systems. However, the effectiveness of parallelization scaling is different for different hardware platforms. This is because the reliable operation region (ROR), a region defined in the voltage-throughput space for any hardware platform, is platform-dependent and its shape determines how effective parallelization scaling is in improving throughput and/or reducing power consumption. Although many of the interlinked issues are known, a unifying analysis method has just now been proposed to study the interplay between performance, energy, and parallelization scaling. The method of bi-normalization of the ROR is designed to help achieve a meaningful cross-platform analysis of this interplay. The PER tool brings all these issues together and helps designers reason about hardware parallelization, DVFS and software parallelizability.

More information ...

UB06.8 TIDES: NON-LINEAR WAVEFORMS FOR QUICK TRACE NAVIGATION

Presenter: Janina Stoppe, University of Bremen, DE
Author: Ralf Drechsler, University of Bremen / DFKI, DE
Abstract: System trace analysis is mostly done using waveform viewers -- tools that relate signals and their assignments at certain times. While generic hardware design is subject to some innovative visualisation ideas and software visualisation has been a research topic for much longer, these classic tools have been part of the design process since the earlier days of hardware design -- and have not changed much over the decades. Instead, the currently available programs have evolved to look practically the same, all following a familiar pattern that has not changed since their initial appearance. We argue that there is still room for innovation beyond the very classic waveform display though. We implemented a proof-of-concept waveform viewer (codenamed Tides) that has several unique features that go beyond the standard set of features for waveform viewers.

More information ...
SEFILE: A SECURE FILESYSTEM IN USERSPACE VIA SECUBE™

Presenter:
Giuseppe Airofara, CINI, IT

Authors:
Paolo Pinetto1 and Antonio Varriale2

1CINI & Politecnico di Torino, IT; 2BuS Labs Ltd., IT

Abstract
The SEcube™ Open Source platform is a combination of three main cores in a single-chip design. Low-power ARM Cortex-M4 processor, a flexible and fast Field-Programmable-Gate-Array (FPGA), and an EAL5+ certified Security Controller (SmartCard) are embedded in an extremely compact package. This makes it a unique Open Source security environment where each function can be optimized, executed, and verified on its proper hardware device. In this demo, we present a Windows wrapper for a Filesystem in Userspace (FUSE) with an HDD firewall resorting to the hardware built-in capabilities, and the software libraries, of the SEcube™.

LABSMILING: A FRAMEWORK, COMPOSED OF A REMOTELY ACCESSIBLE TESTBED AND RELATED SW TOOLS, FOR ANALYSIS AND DESIGN OF LOW DATA-RATE WIRELESS PERSONAL AREA NETWORKS BASED ON IEEE 802.15.4

Presenter:
Marco Santic, University of L’Aquila, IT

Authors:
Luigi Pomante, Walter Tiberti, Carlo Centofanti and Lorenzo Di Giuseppe, DEWS - Università di L’Aquila, IT

Abstract
Low data-rate wireless personal area networks (LR-WPANs) are even more present in the fields of IoT, wearable devices and health monitoring. The development, deployment and test of such systems, based on IEEE 802.15.4 standard (and its derivations, e.g. 15.4e), require the exploitation of a testbed when the network is not trivial and grows in complexity. This demo shows the framework of LabSmiling: a testbed and related SW tools that connect a meaningful (but still scalable) number of physical devices (sensor nodes) located in a real environment. It offers the following services: program, reset, switch on/off single devices; connect to devices up/down links to inject or receive commandsmsgs/packets in/from the network; set devices as low level packet sniffers, allowing to test/debug protocol compliances or extensions. Advanced services are: possibility of design test scenarios for the evaluation of network metrics (throughput, latencies, etc.) and custom application verification.

7.0 LUNCH TIME KEYNOTE SESSION

Date: Wednesday 29 March 2017
Time: 13:50 - 14:20
Location / Room: Garden Foyer

Chair:
David Atienza, EPFL, CH

Time Label Presentation Title Authors
13:50 7.0.1 INTERNET OF EVERYTHING IS OUR OPPORTUNITY

Author:
Keith Willett, Director of Software Engineering for Merck Serono, CH

Abstract
Merck Serono is working to revolutionize patient care and doctor assist through utilization of technology that is built of the Internet of Everything. Using global resources to consolidate medical devices under a single platform that will store, analyze and recommend patient care to physicians, Merck is leveraging the Internet of Everything to improve patient care. The IoE is not limited to medical devices, as everything from automobiles to light bulbs are looking for ways to connect to the Internet. These devices gather, store and analyze data to improve the user experience and create value for people and businesses that have yet to be recognized. However, connecting so many products will cause an increased strain on the network infrastructures, and most importantly expose personal information to potential threats; if not managed correctly. All companies connecting devices are having similar problems and are working to solve these issues. As the Internet of Everything continues to evolve, critical strategies will need to be in place for all companies to be successful. This presentation will discuss the strategies companies need to play in this space and how collaboration and cooperation will become more common in IoE.

14:20 End of session
Abstract

Labs-on-Chip (LoC) allow for the miniaturization, integration, and automation of medical and bio-chemical procedures. In recent years, different technologies have been considered. However, all of them have their drawbacks, e.g. electrowetting-based LoCs suffer from the evaporation of liquids, the fast degradation of the surface coatings, and the inferior biocompatibility, while flow-based LoCs require a complex and costly multilayer fabrication process. Hence, an alternative has recently been proposed in terms of Networked Labs-on-Chips. We present and demonstrate the NLoC technology where so-called droplets flow inside channels of micrometer-size. Networking functionalities enable the designer to dynamically select the operations to be conducted. These networking functionalities exploit hydrodynamic forces acting on droplets. Moreover, NLoC devices can be produced at low cost (e.g. using 3D printers). By this, drawbacks of established LoC-technologies are addressed.

More information ...
SCCHARTS: SYNCHRONOUS STATECHARTS FOR SAFETY-CRITICAL APPLICATIONS

Presenter:
Reinhard von Hanxleden, Kiel University, DE

Authors:
Michael Mendler, Christian Motika, Christoph Daniel Schulze and Steven Smyth
1 Bamberg University, DE; 2 Kiel University, DE

Abstract
We present a visual language, SCCharts, designed for specifying safety-critical reactive systems. SCCharts use a statechart notation and provide determinate concurrency based on a synchronous model of computation (MoC), without restrictions common to previous synchronous MoCs. Specifically, we lift earlier limitations on sequential accesses to shared variables, by leveraging the sequentially constructive MoC. For further details, see [von Hanxleden et al., PLDI’14] and http://www.sccharts.com. The SCCharts demonstrator is an Eclipse Rich Client and part of KIELER (http://www.rtsys.informatik.uni-kiel.de/en/research/kieler). The demonstration shows how to write an SCChart model using a textual notation, from which a visual model is generated on the fly using the Eclipse Layout Kernel (ELK). We also present a compilation chain that allows efficient synthesis of software and hardware.

More information ...

GNOCs: AN ULTRA-FAST, HIGHLY EXTENSIBLE, CYCLE-ACCURATE GPU-BASED PARALLEL NETWORK-ON-CHIP SIMULATOR

Presenter:
Amir CHARIF, TIMA, FR

Authors:
Nacer-Eddine Zergainoh and Michael Nicolaidis, TIMA, FR

Abstract
With the continuous decrease in feature sizes and the recent emergence of 3D stacking, chips comprising thousands of nodes are becoming increasingly relevant, and state-of-the-art NoC simulators are unable to simulate such a high number of nodes in reasonable times. In this demo, we showcase GNoCs, the first detailed, modular and scalable parallel NoC simulator running fully on GPU (Graphics Processing Unit). Based on a unique design specifically tailored for GPU parallelism, GNoCs is able to achieve unprecedented speedups with no loss of accuracy. To enable quick and easy validation of novel ideas, the programming model was designed with high extensibility in mind. Currently, GNoCs accurately models a VC-based microarchitecture. It supports 2D and 3D mesh topologies with full or partial vertical connections. A variety of routing algorithms and synthetic traffic patterns, as well as dependency-driven trace-based simulation (Netrace), are implemented and will be demonstrated.

More information ...

PER: METHOD AND TOOL FOR ANALYZING THE INTERPLAY BETWEEN PERFORMANCE, ENERGY AND SCALING IN MULTI- AND MANY-CORE PLATFORMS

Presenter:
Fei Xia, Newcastle University, GB

Authors:
Ashur Rafiev, Alexander Romanovsky and Alex Yakovlev, Newcastle University, GB

Abstract
Parallelization has been used to maintain a reasonable balance between energy consumption and performance in computing systems. However, the effectiveness of parallelization scaling is different for different hardware platforms. This is because the reliable operation region (ROR), a region defined in the voltage-throughput space for any hardware platform, is platform-dependent and its shape determines how effective parallelization scaling is in improving throughput and/or reducing power consumption. Although many of the interlinked issues are known, a unifying analysis method has just now been proposed to study the interplay between performance, energy, reliability and parallelization scaling. The method of bi-normalization of the ROR is designed to help achieve a meaningful cross-platform analysis of this interplay. The PER tool brings all these issues together and helps designers reason about hardware parallelization, DVFS and software parallelizability.

More information ...

SELINK: SECURING HTTP AND HTTPS-BASED COMMUNICATION VIA SECUBE™

Presenter:
Airofarrulla Giuseppe, CINI & Politecnico di Torino, IT

Authors:
Paolo Prinetto and Antonio Varriale
1 Politecnico di Torino, IT; 2 Blu5 Labs Ltd., IT

Abstract
The SEcube™ Open Source platform is a combination of three main cores in a single-chip design. Low-power ARM Cortex-M4 processor, a flexible and fast Field-Programmable-Gate-Array (FPGA), and an EAL5+ certified Security Controller (SmartCard) are embedded in an extremely compact package. This makes it a unique Open Source security environment where each function can be optimized, executed, and verified on its proper hardware device. In this demo, we present a client-server HTTP and HTTPS-based application, for which the traffic is encrypted resorting to the hardware built-in capabilities, and the software libraries, of the SEcube™. By doing so, we show how communication can be secured from an attacker capable of inspecting, and tampering, the regular communication.

More information ...

STACKADROP: A MODULAR DIGITAL MICROFLUIDIC BIOCHIP RESEARCH PLATFORM

Presenter:
Oliver Keszöce, University of Bremen, DE

Authors:
Maximilian Luernet and Rolf Drechsler, University of Bremen & DFKI GmbH, DE

Abstract
Advances in microfluidic technologies have led to the emergence of Digital Microfluidic Biochips (DMFBs), which are capable of automating laboratory procedures. These DMFBs raised significant attention in industry and academia creating a demand for devices. Commercial products are available but come at a high price. So far, there are two open hardware DMFBs available: the DropBot from WheelerLabs and the OpenDrop from GaudiLabs. The aim of the StackADrop was to create a DMFB with many directly addressable cells while still being very compact. The StackADrop strives to provide means to experiment with different hardware setups. It’s main feature are the exchangeable top plates, supporting 256 high-voltage pins. It features SPI, UART and I2C connectors for attaching sensors/actuators and can be connected to a computer using USB for interactive sessions using a control software. The modularity allows to easily test different cell shapes, such as squares, hexagons and triangles.

More information ...

PULP: A ULTRA-LOW POWER PLATFORM FOR THE INTERNET-OF-THINGS

Presenter:
Francesco Conti, ETH Zurich, CH

Authors:
Stefan Mach, Florian Zaruba, Antonio Pullini, Daniele Palossi, Giovanni Rovere, Florian Glaser, Germain Haugou, Schekeb Fateh and Luca Benini
1 ETH Zurich, CH; 2 ETH Zurich, CH and University of Bologna, IT

Abstract
The PULP (Parallel Ultra-Low Power) platform strives to provide high performance for IoT nodes and endpoints within a very small power envelope. The PULP platform is based on a tightly-coupled multi-core cluster and on a modular architecture, which can support complex configurations with autonomous I/O without SW intervention, HW-accelerated execution of hot computation kernels, fine-grain event-based computation - but can also be deployed in very simple configuration, such as the open source PULPino microcontroller. In this demonstration booth, we will showcase several prototypes using PULP chips in various configuration. Our prototypes perform demos such as real-time deep-learning based visual recognition from a low-power camera, and online biosignal acquisition and reconstruction on the same chip. Application scenarios for our technology include healthcare wearables, autonomous nano-UAVs, smart networked environmental sensors.

More information ...
IoT technologies have the potential to be a disruptive game changer for existing applications and services as well as an enabler for new businesses. This session provides viewpoints from industry as well as a startup company on the deployment and evolution of IoT-oriented services and products.

DISTRIBUTED WAYSIDE ARCHITECTURE - IOT FOR RAILWAY INFRASTRUCTURE

Speaker: Peter Hefti, Siemens, CH

Abstract

Railway infrastructure is characterized by very long life cycles, e.g. 25 years or even more, and very harsh environmental conditions. The requirements for availability and safety are nonetheless very demanding to assure an efficient and save operation. In addition, the fulfillment of these requirements has to be shown formally in so-called safety cases. These cases have to be confirmed by independent safety assessors and eventually government agencies. Under these circumstances, the adoption of new technologies in the railway industry can be a challenge. Over the last decades, the architecture of railway control systems has been more or less stable. The trackside equipment, i.e. points, signals, track vacancy detection etc., is connected via star-shaped cabling to an interlocking. This interlocking distributes the energy and assures the safety by controlling the trackside equipment accordingly. The star-shaped cabling limits the control range of every interlocking, thus there is a need for an interlocking in every station. Both, this cabling concept as well as the large number of interlocking installations lead to high costs.

To bring the overall costs down, new concepts have to be implemented. The field elements have to be provided with power. If a data bus is introduced, an adequate power bus is needed too in order to achieve substantial cost savings. For several years, Siemens has been working on innovating the IoT in the railway infrastructure. We named the concept Distributed Wayside Architecture. First installations at DB in Germany and SBB in Switzerland showed that the challenges mentioned above can be overcome. Current work focuses on the power bus as well as on the scalability of the concepts to larger installations.
new opportunities and challenges in terms of enhancing computational efficiency and ensuring security, respectively. This session explores in-memory computing applied to Non-volatile memories (NVMs) are playing an increasingly dominant role in the construction of energy-efficient systems thanks to reduced static power consumption. NVMs raise Pierre-Emmanuel Gaillardon, University of Utah, US Co-Chair: Luca Amaru, Synopsys, US Chair: Location / Room: Time: Date:

7.2 In-memory Computing and Security for Non-volatile Memory Technologies 15:30 15:00

Thursday, March 30, 2017

Coffee Break 10:00 - 11:00

16:00 End of session Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017

Coffee Break 10:30 - 11:30

Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017

Coffee Break 10:00 - 11:00

Coffee Break 16:00 - 17:00

Thursday, March 30, 2017

Coffee Break 10:00 - 11:00

Coffee Break 15:30 - 16:00

7.2.1 AUTOMATED SYNTHESIS OF COMPACT CROSSBARS FOR SNEAK-PATH BASED IN-MEMORY COMPUTING

Speaker:

Sumit Kumar Jha, University of Central Florida, US

Authors:

Dwijayan Chakraborty and Sumit Kumar Jha, University of Central Florida, US

Abstract

The rise of data-intensive computational loads has exposed the processor-memory bottleneck in Von Neumann architectures and has intensified the need for in-memory computing. Existing literature on computing Boolean formula using sneak-paths in nanoscale memristor crossbars has only focused on short Boolean formula, such as 1-bit addition. There are two open questions: (i) Can one synthesize sneak-path based crossbars for computing large Boolean formula? (ii) What is the size of a memristor crossbar that can compute a given Boolean formula using sneak paths? In this paper, we make progress on both these open problems. First, we show that the number of rows and columns required to compute a Boolean formula is at most linear in the size of the Reduced Ordered Binary Decision Diagram representing the Boolean function. Second, we demonstrate how Boolean Decision Diagrams can be used to synthesize nanoscale crossbars that can compute a given Boolean formula using naturally occurring sneak paths. In particular, we synthesize large logical circuits such as 128-bit adders for the first-time using sneak-path based crossbar computing.

Download Paper (PDF; Only available from the DATE venue WiFi)

14:30 7.2.1

7.2.2 HYBRID SPIKING-BASED MULTI-LAYERED SELF-LEARNING NEUROMORPHIC SYSTEM BASED ON MEMRISTOR CROSSBAR ARRAYS

Speaker:

Yiran Chen, Professor, US

Authors:

Amr Hassan, Chaofei Yang, Chenchen Liu, Hai (Helen) Li and Yiran Chen, University of Pittsburgh, US

Abstract

Neuromorphic computing systems are under heavy investigation as a potential substitute for the traditional von Neumann systems in high-speed low-power applications. Recently, memristor crossbar arrays were utilized in realizing spiking-based neuromorphic system, where memristor conductance values correspond to synaptic weights. Most of these systems are composed of a single crossbar layer, in which system training is done off-chip, using computer based simulations, then the trained weights are pre-programmed to the memristor crossbar array. However, multi-layered, on-chip trained systems become crucial for handling massive amount of data and to overcome the resistance shift that occurs to memristors overtime. In this work, we propose a spiking-based multi-layered neuromorphic computing system capable of online training. The system performance is evaluated using three different datasets showing improved results versus previous work. In addition, studying the system accuracy versus memristor resistance shift shows promising results.

Download Paper (PDF; Only available from the DATE venue WiFi)

15:00 7.2.2

7.2.3 REVAMP : RERAM BASED VLIW ARCHITECTURE FOR IN-MEMORY COMPUTING

Speaker:

Anupam Chattopadhyay, School of Computer Science and Engineering, Nanyang Technological University, SG

Authors:

Debjyoti Bhattacharjee, Rajeswari Devadoss and Anupam Chattopadhyay, Nanyang Technological University, SG

Abstract

With diverse types of emerging devices offering simultaneous capability of storage and logic operations, researchers have proposed novel platforms that promise gains in energy-efficiency. Such platforms can be classified into two domains---application-specific and general-purpose. The application-specific in-memory computing platforms include machine learning accelerators, arithmetic units, and Content Addressable Memory (CAM)-based structures. On the other hand, the general-purpose computing platforms stem from the idea that several in-memory computing logic devices do support a universal set of Boolean logic operation and therefore, can be used for mapping arbitrary Boolean functions efficiently. In this direction, so far, researchers have concentrated on challenges in logic synthesis (e.g. depth optimization), and technology mapping (e.g. device count reduction). The important problem of efficient technology mapping of arbitrary logic network onto a crossbar array structure has been overlooked so far. In this paper, we propose, ReVAMP, a general-purpose computing platform based on Resistive RAM crossbar array, which exploits the parallelism in computing multiple logic operations in the same word. Further, we study the problem of instruction generation and scheduling for such a platform. We benchmark the performance of ReVAMP with respect to the state of the art architecture.

Download Paper (PDF; Only available from the DATE venue WiFi)

15:30 7.2.3
This session presents a variety of architectural solutions to improve performance/energy/predictability covering several hardware blocks: processor pipeline, caches, memory and on-chip I/O. The first paper proposes a hardware/software mechanism to classify accesses as private or shared. The second paper introduces a low-power asynchronous microprocessor design. The third paper proposes a coordinated approach to improve performance by partitioning multilevel caches. And the last paper proposes a hardware approach to increase the timing accuracy of I/O operations.

7.3 Optimizing performance, energy and predictability via hardware/software codesign

Date: Wednesday 29 March 2017
Time: 14:30 - 16:00
Location / Room: 2BC
Chair:
Sasan Avesta, George Mason University, US
Co-Chair:
Stefano Di Carlo, Politecnico di Torino, IT

This session presents a variety of architectural solutions to improve performance/energy/predictability covering several hardware blocks: processor pipeline, caches, memory and on-chip I/O. The first paper proposes a hardware/software mechanism to classify accesses as private or shared. The second paper introduces a low-power asynchronous microprocessor design. The third paper proposes a coordinated approach to improve performance by partitioning multilevel caches. And the last paper proposes a hardware approach to increase the timing accuracy of I/O operations.
14:30 7.3.1 ACCURATE PRIVATE/SHARED CLASSIFICATION OF MEMORY ACCESSES: A RUN-TIME ANALYSIS SYSTEM FOR THE LEON3 MULTI-CORE PROCESSOR
Speaker: Nam Ho, Department of Computer Science, University of Paderborn, DE
Authors: Nam Ho, Ishaq Ihsne Ashraf, Paul Kaufmann and Marco Platzner, Department of Computer Science, University of Paderborn, Germany, DE
Abstract
Related work has presented simulation-based experiments to classify data accesses in a shared memory multi-core into private and shared. This information can be used to selectively turn on/off cache coherency mechanisms for data blocks, which can save memory bus bandwidth, minimize energy consumption, and reduce application runtimes. In this paper we present an implementation of a private/shared classification mechanism on a LEON3 SPARC multi-core processor running the Linux 2.6 kernel. Our mechanism is paged-based and allows for classifying and counting data accesses at run-time. Compared to previous work, our system provides more accurate, i.e., realistic, data as it includes a real multi-core architecture and an OS. Additionally, our prototype allows us to quantitatively evaluate the overhead for the classification mechanism. We test our system with sequential and parallel benchmarks from the MiBench, ParaMiBench, PARSEC, and SPLASH2 application suites. The results show that parallel benchmarks are promising targets for selectively controlling coherency mechanisms and that the run-time overheads induced by our mechanism are rather small.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:00 7.3.2 DESIGN OF A LOW POWER, RELATIVE TIMING BASED ASYNCHRONOUS MSP430 MICROPROCESSOR
Speaker: Dipanjan Bhadra, University of Utah, US
Authors: Dipanjan Bhadra and Kenneth Stevens, University of Utah, US
Abstract
Power dissipation is one of the primary design constraints in modern digital circuits. From a magnitude of hand-held portable devices to big data analytics using high-performance computing, low energy dissipation is a key requirement for most modern devices. This paper showcases an elegant low power circuit design methodology based on Relative Timing driven asynchronous techniques. A low power MSP430 microprocessor design based on a novel asynchronous finite state machine implementation is presented. The design showcases the power benefits of the proposed asynchronous implementation over the synchronous counterpart and avoids major architectural modification which would directly influence the performance or power consumption. The implemented asynchronous MSP430 exhibits a minimum of 8X power benefit over the synchronous design for an almost identical pipeline structure and comparable throughput. The paper further elaborates on the novel asynchronous state machine architecture used for the design and presents an efficient method to design communicating asynchronous finite state machines in clock-less systems.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:30 7.3.3 A COORDINATED MULTI-AGENT REINFORCEMENT LEARNING APPROACH TO MULTI-LEVEL CACHE CO-PARTITIONING
Speaker: Preeti Ranjan Panda, Indian Institute of Technology Delhi, IN
Authors: Rahul Jain1, Preeti Ranjan Panda2 and Sreenivas Subramoney3
1Indian Institute of Technology, Delhi, IN; 2IIT Delhi, IN; 3Microarchitecture Research Lab, Intel, IN
Abstract
Abstract— The widening gap between the processor and memory performance has led to the inclusion of multiple levels of caches in the modern multi-core systems. Processors with simultaneous multithreading (SMT) support multiple hardware threads on the same physical core, which results in shared private caches. Any inefficiency in the cache hierarchy can negatively impact the system performance and motivates the need to perform a co-optimization of multiple cache levels by trading off individual application throughput for better system throughput and energy-delay-product (EDP). We propose a novel coordinated multi-agent reinforcement learning technique for performing Dynamic Cache Co-partitioning, called DCC. DCC has low implementation overhead and does not require any special hardware data profilers. We have validated our proposal with 15 8-core workloads created using Spec2006 benchmarks and found it to be an effective co-partitioning technique. DCC exhibited system throughput and EDP improvement of up to 14% (gm=9.35%) and 19.2% (gmean: 13.5%) respectively. We believe this is the first attempt at addressing the problem of multi-level cache co-partitioning.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:45 7.3.4 GPIOCP: TIMING-ACCURATE GENERAL PURPOSE I/O CONTROLLER FOR MANY-CORE REAL-TIME SYSTEMS
Speaker: Zhe Jiang, University of York, CN
Authors: Zhe Jiang and Neil Audsley, University of York, GB
Abstract
Modern SoC / NoC chips often provide General-Purpose I/O (GPIO) pins for connecting devices that are not directly integrated within the chip. Timing accurate control of devices connected to GPIO is often required within embedded real-time systems -- i.e. I/O operations should occur at exact times, with minimal error, neither being significantly early or late. This is difficult to achieve due to the latencies and contentions present in architecture, between CPU instigating the I/O operation, and the device connected to the GPIO -- software drivers, RTOSs, buses and bus contentions all introduce significant variable latencies before the command reaches the device. This is compounded in NoC devices utilising a mesh interconnect between CPUs and I/O devices. The contribution of this paper is a resource efficient programmable I/O controller, termed the GPIO Command Processor (GPIOCP), that permits applications to instigate complex sequences of I/O operations at an exact time, so achieving timing-accuracy at a single clock cycle level. Also, I/O operations can be programmed to occur at some point in the future, periodically, or reactively. The GPIOCP is a parallel I/O controller, supporting cycle level timing accuracy across several devices connected to GPIO simultaneously. The GPIOCP exploits the tradeoff between placing using a full sequential CPU to control each GPIO connected device, which achieves some timing accuracy at high resource cost; and poor timing-accuracy achieved where the application CPU controls the device remotely. The GPIOCP has efficient hardware cost compared to CPU approaches, with the additional benefits of total timing accuracy (CPU solutions do not provide this in general) and parallel control of many I/O devices.
Download Paper (PDF; Only available from the DATE venue WiFi)

16:00 7.3-10 A HARDWARE IMPLEMENTATION OF THE MCAS SYNCHRONIZATION PRIMITIVE
Speaker: Smruti Sarangi, IIT Delhi, IN
Authors: Smruti Patel, Rajneekar Kalayappan, Ishani Mahajan and Smruti R. Sarangi, IIT Delhi, IN
Abstract
Lock-based parallel programs are easy to write. However, they are inherently slow as the synchronization is blocking in nature. Non-blocking lock-free programs, which use atomic instructions such as compare-and-set (CAS), are significantly faster. However, lock-free programs are notoriously difficult to design and debug. This can be greatly eased if the primitives work on multiple memory locations instead of one. We propose MCAS, a hardware implementation of a multi-word compare-and-set primitive. Ease of programming aside, MCAS-based programs are 13.8X and 4X faster on an average than lock-based and traditional lock-free programs respectively. The area overhead, in a 32-core 400mm2 chip, is a mere 0.046%.
Download Paper (PDF; Only available from the DATE venue WiFi)
16:01 IP3-11, 325 BANDITS: DYNAMIC TIMING SPECULATION USING MULTI-ARMED BANDIT BASED OPTIMIZATION
Speaker: Jeff Zhang, New York University, US
Authors: Jeff Zhang and Siddharth Garg, New York University, US
Abstract: Timing speculation has recently been proposed as a method for increasing performance beyond that achievable by conventional worst-case design techniques. Starting with the observation of fast temporal variations in timing error probabilities, we propose a run-time technique to dynamically determine the optimal degree of timing speculation (i.e., how aggressively the processor is over-clocked) based on a novel formulation of the dynamic timing speculation problem as a multi-armed bandit problem. By conducting detailed post-synthesis timing simulations on a 5-stage MIPS processor running a variety of workloads, the proposed adaptive mechanism improves processor’s performance significantly compared with a competing approach (about 8.3% improvement); on the other hand, it shows only about 2.8% performance loss on average, compared with the oracle results.
Download Paper (PDF; Only available from the DATE venue WiFi)

16:02 IP3-12, 261 DESIGN AND IMPLEMENTATION OF A FAIR CREDIT-BASED BANDWIDTH SHARING SCHEME FOR BUSES
Speaker: Carles Hernandez, Barcelona Supercomputing Center (BSC), ES
Authors: Mladen Slijepcevic¹, Carles Hernandez², Jaume Abella³ and Francisco Cazorla⁴
¹Barcelona Supercomputing Center and Universitat Politecnica de Catalunya, ES; ²Barcelona Supercomputing Center, ES; ³Barcelona Supercomputing Center (BSC-CNS), ES; ⁴Barcelona Supercomputing Center and IIIA-CSIC, ES
Abstract: Fair arbitration in the access to hardware shared resources is fundamental to obtain low worst-case execution time (WCET) estimates in the context of critical real-time systems, for which performance guarantees are essential. Several hardware mechanisms exist for managing arbitration in those resources (buses, memory controllers, etc.). They typically attain fairness in terms of the number of slots each contender (e.g., core) gets granted access to the shared resource. However, those policies may lead to unfair bandwidth allocations for workloads with contenders issuing short requests and contenders issuing long requests. We propose a Credit-Based Arbitration (CBA) mechanism that achieves fairness in the cycles each core is granted access to the resource rather than in the number of granted slots. Furthermore, we implement CBA as part of a LEON3 4-core processor for the Space domain in an FPGA proving the feasibility and good performance characteristics of the design by comparing it against other arbitration schemes.
Download Paper (PDF; Only available from the DATE venue WiFi)

16:00 End of session
Coffee Break in Exhibition Area
On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

7.4 Advances in Logic Synthesis

Date: Wednesday 29 March 2017
Time: 14:30 - 16:00
Location / Room: 3A
Chair: Paolo Ienne, EPFL, CH
Co-Chair: Tsutomu Sasao, Meiji University, JP
This session focuses on new results in logic synthesis. The first two papers present specialized synthesis algorithms for index generating functions and encoder circuits. The last two papers discuss efficient encoding with SAT of short-circuit detection and combinational delay optimization.

14:30 7.4.1 AN ALGORITHM TO FIND OPTIMUM SUPPORT-REDUCING DECOMPOSITIONS FOR INDEX GENERATION FUNCTIONS.
Speaker: Tsutomu Sasao, Meiji University, JP
Authors: Tsutomu Sasao, Kyu Matsuura and Yukihito Iguchi, Meiji University, JP
Abstract: Index generation functions are useful for pattern matching, and routers in the internet, etc.. This paper presents an algorithm to find support-reducing decompositions for index generation functions. Let n be the number of the input variables, and let s be the number of bound variables. Then, the exhaustive search for finding an optimum support-reducing decomposition requires to check $\binom{n}{s}$ combinations. We found a special property of index generation functions that drastically reduces this search space. With this property, we developed a fast algorithm to find an exact optimum solution. For a given number of bound variables, it finds a decomposition with the fewest rails. Experimental results up to $n=60$ and $s=33$ are shown.
Download Paper (PDF; Only available from the DATE venue WiFi)
<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| 15:00 | 7.4.2 | TAKING ONE-TO-ONE MAPPINGS FOR GRANTED: ADVANCED LOGIC DESIGN OF ENCODER CIRCUITS | Robert Wille, Johannes Kepler University, Linz, AT
 | | | Alwin Zulehner 1 and Robert Wille 2
 | | | Johannes Kepler University, AT; 2Johannes Kepler University Linz, AT | |
| | | Abstract | |
| | | Encoders play an important role in many areas such as memory addressing, data demultiplexing, or for interconnect solutions. However, design solutions for the automatic synthesis of corresponding circuits suffer from various drawbacks, e.g. they are often not scalable, do not exploit the full degree of freedom, or are applicable to realize certain codes only. All these problems are caused by the fact that existing design solutions have to explicitly guarantee a one-to-one mapping. In this work, we propose an alternative design approach which relies on dedicated description means for both, the specification of an encoder as well as its circuit. Based on that, synthesis can be conducted without the need to explicitly take care of guaranteeing one-to-one mappings. Experiments show that this indeed overcomes the drawbacks of current design solutions and leads to an improvement in the resulting number of gates by up to 92%. | |
| | | Download Paper (PDF; Only available from the DATE venue WiFi) | |
| 15:30 | 7.4.3 | ANALYSIS OF SHORT-CIRCUIT CONDITIONS IN LOGIC CIRCUITS | João Alves, INESC-ID, PT
 | | | João Pedro 1 and José Monteiro 2
 | | | 1INESC-ID, PT; 2INESC-ID, IST, U Lisboa, PT | |
| | | Abstract | |
| | | This paper offers a novel approach for the analysis of input conditions that cause a short-circuit in a logic circuit, that is, that create a direct path from the power supply to ground. We model the logic circuit as a graph where edges represent transistors which are either open or closed, function of the input conditions. From this graph we derive a Quantified Boolean Formula (QBF) problem whose solution identifies the existence of a valid input combination that creates a path in the graph between the pair of nodes that represent the power source and ground, without ever enumerating all input combinations. We build the QBF problem incrementally, minimising the number of active nodes and hence of possible states. In the end, we obtain a relatively simple CNF expression, function only of the circuit inputs, that is handled by a generic SAT solver. We present results that demonstrate the practical applicability of our method on circuit instances that are intractable by alternative methods. | |
| | | Download Paper (PDF; Only available from the DATE venue WiFi) | |
| 15:45 | 7.4.4 | BUSY MAN’S SYNTHESIS: COMBINATIONAL DELAY OPTIMIZATION WITH SAT | Mathias Soeken, EPFL, CH
 | | | Mathias Soeken 1, Giovanni De Micheli 1 and Alan Mishchenko 2
 | | | 1EPFL, CH; 2UC Berkeley, US | |
| | | Abstract | |
| | | Boolean SAT solving can be used to find a minimum-size logic network for a given small Boolean function. This paper extends the SAT formulation to find a minimum-size network under delay constraints. Delay constraints are given in terms of input arrival times and the maximum depth. After integration into a depth-optimizing mapping algorithm, the proposed SAT formulation can be used to perform logic rewriting to reduce the logic depth of a network. It is shown that to be effective the logic rewriting algorithm requires (i) a fast SAT formulation and (ii) heuristics to quickly determine whether the given delay constraints are feasible for a given function. The proposed algorithm is more versatile than previous algorithms, which is confirmed by the experimental results. | |
| | | Download Paper (PDF; Only available from the DATE venue WiFi) | |
| 16:00 | IP3- | TECHNOLOGY MAPPING WITH ALL SPIN LOGIC | Azadeh Davoodi, University of Wisconsin - Madison, US
 | 13, | | Boyu Zhang 1 and Azadeh Davoodi 2
 | 799 | | 1University of Wisconsin-Madison, US; 2University of Wisconsin - Madison, US | |
| | | Abstract | |
| | | This work is the first to propose a technology mapping algorithm for All Spin Logic (ASL) device. The ASL device is the most actively-pursued one among spintronics devices which themselves fall under emerging post-CMOS nano-technologies. We identify the shortcomings of directly applying the classical technology mapping with ASL devices, and propose techniques to extend the classical procedure to handle these shortcomings. Our results show that our ASL-aware technology mapping algorithm can achieve on-average 9.15% and up to 27.27% improvement in delay (when optimizing delay) with slight improvement in area, compared to the solution generated by classical technology mapping. In a broader sense, our results show the need for developing circuit-level CAD tools that are aware of and optimized for emerging technologies in order to better assess their promise as we move to the post-CMOS era. | |
| | | Download Paper (PDF; Only available from the DATE venue WiFi) | |
| 16:01 | IP3- | A NEW METHOD TO IDENTIFY THRESHOLD LOGIC FUNCTIONS | Spyros Tragoudas, Southern Illinois University Carbondale, US
 | 14, | | Seyed Nima Mozaffari, Spyros Tragoudas and Themistoklis Haniotakis, Southern Illinois University, US | |
| | | Abstract | |
| | | An Integer Linear Programming based method to identify current mode threshold logic functions is presented. The approach minimizes the transistor count and benefits from a generalized definition of threshold logic functions. Process variations are taken into consideration. Experimental results show that many more functions can be implemented with predetermined hardware overhead, and the hardware requirement of a large percentage of existing threshold functions is reduced. | |
| | | Download Paper (PDF; Only available from the DATE venue WiFi) | |
7.5 Hot Topic Session: The Engineering Challenges for Quantum Computing

Date: Wednesday 29 March 2017
Time: 14:30 - 16:00
Location / Room: 3C

Organisers:
Koen Bertels, QuTech & Computer Engineering Lab, NL
Carmen G. Almudever, QuTech & Computer Engineering Lab, NL

Chair:
Edoardo Charbon, Delft University of Technology, NL

Co-Chair:
Said Hamdioui, Delft University of Technology, NL

Quantum computers may revolutionize the field of computation by solving some complex problems that are intractable even for the most powerful current supercomputers. This session will explain the basic concepts of quantum computing and describe what the required layers are for building a quantum system. The different speakers in the session will then address the engineering challenges when building a quantum computer ranging from the core qubit technology, the control electronics, to the microarchitecture for the execution of quantum circuits and efficient quantum error correction and what compiler and system tools are needed in that context.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30</td>
<td>7.5.1</td>
<td>WHAT IS QUANTUM COMPUTING ALL ABOUT?</td>
<td>Speaker: Carmen G. Almudever, Delft University of Technology, NL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Authors: Carmen G. Almudever and Koen Bertels, Delft University of Technology, NL</td>
</tr>
<tr>
<td>15:00</td>
<td>7.5.2</td>
<td>QUANTUM PROCESSOR</td>
<td>Author: Andreas Wallraff, ETH Zurich, CH</td>
</tr>
<tr>
<td>15:30</td>
<td>7.5.3</td>
<td>CONTROL ELECTRONICS FOR QUANTUM COMPUTER</td>
<td>Author: Hendrik Bluhm, RWTH Aachen, DE</td>
</tr>
<tr>
<td>16:00</td>
<td></td>
<td></td>
<td>End of session</td>
</tr>
</tbody>
</table>

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

7.6 Memory Reliability: Modeling and Mitigation

Date: Wednesday 29 March 2017
Time: 14:30 - 16:00
Location / Room: 5A

Chair:
Jose Pineda De Gyvez, NXP, NL

Co-Chair:
Vikas Chandra, ARM, US

This session discusses new trends and solutions to model and mitigate resiliency challenges for advanced memory technologies. The first paper discusses unequal protection for...
more efficient memory resiliency. The second paper analyzes the aging impact on different memory components. Finally, the third paper proposes mitigation schemes for memory peripheral circuitry.

Time	**Label**	**Presentation Title**	**Authors**
14:30 | 7.6.1 | **(Best Paper Award Candidate)** MVP ECC : MANUFACTURING PROCESS VARIATION AWARE UNEQUAL PROTECTION ECC FOR MEMORY RELIABILITY | Joon-Sung Yang, Sungkyunkwan University, KR
Authors: Seungyeob Lee and Joon-Sung Yang, Sungkyunkwan University, KR
Abstract: With a development of process technology, a memory density has been increased. However, a smaller feature size makes the memory susceptible to soft errors. For reliability enhancement, ECC with single bit error correction and double bit error detection is widely used. As multiple bit cell upset become dominant, there is a need for stronger ECC. ECC such as RS or BCH code requires significantly large overhead and longer latency. To overcome the problem, this paper introduces an unequal protection ECC assigning stronger level of protection to weak memory cells and normal level to normal cells. Information from manufacturing characterization test is utilized to identify weak memory cells with low design margins. Instead of equally treating all memory cells, the proposed ECC focuses more on the weak cells since they are more susceptible to soft errors. Compared to conventional ECCs, experimental results show that the proposed ECC considerably enhances memory reliability with the same code length.
Download Paper (PDF; Only available from the DATE venue WiFi)

| 15:00 | 7.6.2 | **ANALYZING THE EFFECTS OF PERIPHERAL CIRCUIT AGING OF EMBEDDED SRAM ARCHITECTURES** | Josef Kinseher, Intel Deutschland, DE
Authors: Josef Kinseher,1 Leonhard Heiß1 and Ilia Polian 2
1Intel Deutschland, DE; 2University of Passau, DE
Abstract: Modern System-on-Chips rely heavily on the performance of their embedded memories which are also most susceptible to the increasing reliability challenges of today’s nanoscale technology nodes. However, in contrast to memory core-cells, the effects of transistor aging inside the peripheral logic of SRAM architectures have received little attention. This study works out how BTI and HCI induced wear-out of the peripheral SRAM circuitry impacts various performance metrics of an industrially used memory library. We show that the degradation of the peripheral logic is the dominant driver for access speed loss while it tends to slightly lower memory read margin and lead to minor improvements of write margin. We furthermore show that in terms of access margin the degradation of SRAM control circuitry counteracts aging effects inside core-cells and sense amplifiers. Surprisingly, wear-out of peripheral circuitry could even improve access margin in case when the relative magnitude of BTI is much lower compared with NBTI. Based on the example of an embedded memory library, this study further underlines the importance to analyze aging mechanisms at system level rather than for its individual interacting sub-circuits.
Download Paper (PDF; Only available from the DATE venue WiFi)

| 15:30 | 7.6.3 | **MITIGATION OF SENSE AMPLIFIER DEGRADATION USING INPUT SWITCHING** | Daniel Kraak, Delft University of Technology, NL
Authors: Daniel Kraak,1 Innocent Agbo1, Mottaqiallah Taouil1, Said Hamdioui1, Pieter Weckx2, Stefan Cosemans3, Francky Catthoor2 and Wim Dehaene3
1Delft University of Technology, NL; 2imec, BE; 3KU Leuven, ESAT, BE
Abstract: To compensate for time-zero (due to process variation) and time-dependent (due to e.g. Bias Temperature Instability) variability, designers usually add design margins. Due to technology scaling, these variabilities become worse, leading to the need for bigger design margins. Typically, only worst-case scenarios are considered, which will not present the actual workload of the targeted application. Alternatively, mitigation schemes can be used to counteract the variability. This paper presents a run-time design-for-reliability scheme for memory Sense Amplifiers (SAs); SAs are an integral part of any memory system and are very critical for high performance. The proposed scheme mitigates the impact of time-dependent variability due to aging by using an on-line control circuit to create a balanced workload. The simulation results show that the proposed scheme can reduce the most critical figures-of-merit, namely the offset voltage shift and the sensing delay of the SA with up to ~40% and ~10%, respectively, depending on the stress conditions (temperature, voltage, workload).
Download Paper (PDF; Only available from the DATE venue WiFi)

| 16:00 | IP3-15, 16 | **A BRIDGING FAULT MODEL FOR LINE COVERAGE IN THE PRESENCE OF UNDETECTED TRANSITION FAULTS** | Irith Pomeranz, Purdue University, US
Speaker and Author: Irith Pomeranz, Purdue University, US
Abstract: A variety of fault models have been defined to capture the behaviors of commonly occurring defects and ensure a high quality of testing. When several fault models are used for test generation, it is advantageous if the existence of an undetectable fault in one model does not imply that a fault in the same component but from a different model is also undetectable. This allows a test set to cover the circuit more thoroughly when additional fault models are used. This paper studies the possibility of defining such fault models by considering transition faults as the first fault model, and bridging faults as the second fault model. The bridging faults are defined to cover lines for which transition faults are not detected. A test compaction procedure is developed to demonstrate the bridging fault coverage that can be achieved, and the effect on the number of tests.
Download Paper (PDF; Only available from the DATE venue WiFi)

Time	**Label**	**Presentation Title**	**Authors**
16:00 | End of session | |
---|---|---|---

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

Date: Wednesday 29 March 2017
Embedded architectures have to often provide application performance guarantees despite stringent resource constraints. The talks in this session provide solutions to managing the limited resources of such platforms and analysing the impact of resource allocation — both from the power and performance perspective.

Co-Chair:
Akash Kumar, Technische Universität Dresden, DE

Chair:
Orlando Moreira, Intel, NL

Time Table

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30</td>
<td>7.7.1</td>
<td>(Best Paper Award Candidate) SCALABLE PROBABILISTIC POWER BUDGETING FOR MANY-CORES</td>
<td>Anuj Pathania, Karlsruhe Institute of Technology, IN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Anuj Pathania(^1), Heba Khdr(^2), Muhammad Shafique(^3), Tulika Mitra(^4) and Joerg Henkel(^1)</td>
<td>1Karlsruhe Institute of Technology, DE; 2Karlsruhe Institute of Technology (KIT), DE; 3Vienna University of Technology (TU Wien), AT; 4National University of Singapore, SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: Many-core processors exhibit hundreds to thousands of cores, which can execute lots of multi-threaded tasks in parallel. Restrictive power dissipation capacity of a many-core prevents all its executing tasks from operating at their peak performance together. Furthermore, the ability of a task to exploit part of the power budget allocated to it depends upon its current execution phase. This mandates careful rationing of the power budget amongst the tasks for full exploitation of the many-core. Past research proposed power budgeting techniques that redistribute power budget amongst tasks based on up-to-date information about their current phases. This phase information needs to be constantly propagated throughout the system and processed, inhibiting scalability. In this work, we propose a novel probabilistic technique for power budgeting which requires no exchange of phase information yet provides guarantees on judicial use of the power budget. The proposed probabilistic technique reduces the power budgeting overheads by 97.13% in comparison to a non-probabilistic approach, while providing almost equal performance on a simulated thousand-core system.</td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
</tr>
<tr>
<td>15:00</td>
<td>7.7.2</td>
<td>EXPLOITING SPORADIC SERVERS TO PROVIDE BUDGET SCHEDULING FOR ARINC653 BASED REAL-TIME VIRTUALIZATION ENVIRONMENTS</td>
<td>Matthias Beckert, Institute of Computer and Network Engineering, TU Braunschweig, DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Matthias Beckert(^1), Kai Björn Gemlau(^2) and Rolf Ernst(^3)</td>
<td>Institut für Datentechnik und Kommunikationsnetze - TU Braunschweig, DE; 2TU Braunschweig, DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: Virtualization techniques for embedded real-time systems typically employ TDMA scheduling to achieve temporal isolation among different virtualized partitions. Due to the fixed TDMA schedule, worst case response times for IRQs and tasks are significantly increased. Recent publications introduced slack based IRQ shaping to mitigate this problem. While providing better response times for IRQs, those mechanisms neither improve task timings nor provide a work conserving scheduling. In order to provide such capabilities while still providing temporal isolation, we introduce a method based on the well known sporadic server model. In combination with a proposed budget scheduler the system is able to schedule a TDMA based configuration while providing better response times and the same amount of temporal isolation. We show correctness of the approach and evaluate it in a hypervisor implementation.</td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
</tr>
<tr>
<td>15:30</td>
<td>7.7.3</td>
<td>PROGRAMMING AND ANALYSING SCENARIO-AWARE DATAFLOW ON A MULTI-PROCESSOR PLATFORM</td>
<td>Reinier van Kampenhout, Eindhoven University of Technology, NL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Reinier van Kampenhout, Sander Stuijk and Kees Gossens, Eindhoven University of Technology, NL</td>
<td>Reinier van Kampenhout, Eindhoven University of Technology, NL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: The FSM-SADF model of computation is especially suitable for analysing real-time applications with input-dependent behaviour such as different modes, variable execution times and scalable parallelism. Although FSM-SADF specifies which scenario transitions are possible, it does not specify how and when they are decided at runtime. Multiple actors of a scenario, e.g. video streaming or header parsing, may have to fire before it is known which scenario the application is in. We solve this causality dilemma with a concept for executing a sequence of scenarios, and demonstrate an implementation on multiple processors with rolling static-order scheduling. We furthermore present a platform-aware analysis model that covers concept and implementation, and integrate the contributions in a toolflow. A proof-of-concept confirms the low overhead of the implementation and the exact timing analysis of our model.</td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
</tr>
</tbody>
</table>

Time: 14:30 - 16:00

Location / Room: 3B

Authors

1Matthias Beckert, 2Kai Björn Gemlau, 3Rolf Ernst

Presentation Title

1CHRT: A CRITICALITY- AND HETEROGENEITY-AWARE RUNTIME SYSTEM FOR TASK-PARALLEL APPLICATIONS

Speaker: Myeonggyun Han, UNIST, KR

Abstract: Heterogeneous multiprocessing (HMP) is an emerging technology for high-performance and energy-efficient computing. While task parallelism is widely used in various computing domains from the embedded to machine-learning computing domains, relatively little work has been done to investigate the efficient runtime support that effectively utilizes the criticality of the tasks of the target application and the heterogeneity of the underlying HMP system with full resource management. To bridge this gap, we propose a criticality- and heterogeneity-aware runtime system for task-parallel applications (CHRT). CHRT dynamically estimates the performance and power consumption of the task-parallel application and robustly manages the full HMP system resources (i.e., core types, counts, and voltage/frequency levels) to maximize the overall efficiency. Our experimental results show that CHRT achieves significantly higher energy efficiency than the baseline runtime system that employs the breadth-first scheduler and the state-of-the-art criticality-aware runtime system. Download Paper (PDF; Only available from the DATE venue WiFi)
MOBIXEN: PORTING XEN ON ANDROID DEVICES FOR MOBILE VIRTUALIZATION

Speaker: Jianguo Yao, Shanghai Jiao Tong University, CN

Authors:
- Yaozu Dong
- Jianguo Yao
- Haibing Guan
- Ananth. Krishna R
- Yunhong Jiang

Intel, US; Shanghai Jiao Tong University, CN

Abstract

The mobile virtualization technology provides a feasible way to improve the manageability and security for embedded systems. This paper presents an architecture named MobiXen to address these challenges. In the MobiXen, both Xen's physical memory space and virtual address space are shrunk as much as possible and thus Android owns more memory resource; optimizations are developed to reduce the virtualization overhead when Android is accessing system resources; new policies are implemented to achieve low suspend/resume latency. With these work adopted, MobiXen is customized as a high efficient mobile hypervisor. Detailed implementations shows that, most of the performance degradation brought by MobiXen is less than 3%, which is imperceptible by end users.

Download Paper (PDF; Only available from the DATE venue WiFi)

OPTIMISATION OPPORTUNITIES AND EVALUATION FOR GPGPU APPLICATIONS ON LOW-END MOBILE GPUs

Speaker: Leonidas Kosmidis, Barcelona Supercomputing Center and Universitat Politècnica de Catalunya, ES

Authors:
- Matina Maria Trompouki
- Leonidas Kosmidis

Universitat Politècnica de Catalunya, ES; Barcelona Supercomputing Center and Universitat Politècnica de Catalunya, ES

Abstract

Previous works in the literature have shown the feasibility of general purpose computations for non-visual applications on low-end mobile graphics processors using graphics APIs. These works focused only on the functional aspects of the software, ignoring the implementation details and therefore their performance implications due to their particular micro-architecture. Since various steps in such applications can be implemented in multiple ways, we identify optimisation opportunities, explore the different options and evaluate them. We show that the implementation details can significantly affect the obtained performance with discrepancies up to 3 orders of magnitude and we demonstrate the effectiveness of our proposal on two embedded platforms, obtaining more than 16x speedup over benchmarks designed following OpenGL ES 2 best practices.

Download Paper (PDF; Only available from the DATE venue WiFi)

7.8 Smart Energy and Self-Powered Devices

Date: Wednesday 29 March 2017

Time: 14:30 - 15:30

Location / Room: Exhibition Theatre

Organiser:

Patrick Mayor, EPFL, CH

The goal of this session is to present concrete examples of novel designs for next-generation energy-efficient computing architectures and real-time monitoring and management of smart grids, as well as robust low-power networks of acoustic detectors for natural hazard warning systems.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30</td>
<td>7.8.1</td>
<td>YINS</td>
<td>Eugene Van Rooyen, Eaton, CH</td>
</tr>
<tr>
<td>14:50</td>
<td>7.8.2</td>
<td>SMARTGRID</td>
<td>Marco Pignati and Sergio Barreto, EPFL, CH</td>
</tr>
<tr>
<td>15:10</td>
<td>7.8.3</td>
<td>X-SENSE II</td>
<td>Jan Bouteil, ETHZ, CH</td>
</tr>
<tr>
<td>15:30</td>
<td></td>
<td>End of session</td>
<td></td>
</tr>
</tbody>
</table>
Coffee Breaks

- **Tuesday, March 28, 2017**
 - Coffee Break 10:30 - 11:30
 - Coffee Break 16:00 - 17:00
- **Wednesday, March 29, 2017**
 - Coffee Break 10:00 - 11:00
 - Coffee Break 16:00 - 17:00
- **Thursday, March 30, 2017**
 - Coffee Break 10:00 - 11:00
 - Coffee Break 15:30 - 16:00

IP3 Interactive Presentations

Date: Wednesday 29 March 2017
Time: 16:00 - 16:30
Location / Room: IP sessions (in front of rooms 4A and 5A)

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the afternoon. Additionally, each IP paper is briefly introduced in a one-minute presentation in a corresponding regular session, prior to the actual Interactive Presentation. At the end of each afternoon Interactive Presentations session the award ‘Best IP of the Day’ is given.

<table>
<thead>
<tr>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| IP3-1 | LEVERAGING AGING EFFECT TO IMPROVE SRAM-BASED TRUE RANDOM NUMBER GENERATORS | Mohammad Saber Golanbari, Karlsruhe Institute of Technology (KIT), DE
Saman Kiamehr, Mohammad Saber Golanbari, and Mehdi Tahoori
Karlsruhe Institute of Technology (KIT), DE; Karlsruhe Institute of Technology, DE |

Abstract

The start-up value of SRAM cells can be used as the random number vector or a seed for the generation of a pseudo random number. However, the randomness of the generated number is pretty low since many of the cells are largely skewed due to process variation and their start-up value leans toward zero or one. In this paper, we propose an approach to increase the randomness of SRAM-based True Random Number Generators (TRNGs) by leveraging transistor aging impact. The idea is to iteratively power-up the SRAM cells and put them under accelerated aging to make the cells less skewed and hence obtaining a more random vector. The simulation results show that the min-entropy of SRAM-based TRNG increases by 10X using this approach.

Download Paper (PDF; Only available from the DATE venue WiFi)

| IP3-2 | DESIGN AUTOMATION FOR OBFUSCATED CIRCUITS WITH MULTIPLE VIABLE FUNCTIONS | Shahrzad Keshavarz, University of Massachusetts Amherst, US
Shahrzad Keshavarz, Christof Paar, and Daniel Holcomb
University of Massachusetts Amherst, US; Horst Görtz Institut für IT-Security, Ruhr-Universität Bochum, DE |

Abstract

Gate camouflaging is a technique for obfuscating the function of a circuit against reverse engineering attacks. However, if an adversary has pre-existing knowledge about the set of functions that are viable for an application, random camouflaging of gates will not obfuscate the function well. In this case, the adversary can target their search, and only needs to decide whether each of the viable functions could be implemented by the circuit. In this work, we propose a method for using camouflaged cells to obfuscate a design that has a known set of viable functions. The circuit produced by this method ensures that an adversary will not be able to rule out any viable functions unless she is able to uncover the gate functions of the camouflaged cells. Our method comprises iterated synthesis within an overall optimization loop to combine the viable functions, followed by technology mapping to deploy camouflaged cells while maintaining the plausibility of all viable functions.

We evaluate our technique on cryptographic S-box functions and show that, relative to a baseline approach, it achieves up to 38% area reduction in PRESENT-style S-Boxes and 48% in DES S-Boxes.

Download Paper (PDF; Only available from the DATE venue WiFi)

| IP3-3 | DOUBLE MAC: DOUBLING THE PERFORMANCE OF CONVOLUTIONAL NEURAL NETWORKS ON MODERN FPGAS | Jongeun Lee, UNIST, KR
Dong Nguyen, Daewoo Kim, and Jongeun Lee
UNIST, KR; Ulsan National Institute of Science and Technology (UNIST), KR |

Abstract

This paper presents a novel method to double the computation rate of convolutional neural network (CNN) accelerators by packing two multiply-and-accumulate (MAC) operations into one DSP block of off-the-shelf FPGAs (called Double MAC). While a general SIMD MAC using a single DSP block seems impossible, our solution is tailored for the kind of MAC operations required for a convolution layer. Our preliminary evaluation shows that not only can our Double MAC approach increase the computation throughput of a CNN layer by twice with essentially the same resource utilization, the network level performance can also be improved by 14–84% over a highly optimized state-of-the-art accelerator solution depending on the CNN hyper-parameters.

Download Paper (PDF; Only available from the DATE venue WiFi)
IP3-4 BITMAN: A TOOL AND API FOR FPGA BITSTREAM MANIPULATIONS
Speaker:
Dirk Koch, University of Manchester, GB
Authors:
Khoa Pham, Edson Horta and Dirk Koch, University of Manchester, GB
Abstract
To fully support the partial reconfiguration capabilities of FPGAs, this paper introduces the tool and API BitMan for generating and manipulating configuration bitstreams. BitMan supports recent Xilinx FPGAs that can be used by the ISE and Vivado tool suites of the FPGA vendor Xilinx, including latest Virtex-6, 7 Series, UltraScale and UltraScale+ series FPGAs. The functionality includes high-level commands such as cutting out regions of a bitstream and placing or relocating modules on an FPGA as well as low-level commands for modifying primitives and for routing clock networks or rerouting signal connections at run-time. All this is possible without the vendor CAD tools for allowing BitMan to be used even with embedded CPUs. The paper describes the capabilities, API and performance evaluation of BitMan.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP3-5 A GENERIC TOPOLOGY SELECTION METHOD FOR ANALOG CIRCUITS WITH EMBEDDED CIRCUIT SIZING DEMONSTRATED ON THE OTA EXAMPLE
Speaker:
Andreas Gerlach, Robert Bosch Centre for Power Electronics, DE
Authors:
Andreas Gerlach1, Thoralf Rosahl2, Frank-Thomas Eitrich2 and Jürgen Scheible2
1Robert Bosch Centre for Power Electronics, DE; 2Robert Bosch GmbH, DE
Abstract
We present a methodology for automatic selection and sizing of analog circuits demonstrated on the OTA circuit class. The methodology consists of two steps: a generic topology selection method supported by a "part-sizing" process and subsequent final sizing. The circuit topologies provided by a reuse library are classified in a topology tree. The appropriate topology is selected by traversing the topology tree starting at the root node. The decision at each node is gained from the result of the part-sizing, which is in fact a node-specific set of simulations. The final sizing is a simulation-based optimization. We significantly reduce the overall simulation effort compared to a classical simulation-based optimization by combining the topology selection with the part-sizing process in the selection loop. The result is an interactive user friendly system, which eases the analog designer's work significantly when compared to typical industrial practice in analog circuit design. The topology selection method with sizing is implemented as a tool into a typical analog design environment.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP3-6 LATENCY ANALYSIS OF HOMOGENEOUS SYNCHRONOUS DATAFLOW GRAPHS USING TIMED AUTOMATA
Speaker:
Guus Kuiper, University of Twente, NL
Authors:
Guus Kuiper1 and Marco Bekooij2
1University of Twente, NL; 2University of Twente + NXP semiconductors, NL
Abstract
There are several analysis models and corresponding temporal analysis techniques for checking whether applications executed on multiprocessor systems meet their real-time constraints. However, currently there does not exist an exact end-to-end latency analysis technique for Homogeneous Synchronous Dataflow (HSDF) with Auto-concurrency (HSDFa) models that takes the correlation between the firing durations of different firings into account. In this paper we present a transformation of strongly connected (HSDFa) models into timed automata models. This enables an exact end-to-end latency analysis because the correlation between the firing durations of different firings is taken into account. In a case study we compare the latency obtained using timed automata and a Linear Program (LP) based analysis technique that relies on a deterministic abstraction and compare their run-times as well. Exact end-to-end latency analysis results are obtained using timed automata, whereas this is not possible using deterministic timed-dataflow models.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP3-7 COVERT: COUNTER OVERFLOW REDUCTION FOR EFFICIENT ENCRYPTION OF NON-VOLATILE MEMORIES
Speaker:
Kartik Mohanram, ECE Dept, University of Pittsburgh, US
Authors:
Shivam Swami and Kartik Mohanram, University of Pittsburgh, US
Abstract
Security vulnerabilities arising from data persistence in emerging non-volatile memories (NVMs) necessitate memory encryption to ensure data security. Whereas counter mode encryption (CME) is a stop-gap practical approach to address this concern, it suffers from frequent memory re-encryption (system freeze) for small-sized counters and poor system performance for large-sized counters. CME thus imposes heavy overheads on memory, system performance, and system availability in practice. We propose Counter Overflow Reduction (COVERT), a CME-based memory encryption solution that performs on-demand memory allocation to reduce the memory encryption frequency of fast growing counters, while also retaining the area/performance benefits of small-sized counters. Our full-system simulations of a phase change memory (PCM) architecture across SPEC CPU2006 benchmarks show that for equivalent overhead and no impact to performance, COVERT simultaneously reduces the full memory re-encryption frequency from 6 minutes to 25 hours and doubles memory lifetime in comparison to state-of-the-art CME techniques.
Download Paper (PDF; Only available from the DATE venue WiFi)

IP3-8 A WEAR-LEVELING-AWARE COUNTER MODE FOR DATA ENCRYPTION IN NON-VOLATILE MEMORIES
Speaker:
Fangting Huang, Huazhong University of Science and Technology, CN
Authors:
Fangting Huang1, Dan Feng2, Yu Hua2 and Wen Zhou2
1Huazhong University of Science and Technology, CN; 2Wuhan National Lab for Optoelectronics, School of Computer Science and Technology, Huazhong University of Science and Technology, China, CN
Abstract
Counter-mode encryption has been widely used to resist NVMs from malicious attacks, due to its proved security and high performance. However, this scheme suffers from the counter size versus re-encryption problem, where per-line counters must be relatively large to avoid counter overflow, or re-encryption of the entire memory is required to ensure security. In order to address this problem, we propose a novel wear-leveling-aware counter mode for data encryption, called Resetting Counter via Remapping (RCR). The basic idea behind RCR is to leverage wear-leveling remappings to reset the line counter. With carefully designed procedure, RCR avoids counter overflow with much smaller counter size. The salient features of RCR include low storage overhead of counters, high counter cache hit ratio, and no extra re-encryption overhead. Compared with state-of-the-art works, RCR obtains significant performance improvements, e.g., up to a 57% reduction in the IPC degradation, under the evaluation of 8 memory-intensive benchmarks from SPEC 2006.
Download Paper (PDF; Only available from the DATE venue WiFi)
IP3-9

TUNNEL FET BASED REFRESH-FREE-DRAM

Speaker: Navneet Gupta, ISEP-Paris, FR

Authors:
- Navneet Gupta1, Adam Makosiez1, Andre Vladimirescu1, Amara Amara2 and Costin Anghel3
- 1Institut supérieur d’électronique de Paris, France; LETI, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA-Leti) France; 2LETI, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA-Leti), FR; 3Institut Supérieur d’Electronique de Paris (ISEP), FR

Abstract

A refresh free and scalable ultimate DRAM (uDRAM) bitcell and architecture is proposed for embedded application. uDRAM 1T1C bitcell is designed using access Tunnel FETs. Proposed design is able to store the data stastically during retention eliminating the need for refresh. This is achieved using negative differential resistance property of TFETs and storage capacitor leakage. uDRAM allows scaling of storage capacitor by 87% and 80% in comparison to DDR and eDRAMS, respectively. Implemented design have sub-array read/write access times of < 4ns. Bitcell area of 0.0275μm² is achieved in 28nm FDSOI-CMOS and is scalable further with technology shrink. Estimated throughput gain is 3.8% to 18% in comparison to CMOS DRAMs by refresh removal.

Download Paper (PDF; Only available from the DATE venue WiFi)

IP3-10

A HARDWARE IMPLEMENTATION OF THE MCAS SYNCHRONIZATION PRIMITIVE

Speaker: Smriti Sarangi, IIT Delhi, IN

Authors:
- Srishty Patel, Rajshekar Kalayappan, Ishani Mahajan and Smriti R. Sarangi, IIT Delhi, IN

Abstract

Lock-based parallel programs are easy to write. However, they are inherently slow as the synchronization is blocking in nature. Non-blocking lock-free programs, which use atomic instructions such as compare-and-set (CAS), are significantly faster. However, lock-free programs are notoriously difficult to design and debug. This can be greatly eased if the primitives work on multiple memory locations instead of one. We propose MCAS, a hardware implementation of a multi-word compare-and-set primitive. Ease of programming aside, MCAS-based programs are 13.8X and 4X faster on an average than lock-based and traditional lock-free programs respectively. The area overhead, in a 32-core 400mm² chip, is a mere 0.0406%.

Download Paper (PDF; Only available from the DATE venue WiFi)

IP3-11

BANDITS: DYNAMIC TIMING SPECULATION USING MULTI-ARMED BANDIT BASED OPTIMIZATION

Speaker: Jeff Zhang, New York University, US

Authors:
- Jeff Zhang and Siddharth Garg, New York University, US

Abstract

Timing speculation has recently been proposed as a method for increasing performance beyond that achievable by conventional worst-case design techniques. Starting with the observation of fast temporal variations in timing error probabilities, we propose a run-time technique to dynamically determine the optimal degree of timing speculation (i.e., how aggressively the processor is over-clocked) based on a novel formulation of the dynamic timing speculation problem as a multi-armed bandit problem. By conducting detailed post-synthesis timing simulations on a 5-stage MIPS processor running a variety of workloads, the proposed adaptive mechanism improves processor’s performance significantly comparing with a competing approach (about 8.3% improvement); on the other hand, it shows only about 2.8% performance loss on average, compared with the oracle results.

Download Paper (PDF; Only available from the DATE venue WiFi)

IP3-12

DESIGN AND IMPLEMENTATION OF A FAIR CREDIT-BASED BANDWIDTH SHARING SCHEME FOR BUSES

Speaker: Carles Hernandez, Barcelona Supercomputing Center (BSC), ES

Authors:
- Mladen Slijepcevic1, Carles Hernandez2, Jaume Abella3 and Francisco Cazorla4
- 1Barcelona Supercomputing Center and Universitat Politècnica de Catalunya, ES; 2Barcelona Supercomputing Center, ES; 3Barcelona Supercomputing Center (BSC-CNS), ES; 4Barcelona Supercomputing Center and IIIA-CSIC, ES

Abstract

Fair arbitration in the access to hardware shared resources is fundamental to obtain low worst-case execution time (WCET) estimates in the context of critical real-time systems, for which performance guarantees are essential. Several hardware mechanisms exist for managing arbitration in those resources (buses, memory controllers, etc.). They typically attain fairness in terms of the number of slots each contender (e.g., core) gets granted access to the shared resource. However, those policies may lead to unfair bandwidth allocations for workloads with contenders issuing short requests and contenders issuing long requests. We propose a Credit-Based Arbitration (CBA) mechanism that achieves fairness in the cycles each core is granted access to the resource rather than in the number of granted slots. Furthermore, we implement CBA as part of a LEON3 4-core processor for the Space domain in an FPGA proving the feasibility and good performance characteristics of the design by comparing it against other arbitration schemes.

Download Paper (PDF; Only available from the DATE venue WiFi)

IP3-13

TECHNOLOGY MAPPING WITH ALL SPIN LOGIC

Speaker: Azadeh Davoodi, University of Wisconsin - Madison, US

Authors:
- Boyu Zhang1 and Azadeh Davoodi2
- 1University of Wisconsin-Madison, US; 2University of Wisconsin - Madison, US

Abstract

This work is the first to propose a technology mapping algorithm for All Spin Logic (ASL) device. The ASL device is the most actively-pursued one among spintronics devices which themselves fall under emerging post-CMOS nano-technologies. We identify the shortcomings of directly applying the classical technology mapping with ASL devices, and propose techniques to extend the classical procedure to handle these shortcomings. Our results show that our ASL-aware technology mapping algorithm can achieve on-average 9.15% and up to 27.27% improvement in delay (when optimizing delay) with slight improvement in area, compared to the solution generated by classical technology mapping. In a broader sense, our results show the need for developing circuit-level CAD tools that are aware of and optimized for emerging technologies in order to better assess their promise as we move to the post-CMOS era.

Download Paper (PDF; Only available from the DATE venue WiFi)

IP3-14

A NEW METHOD TO IDENTIFY THRESHOLD LOGIC FUNCTIONS

Speaker: Spyros Tragoudas, Southern Illinois University Carbondale, US

Authors:
- Seyed Nima Mozaffar, Spyros Tragoudas and Themistoklis Haniotakis, Southern Illinois University, US

Abstract

An Integer Linear Programming based method to identify current mode threshold logic functions is presented. The approach minimizes the transistor count and benefits from a generalized definition of threshold logic functions. Process variations are taken into consideration. Experimental results show that many more functions can be implemented with predetermined hardware overhead, and the hardware requirement of a large percentage of existing threshold functions is reduced.

Download Paper (PDF; Only available from the DATE venue WiFi)
A BRIDGING FAULT MODEL FOR LINE COVERAGE IN THE PRESENCE OF UNDETECTED TRANSITION FAULTS

Speaker and Author:
Irith Pomeranz, Purdue University, US

Abstract
A variety of fault models have been defined to capture the behaviors of commonly occurring defects and ensure a high quality of testing. When several fault models are used for test generation, it is advantageous if the existence of an undetected fault in one model does not imply that a fault in the same component but from a different model is also undetectable. This allows a test set to cover the circuit more thoroughly when additional fault models are used. This paper studies the possibility of defining such fault models by considering transition faults as the first fault model, and bridging faults as the second fault model. The bridging faults are defined to cover lines for which transition faults are not detected. A test compaction procedure is developed to demonstrate the bridging fault coverage that can be achieved, and the effect on the number of tests.

Download Paper (PDF; Only available from the DATE venue WiFi)

CHRT: A CRITICALLY- AND HETEROGENEITY-AWARE RUNTIME SYSTEM FOR TASK-PARALLEL APPLICATIONS

Speaker:
Myeonggun Han, UNIST, KR

Authors:
Myeonggun Han, Jinsu Park and Woongki Baek, UNIST, KR

Abstract
Heterogeneous multiprocessing (HMP) is an emerging technology for high-performance and energy-efficient computing. While task parallelism is widely used in various computing domains from the embedded to machine-learning computing domains, relatively little work has been done to investigate the efficient runtime support that effectively utilizes the criticality of the tasks of the target application and the heterogeneity of the underlying HMP system with full resource management. To bridge this gap, we propose a critically- and heterogeneity-aware runtime system for task-parallel applications (CHRT). CHRT dynamically estimates the performance and power consumption of the target task-parallel application and robustly manages the full HMP system resources (i.e., core types, counts, and voltage/frequency levels) to maximize the overall efficiency. Our experimental results show that CHRT achieves significantly higher energy efficiency than the baseline runtime system that employs the breadth-first scheduler and the state-of-the-art criticality-aware runtime system.

Download Paper (PDF; Only available from the DATE venue WiFi)

MOBIXEN: PORTING XEN ON ANDROID DEVICES FOR MOBILE VIRTUALIZATION

Speaker:
Jianqiao Yao, Shanghai Jiao Tong University, CN

Authors:
Yaozu Dong1, Jianguo Yao2, Haibing Guan3, Ananth. Krishna R1 and Yunhong Jiang1

1Intel, US; 2Shanghai Jiao Tong University, CN

Abstract
The mobile virtualization technology provides a feasible way to improve the manageability and security for embedded systems. This paper presents an architecture named Mobixen to address these challenges. In the Mobixen, both Xen’s physical memory space and virtual address space are shrunk as much as possible and thus Android owns more memory resource; optimizations are developed to reduce the virtualization overhead when Android is accessing system resources; new policies are implemented to achieve low suspend/resume latency. With these work adopted, Mobixen is customized as a high efficient mobile hypervisor. Detailed implementations shows that, most of the performance degradation brought by Mobixen is less than 2%, which is imperceptible by end users.

Download Paper (PDF; Only available from the DATE venue WiFi)

OPTIMISATION OPPORTUNITIES AND EVALUATION FOR GPGPU APPLICATIONS ON LOW-END MOBILE GPUs

Speaker:
Leonidas Kosmidis, Barcelona Supercomputing Center and Universitat Politècnica de Catalunya, ES

Authors:
Matina Maria Trompouki1 and Leonidas Kosmidis1

1Universitat Politècnica de Catalunya, ES; 2Barcelona Supercomputing Center and Universitat Politècnica de Catalunya, ES

Abstract
Previous works in the literature have shown the feasibility of general purpose computations for non-visual applications on low-end mobile graphics processors using graphics APIs. These works focused only on the functional aspects of the software, ignoring the implementation details and therefore their performance implications due to their particular micro-architecture. Since various steps in such applications can be implemented in multiple ways, we identify optimisation opportunities, explore the different options and evaluate them. We show that the implementation details can significantly affect the obtained performance with discrepancies up to 3 orders of magnitude and we demonstrate the effectiveness of our proposal on two embedded platforms, obtaining more than 16x speedup over benchmarks designed following OpenGL ES 2 best practices.

Download Paper (PDF; Only available from the DATE venue WiFi)

CHRT: A CRITICALITY- AND HETEROGENEITY-AWARE RUNTIME SYSTEM FOR TASK-PARALLEL APPLICATIONS

Speaker:
Myeonggun Han, UNIST, KR

Authors:
Myeonggun Han, Jinsu Park and Woongki Baek, UNIST, KR

Abstract
Heterogeneous multiprocessing (HMP) is an emerging technology for high-performance and energy-efficient computing. While task parallelism is widely used in various computing domains from the embedded to machine-learning computing domains, relatively little work has been done to investigate the efficient runtime support that effectively utilizes the criticality of the tasks of the target application and the heterogeneity of the underlying HMP system with full resource management. To bridge this gap, we propose a critically- and heterogeneity-aware runtime system for task-parallel applications (CHRT). CHRT dynamically estimates the performance and power consumption of the target task-parallel application and robustly manages the full HMP system resources (i.e., core types, counts, and voltage/frequency levels) to maximize the overall efficiency. Our experimental results show that CHRT achieves significantly higher energy efficiency than the baseline runtime system that employs the breadth-first scheduler and the state-of-the-art criticality-aware runtime system.

Download Paper (PDF; Only available from the DATE venue WiFi)

MOBIXEN: PORTING XEN ON ANDROID DEVICES FOR MOBILE VIRTUALIZATION

Speaker:
Jianqiao Yao, Shanghai Jiao Tong University, CN

Authors:
Yaozu Dong1, Jianguo Yao2, Haibing Guan3, Ananth. Krishna R1 and Yunhong Jiang1

1Intel, US; 2Shanghai Jiao Tong University, CN

Abstract
The mobile virtualization technology provides a feasible way to improve the manageability and security for embedded systems. This paper presents an architecture named Mobixen to address these challenges. In the Mobixen, both Xen’s physical memory space and virtual address space are shrunk as much as possible and thus Android owns more memory resource; optimizations are developed to reduce the virtualization overhead when Android is accessing system resources; new policies are implemented to achieve low suspend/resume latency. With these work adopted, Mobixen is customized as a high efficient mobile hypervisor. Detailed implementations shows that, most of the performance degradation brought by Mobixen is less than 2%, which is imperceptible by end users.

Download Paper (PDF; Only available from the DATE venue WiFi)

OPTIMISATION OPPORTUNITIES AND EVALUATION FOR GPGPU APPLICATIONS ON LOW-END MOBILE GPUs

Speaker:
Leonidas Kosmidis, Barcelona Supercomputing Center and Universitat Politècnica de Catalunya, ES

Authors:
Matina Maria Trompouki1 and Leonidas Kosmidis1

1Universitat Politècnica de Catalunya, ES; 2Barcelona Supercomputing Center and Universitat Politècnica de Catalunya, ES

Abstract
Previous works in the literature have shown the feasibility of general purpose computations for non-visual applications on low-end mobile graphics processors using graphics APIs. These works focused only on the functional aspects of the software, ignoring the implementation details and therefore their performance implications due to their particular micro-architecture. Since various steps in such applications can be implemented in multiple ways, we identify optimisation opportunities, explore the different options and evaluate them. We show that the implementation details can significantly affect the obtained performance with discrepancies up to 3 orders of magnitude and we demonstrate the effectiveness of our proposal on two embedded platforms, obtaining more than 16x speedup over benchmarks designed following OpenGL ES 2 best practices.

Download Paper (PDF; Only available from the DATE venue WiFi)
COSSIM: A NOVEL, COMPREHENSIBLE, ULTRA-FAST, SECURITY-AWARE CPS SIMULATOR

Presenter:
Nikolaos Tampouratzis, Technical University of Crete, GR

Authors:
Antonios Nikolakis and Andreas Brokaklis, Synelixis Solutions Ltd, GR

Abstract
One of the main problems Cyber Physical Systems (CPS) and Highly Parallel Systems (HPS) designers face is the lack of simulation tools and models for system design and analysis. This is mainly because the majority of the existing simulation tools can handle efficiently only parts of a system (e.g. only the processing or only the network) while none of them supports the notion of security. Moreover, most of the existing simulators need extreme amounts of processing resources while faster approaches cannot provide the necessary precision and accuracy. COSSIM is an open-source framework that seamlessly simulates, in an integrated way, the networking and the processing parts of the CPS and Highly Parallel Heterogeneous Systems. In addition, COSSIM supports accurate power estimations while it is the first such tool supporting security as a feature of the design process. The complete COSSIM framework together with its sophisticated GUI will be presented.

NETFI-2: AN AUTOMATIC METHOD FOR FAULT INJECTION ON HDL-BASED DESIGNS

Presenter:
Alexandre Coelho, Université Grenoble Alpe, FR

Authors:
Miguel Solinas, Juan Fraire, Nacer-Eddine Zergainoh, Pablo Ferreyra and Raoul Velazco, TIMA, FR

Abstract
Fault injection tools, which include fault simulation and emulation, are a well-known technique to evaluate the susceptibility of integrated circuits to the effects of radiation. This work presents a methodology to emulate Single Event Upsets (SEUs) and Single Event Transients (SETs) in a Field Programmable Gate Array (FPGA). The method proposes combines the flexibility of FPGA with the controllability provided by the MicroBlaze, to emulate HDL circuit and control the fault injection campaign. This approach has been integrated into a fault-injection platform, named NETFI (NETlist Fault Injection), developed by our research group, and received the name of NETFI-2. To validate this methodology fault injection campaign have been performed in LeNo3 and Stochastic Bayesian Machine. Results on an Artix-7 FPGA show that NETFI-2 provides accurate measurements while improving the execution time of the experiment by more than 300% compared with analogous simulation-based campaigns.

ITMD: RUN-TIME MANAGEMENT OF CONCURRENT MULTITHREADED APPLICATIONS ON HETEROGENEOUS MULTI-CORES

Presenter:
Karunakar Reddy Basireddy, University of Southampton, GB

Authors:
Amit Singh, Bashir M. Al-Hashimi and Geoff V. Merrett, University of Southampton, GB

Abstract
Heterogeneous multi-cores often need to deal with multiple applications having different performance requirements concurrently, which generate varying and mixed workloads. Runtime management is required for adapting to such performance requirements and workload variabilities, and to achieve energy efficiency. It is challenging to efficiently exploit different types of cores simultaneously and DVFS potential of cores. We present a run-time management approach that first selects thread-to-core mapping depending on the performance requirements and resource availability. Then, it applies online adaptation by adjusting the voltage-frequency (V-F) levels to achieve energy optimization. We demonstrate the proposed run-time management approach on an Odroid-XU3, with various combinations of multi-threaded applications from PARSEC and SPLASH benchmarks. Results show an average improvement in energy efficiency up to 33% compared to existing approaches.

GNoCS: AN ULTRA-FAST, HIGHLY EXTENSIBLE, CYCLE-ACCURATE GPU-BASED PARALLEL NETWORK-ON-CHIP SIMULATOR

Presenter:
Amir CHARIF, TIMA, FR

Authors:
Nacer-Eddine Zergainoh and Michael Nicolaidis, TIMA, FR

Abstract
With the continuous decrease in feature sizes and the recent emergence of 3D stacking, chips comprising thousands of nodes are becoming increasingly relevant, and state-of-the-art NoC simulators are unable to simulate such a high number of nodes in reasonable times. In this demo, we showcase GNoCS, the first detailed, modular and scalable parallel NoC simulator running fully on GPU (Graphics Processing Unit). Based on a unique design specifically tailored for GPU parallelism, GNoCS is able to achieve unprecedented speedups with no loss of accuracy. To enable quick and easy validation of novel ideas, the programming model was designed with high extensibility in mind. Currently, GNoCS accurately models a VC-based microarchitecture. It supports 2D and 3D mesh topologies with full or partial vertical connections. A variety of routing algorithms and synthetic traffic patterns, as well as dependency-driven trace-based simulation (Netrace), are implemented and will be demonstrated.

SELINK: SECURING HTTP AND HTTPS-BASED COMMUNICATION VIA SECUBE™

Presenter:
Airofarrulla Giuseppe, CINI & Politecnico di Torino, IT

Authors:
Paolo Prinetto1 and Antonio Varrile2
1Politecnico di Torino, IT; 2Blu5 Labs Ltd., IT

Abstract
The SEcube™ Open Source platform is a combination of three main cores in a single-chip design. Low-power ARM Cortex-M4 processor, a flexible and fast Field-Programmable-Gate-Array (FPGA), and an EAL5+ certified Security Controller (SmartCard) are embedded in an extremely compact package. This makes it a unique Open Source security environment where each function can be optimized, executed, and verified on its proper hardware device. In this demo, we present a client-server HTTP and HTTPS-based application, for which the traffic is encrypted resorting to the hardware built-in capabilities, and the software libraries, of the SEcube™. By doing so, we show how communication can be secured from an attacker capable of intercepting, and tampering, the regular communication.

HEPSYCODE: A SYSTEM-LEVEL METHODOLOGY FOR HW/SW CO-DESIGN OF HETEROGENEOUS PARALLEL DEPENDENT SYSTEMS

Presenter:
Luigi Pomante, University of L’Aquila, IT

Authors:
Giacomo Valente1, Vittoriano Muttillo1, Daniele Di Pompeo1, Emilio Incerto2 and Daniele Ciambone1
1University of L’Aquila, IT; 2Gran Sasso Science Institute, IT

Abstract
Heterogeneous parallel systems have been recently exploited for a wide range of application domains, for both the dedicated (e.g. embedded) and the general purpose products. Such systems can include different processor cores, memories, dedicated ICs and a set of connections between them. They are so complex that the design methodology plays a major role in determining the success of the products. So, this demo addresses the problem of the electronic system-level hw/sw co-design of heterogeneous parallel dedicated systems. In particular, it shows an enhanced CSP/SystemC-based design space exploration step (and related ESL-EDA prototype tools), in the context of an existing he/sw co-design flow that, given the system specification and related F/NF requirements, is able to (semi)automatically propose to the designer: - a custom heterogeneous parallel architecture; - an HW/SW partitioning of the application; - a mapping of the partitioned entities onto the proposed architecture.
8.2 Hot Topic Session: No Power? No Problem! Exploiting Non-Volatility in Energy Constrained Environments

Presenters:
- Francesco Conti, ETH Zurich, CH

Authors:
- Stefan Mach, Florian Zaruba, Antonio Pullini, Daniele Palossi, Giovanni Rovere, Florian Glaser, Germain Haugou, Schekeb Fatehi and Luca Benni
 - ETH Zurich, CH
 - ETH Zurich, CH and University of Bologna, IT

Abstract
The PULP (Parallel Ultra-Low Power) platform strives to provide high performance for IoT nodes and endpoints within a very small power envelope. The PULP platform is based on a tightly-coupled multi-core cluster and on a modular architecture, which can support complex configurations with autonomous I/O without SW intervention, HW-accelerated execution of hot computation kernels, fine-grain event-based computation - but can also be deployed in very simple configuration, such as the open-source PULPino microcontroller. In this demonstration booth, we will showcase several prototypes using PULP chips in various configurations. Our prototypes perform demos such as real-time deep-learning based visual recognition from a low-power camera, and online biosignal acquisition and reconstruction on the same chip. Application scenarios for our technology include healthcare wearables, autonomous nano-UAVs, smart networked environmental sensors.

More information...
With the rapid growth of the Internet of Things (IoT), demands for battery-less systems are ever increasing. Systems that can be powered by ambient energy sources would offer new opportunities and capabilities for personal entertainment, self-powered, computational systems have obvious societal benefits when deployed for medical monitoring, environmental sensing, etc. This hot topic session considers the current landscape of energy harvesting computing systems and highlights the need for power neutral systems. Subsequent presentations showcase emerging non-volatile memory and logic technologies that could enable battery-less computing systems.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00</td>
<td>8.2.1</td>
<td>ENERGY-DRIVEN COMPUTING: RETHINKING THE DESIGN OF ENERGY HARVESTING SYSTEMS</td>
<td>Geoff Merrett, University of Southampton, GB; Geoff Merrett and Bashir Al-Hashimi, University of Southampton, GB</td>
</tr>
<tr>
<td>17:30</td>
<td>8.2.2</td>
<td>NONVOLATILE PROCESSORS: WHY IS IT TRENDING?</td>
<td>Fang Su1, Kaisheng Ma2, Xueqing Li2, Tongda Wu1, Yongpan Liu1 and Vijaykrishnan Narayanan2</td>
</tr>
<tr>
<td>18:00</td>
<td>8.2.3</td>
<td>ADVANCED SPINTRONIC MEMORY AND LOGIC FOR NON-VOLATILE PROCESSORS</td>
<td>Robert Perricone1, Ibrahim Ahmed2, Zhaoxin Liang3, Meghna Mankalale1, X. Sharon Hu1, Chris H. Kim2, Michael Niemier1, Sachin Sapatnekar2 and Jian-Ping Wang2</td>
</tr>
<tr>
<td>18:30</td>
<td></td>
<td>End of session</td>
<td></td>
</tr>
</tbody>
</table>
8.4 Advanced systems for healthcare and assistive technologies

Date: Wednesday 29 March 2017

Time: 17:00 - 18:30

Location / Room: 3A

Chair: Ruben Braojos, EPFL, CH

Co-Chair: Luca Fanucci, University of Pisa, IT

This session focuses on embedded systems for human activity recognition and control. These systems combine flexible and dynamic hardware architectures with advanced novel signal processing techniques for activity recognition, myoelectric prosthetic control, motor intention decoding and brain computer interface. Finally, we will have two interactive presentations focused on embedded systems for diagnosis.

11:00 8.4.1

Presentation Title: **Adaptive Compressed Sensing at the Fingertip of Internet-of-Things Sensors: An Ultra-Low Power Activity Recognition**

Authors:
Ramin Falahzadeh ¹, Josué Págan ² and Hassan Ghassenzadeh ³

Abstract:

With the proliferation of wearable devices in the Internet-of-Things applications, designing highly power-efficient solutions for continuous operation of these technologies in life-critical settings emerges. We propose a novel ultra-low power framework for adaptive compressed sensing in activity recognition. The proposed design uses a coarse-grained activity recognition module to adaptively tune the compressed sensing module for minimized sensing/transmission costs. We pose an optimization problem to minimize activity specific sensing rates and introduce a polynomial time approximation algorithm using a novel heuristic dynamic optimization tree. Our evaluations on real-world data shows that the proposed autonomous framework is capable of generating feed-back with >80% confidence and improves power reduction performance of the state-of-the-art approach by a factor of two.

Download Paper (PDF; Only available from the DATE venue WiFi)
The papers in this session discuss the use of learning as well as energy efficient circuit level implementation techniques for Neural Networks and for Green Computing in general.

8.5 Learning and Resilience Techniques for Green Computing

- **Date:** Wednesday 29 March 2017
- **Time:** 17:00 - 18:30
- **Location / Room:** 3C
- **Chair:** Mohammed Shafique, Vienna University of Technology (TU-Wien), AT
- **Co-Chair:** Andreas Burg, EPFL, CH

The papers in this session discuss the use of learning as well as energy efficient circuit level implementation techniques for Neural Networks and for Green Computing in general.
REVAMPI NG TIMING ERROR RESILIENCE TO TACKLE CHOKE POINTS AT NTC SYSTEMS
Speaker: Aatreyi Bal, USU Bridge Lab, Utah State University, US
Authors: Aatreyi Bal, Shamik Saha, Sanghamitra Roy and Koushik Chakraborty, Utah State University, US
Abstract
In this paper, we illustrate "choke points" as a vital consequence of process variation in the Near Threshold Computing (NTC) domain. Choke points are sensitized logic gates with increased delay deviation, due to process variation.
Download Paper (PDF; Only available from the DATE venue WiFi)

EFFICIENT NEURAL NETWORK ACCELERATION ON GPGPU USING CONTENT ADDRESSABLE MEMORY
Speaker: Tajana Rosing, University of California at San Diego, US
Authors: Mohsen Imani1, Daniel Peroni1, Yeseong Kim2, Abbas Rahimi2 and Tajana Rosing3
1University of California San Diego, US; 2University of California Berkeley, US; 3UCSD, US
Abstract
Recently, neural networks have been demonstrated to be effective models for image processing, video segmentation, speech recognition, computer vision and gaming. However, high computation energy and low performance are the primary bottlenecks of running the neural networks. In this paper, we propose an energy/performance-efficient network acceleration technique on General Purpose GPU (GPGPU) architecture which utilizes specialized resistive near-neighbor addressable memory blocks, called NNCAM, by exploiting computation locality of the learning algorithms. NNCAM stores high frequency patterns corresponding to neural network operations and searches for the most similar patterns to reuse the computation results. To improve NNCAM computation efficiency and accuracy, we proposed layer-based associative update and selective approximation techniques. The layer-based update improves data locality of NNCAM blocks by filling NNCAM values based on the frequent computation patterns of each neural network layer. To guarantee the appropriate level of computation accuracy while providing maximum energy saving, our design adaptively allocates the neural network operations to either NNCAM or GPGPU floating point units (FPUs). The selective approximation relaxes computation on neural network layers by considering the impact on accuracy. In evaluation, we integrate NNCAM blocks with the modern AMD Southern Island GPU architecture. Our experimental evaluation shows that the enhanced GPGPU can result in 68% energy savings and 40% speedup running on four popular convolutional neural networks (CNN), ensuring acceptable <2% quality loss.
Download Paper (PDF; Only available from the DATE venue WiFi)

CHAIN-NN: AN ENERGY-EFFICIENT 1D CHAIN ARCHITECTURE FOR ACCELERATING DEEP CONVOLUTIONAL NEURAL NETWORKS
Speaker: Shihao Wang, Waseda University, JP
Authors: Shihao Wang, Dajiang Zhou, Xushen Han and Yoshimura Takeshi, Waseda University, JP
Abstract
Deep convolutional neural networks (CNN) have shown their good performances in many computer vision tasks. However, the high computational complexity of CNN involves a huge amount of data that the computational processor core and memory hierarchy which occupies the major of the power consumption. This paper presents Chain-NN, a novel energy-efficient 1D chain architecture for accelerating deep CNNs. Chain-NN consists of the dedicated dual-channel process engines (PE). In Chain-NN, convolutions are done by the 1D systolic primitives composed of a group of adjacent PEs. These systolic primitives, together with the proposed column-wise scan input pattern, can fully reuse input operand to reduce the memory bandwidth requirement for energy saving. Moreover, the 1D chain architecture allows the systolic primitives to be easily reconfigured according to specific CNN parameters with fewer design complexity. The synthesis and layout of Chain-NN is under TSMC 28nm process. It costs 3751k logic gates and 352KB on-chip memory. The results show a 576-PE Chain-NN can be scaled up to 700MHz. This achieves a peak throughput of 806.4GOPS with 567.5mW and is able to accelerate the five convolutional layers in AlexNet at a frame rate of 362.2fps. 1421.0GOPS/W power efficiency is at least 2.5x to 4.1x times better than the state-of-the-art works.
Download Paper (PDF; Only available from the DATE venue WiFi)

CONTINUOUS LEARNING OF HPC INFRASTRUCTURE MODELS USING BIG DATA ANALYTICS AND IN-MEMORY PROCESSING TOOLS
Speaker: Francesco Beneventi, Università di Bologna, IT
Authors: Francesco Beneventi1, Andrea Bartolini1, Carlo Cavazzoni2 and Luca Benini2
1DEI - University of Bologna, IT; 2Università di Bologna, IT; 3Cineca, IT
Abstract
Exascale computing represents the next leap in the HPC race. Reaching this level of performance is subject to several engineering challenges such as energy consumption, equipment-cooling, reliability and massive parallelism. Model-based optimization is an essential tool in the design process and control of energy efficient, reliable and thermally constrained systems. However, in the Exascale domain, model learning techniques tailored to the specific supercomputer require real measurements and must therefore handle and analyze a massive amount of data coming from the HPC monitoring infrastructure. This becomes rapidly a "big data" scale problem. The common approach where measurements are first stored in large databases and then processed is no more affordable due to the increasing storage costs and lack of real-time support. Nowadays instead, cloud-based machine learning techniques aim to build on-line models using real-time approaches such as "stream processing" and "in-memory" computing, that avoid storage costs and enable fast-data processing. Moreover, the fast delivery and adaptation of the models to the quick data variations, make the decision stage of the optimization loop more effective and reliable. In this paper we leveraged scalable, lightweight and flexible IoT technologies, such as the MQTT protocol, to build a highly scalable HPC monitoring infrastructure able to handle the massive sensor data produced by next-gen HPC components. We then show how state-of-the-art tools for big data computing and analysis, such as Apache Spark, can be used to manage the huge amount of data delivered by the monitoring layer and to build adaptive models in real-time using on-line machine learning techniques.
Download Paper (PDF; Only available from the DATE venue WiFi)

LAANT: A LIBRARY TO AUTOMATICALLY OPTIMIZE EDP FOR OPENMP APPLICATIONS
Speaker: Arthur Francisco Lorenzon, Federal University of Rio Grande do Sul, BR
Authors: Arthur Lorenzon, Jeckson Dellagostin Souza and Antonio Carlos Schneider Beck Filho, Universidade Federal do Rio Grande do Sul, BR
Abstract
Efficiently exploiting thread level parallelism has been a challenging task for software developers. While blindly increasing the number of threads may lead to performance gains, it can also result in disproportionate increase in energy consumption. For this reason, rightly choosing the number of threads is essential to reach the best compromise between both. However, such task is extremely difficult: besides the huge number of variables involved, many of them will change according to different aspects of the system at hand and are only possible to be defined at run-time. To address this complex scenario, we propose LAANT, a novel library to automatically find the optimal number of threads for OpenMP applications, by dynamically considering their particular characteristics, input set, and the processor architecture. By executing nine well-known benchmarks on three real multicores processors, LAANT improves the EDP (Energy-Delay Product) by up to 61%, compared to the standard OpenMP execution; and by 44%, when the dynamic adjustment of the number of threads of OpenMP is activated.
Download Paper (PDF; Only available from the DATE venue WiFi)
This special hot topic session addresses concepts and applications of self-awareness for engineered systems. Interest in self-awareness continues to grow with applications in diverse domains such as automotive, space, military, consumer electronics, industrial control, health care, etc. The first talk outlines the concepts of self-awareness in psychology, contextual knowledge of the patient's health situation, and automation of reasoning about the health situation. Our approach to self-awareness provides (i) situation awareness to consider the impact of variations such as sleeping, walking, running, and resting, (ii) system personalization by reflecting parameters such as age, body mass index, and gender, and (iii) the attention property of self-awareness to improve the energy efficiency and dependability of the system via adjusting the priorities of the sensory data collection. We evaluate the proposed method using a full system demonstration.

Talk 1: Self-Aware Computing Systems: From Psychology to Engineering

Speaker: Peter Lewis, Aston University, GB

Abstract

At the current time, there are several fundamental changes in the way computing systems are being developed, deployed and used. They are becoming increasingly large, heterogeneous, uncertain, dynamic and decentralised. These complexities lead to behaviours during run time that are difficult to understand or predict. One vision for how to rise to this challenge is to endow computing systems with increased self-awareness, in order to enable advanced autonomous adaptive behaviour. A desire for self-awareness has arisen in a variety of areas of computer science and engineering over the last two decades, and more recently a more fundamental understanding of what self-awareness concepts might mean for the design and operation of computing systems has been developed. This talk reviews the role of self-awareness in autonomous driving systems and explains how system self-awareness has become an important foundation for reliable and flexible platform management of autonomous cars.

Talk 2: Self-Awareness in Autonomous Systems: Self-Driving Cars

Speaker: Rolf Ernst, TU Braunschweig, DE

Abstract

It then describes how these concepts have been translated to the computing domain, and provides examples of how their explicit consideration can lead to systems better able to manage trade-offs between conflicting goals at run time in the context of a complex environment, while reducing the need for a priori domain modelling at design or deployment time.

Talk 3: Self-Awareness in Remote Health Monitoring Systems through Wearable Electronics

Speaker: Axel Jantsch, TU Wien, AT

Abstract

In healthcare, effective monitoring of patients plays a key role in detecting health deterioration early enough. Many signs of deterioration exist as early as 24 hours prior having a serious impact on the health of a person. As hospitalization times have to be minimized, in-home or remote early warning systems can fill the gap by allowing in-home care while having the potentially problematic conditions and their signs under surveillance and control. This work presents a remote monitoring and diagnostic system that provides a holistic perspective of patients and their health conditions. We discuss how the concept of self-awareness can be used in various parts of the system such as information collection through wearable sensors, confidence assessment of the sensory data, the knowledge base of the patient's health situation, and automation of reasoning about the health situation. Our approach to self-awareness provides (i) situation awareness to consider the impact of variations such as sleeping, walking, running, and resting, (ii) system personalization by reflecting parameters such as age, body mass index, and gender, and (iii) the attention property of self-awareness to improve the energy efficiency and dependability of the system via adjusting the priorities of the sensory data collection. We evaluate the proposed method using a full system demonstration.

Download Paper (PDF; Only available from the DATE venue WiFi)
8.7 Instruction-level and thread-level parallelism in embedded systems

Date: Wednesday 29 March 2017
Time: 17:00 - 18:30
Location / Room: 3B

Chair:
Oliver Bringmann, Universität Tübingen, DE

Co-Chair:
Jürgen Teich, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE

The first paper in this session presents a novel open-source hardware/software infrastructure for dynamic binary translation. The second paper presents a mechanism to improve the floating point to fixed point conversion by exploiting word-level parallelism. The third paper presents a WCET analysis for multiple tasks on single-core systems.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00</td>
<td>8.7.1</td>
<td>HARDWARE-ACCELERATED DYNAMIC BINARY TRANSLATION</td>
<td>Simon Rokicki, Université de Rennes 1 / IRISA, FR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1IRISA, FR; 2IRISA, FR</td>
<td></td>
</tr>
</tbody>
</table>

Abstract
Dynamic Binary Translation (DBT) is often used in hardware/software co-design to take advantage of an architecture model while using binaries from another one. The co-development of the DBT engine and of the execution architecture leads to architecture with special support to these mechanisms. In this work, we propose a hardware accelerated Dynamic Binary Translation where the first steps of the DBT process are fully accelerated in hardware. Results shows that using our hardware accelerators leads to a speed-up of 8x and a cost in energy 18x lower, compared with an equivalent software approach.

Download Paper (PDF; Only available from the DATE venue WiFi)

17:30	8.7.2	SUPERWORD LEVEL PARALLELISM AWARE WORD LENGTH OPTIMIZATION	Ali Hassan El Moussawi, IRISA, FR
		Speaker:	
		Authors:	
		1IRISA, FR; 2IRISA, FR	

Abstract
Many embedded processors do not support floating-point arithmetic in order to comply with strict cost and power consumption constraints. But, they generally provide support for SIMD as a mean to improve performance for little cost overhead. Achieving good performance when targeting such processors requires the use of fixed-point arithmetic and efficient exploitation of SIMD data-path. To reduce time-to-market, automatic SIMDization -- such as superword level parallelism (SLP) extraction -- and floating-point to fixed-point conversion methodologies have been proposed. In this paper we show that applying these transformations independently is not efficient. We propose a SLP-aware word length optimization algorithm to jointly perform float-to-fixed-point conversion and SLP extraction. We implement the proposed approach in a source-to-source compiler framework and evaluate it on several embedded processors. Experimental results illustrate the validity of our approach.

Download Paper (PDF; Only available from the DATE venue WiFi)

18:00	8.7.3	SCHEDULABILITY-AWARE SPM ALLOCATION FOR PREEMPTIVE HARD REAL-TIME SYSTEMS WITH ARBITRARY ACTIVATION PATTERNS	Arno Luppold, Hamburg University of Technology, DE
		Speaker:	
		Authors:	
		1Hamburg University of Technology, DE; 2Hamburg University of Technology (TUHH), DE	

Abstract
In hard real-time multi-tasking systems each task has to meet its deadline under any circumstances. If one or several tasks violate their timing constraints, compiler optimizations can be used to optimize the Worst-Case Execution Time (WCET) of each task with a focus on the system’s schedulability. Existing approaches are limited to single-tasking or strictly periodic multi-tasking systems. We propose a compiler optimization to perform a schedulability-aware static instruction Scratchpad Allocation for arbitrary activation patterns and deadlines. The approach is based on Integer-Linear Programming and is evaluated for the Infineon TriCore TCI796 microcontroller.

Download Paper (PDF; Only available from the DATE venue WiFi)

<table>
<thead>
<tr>
<th>18:30</th>
<th>IP4-4, 636</th>
<th>SCHEDULE-AWARE LOOP PARALLELIZATION FOR EMBEDDED MPSoCs BY EXPLOITING PARALLEL SLACK</th>
<th>Miguel Angel Aguilar, RWTH Aachen University, DE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Speaker:</td>
<td>Miguel Angel Aguilar1, Rainer Leupers1, Gerd Ascheid1, Nikolaos Kavvadas2 and Liam Fitzpatrick2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors:</td>
<td>1RWTH Aachen University, DE; 2Silexica Software Solutions GmbH, DE</td>
</tr>
</tbody>
</table>

Abstract
MPSoC programming is still a challenging task, where several aspects have to be taken into account to achieve a profitable parallel execution. Selecting a proper scheduling policy is an aspect that has a major impact on the performance. OpenMP is an example of a programming paradigm that allows to specify the scheduling policy on a per loop basis. However, choosing the best scheduling policy and the corresponding parameters is not a trivial task. In fact, there is already a large amount of software parallelized with OpenMP, where the scheduling policy is not explicitly specified. Then, the scheduling decision is left to the default runtime, which in most of the cases does not yield the best performance. In this paper, we present a schedule-aware optimization approach enabled by exploiting the parallel slack existing in loops parallelized with OpenMP. Results on an embedded multicore device, show that the performance achieved by OpenMP loops optimized with our approach outperform by up to 93%, the performance achieved by the original OpenMP loops, where the scheduling policy is not specified.

Download Paper (PDF; Only available from the DATE venue WiFi)
ticket: CHF 80.00 per person. Additional tickets can be purchased on-site at the registration desk (subject to availability of tickets).

Please be aware that entrance is only possible with a valid party ticket. Each full conference registration includes a ticket for the DATE Party (which needs to be attended). The party is scheduled on March 29, 2017, from 1900 to 2300, and will take place in Lausanne's most outstanding museum location: The Olympic Museum. It is beautifully located in the heart of the city, with magnificent views over the Lake Geneva and the Swiss-French Alps. Since its renovation at the end of 2013, it now hosts more than 3,000 sqm of amenities. Thus, it states one of the main networking opportunities during the DATE week.

Technology entrepreneurship implicates taking a technology idea and finding a high-potential commercial opportunity, gathering resources such as talent and capital, considering how to market the idea, and managing rapid growth. It is a very high-potential path with a chance of both high earnings and large direct impact. However, it is also a really difficult path, and only small number of people are successful. Success in this kind of business requires strong technical skills, capacity to deal with high risk of failure, and extremely hard work. In this panel we will discuss which are the challenges, opportunities and risks of creating technology startups.

Panelists:
- Amin Shokrollahi, Founder and CEO of Kandou Bus, CH
- Gian Paolo Perrucci, Mobility and Apps Solution Manager at Nestlé, CH
- Karim Kanoun, Mobile and Embedded Development Manager at Gait Up S.A., CH
- Marisa Lopez-Vallejo, UPM, ES
- Youwei Zhuo, University of California, Santa Barbara, US
- Yuan Xie, University of California, Santa Barbara, US
- Youngbin Kim, Korea University

Moderator:
Marisa Lopez-Vallejo, UPM, ES

Organiser:
Marisa Lopez-Vallejo, UPM, ES

Panel: Technology startups. Vision from Academia and Industry

Date: Wednesday 29 March 2017
Time: 17:00 - 18:30
Location / Room: Exhibition Theatre

Panel:
- Paul Andres, Legal Consultant, CH
- Karim Kanoun, Mobile and Embedded Development Manager at Gait Up S.A., CH
- Paul Keenan, Director of the IT Development Center Lausanne at Credit Suisse S.A., CH
- Gian Paolo Perrucci, Mobility and Apps Solution Manager at Nestlé, CH
- Amin Shokrollahi, Founder and CEO of Kandou Bus, CH

Technology entrepreneurship implicates taking a technology idea and finding a high-potential commercial opportunity, gathering resources such as talent and capital, considering how to market the idea, and managing rapid growth. It is a very high-potential path with a chance of both high earnings and large direct impact. However, it is also a really difficult path, and only small number of people are successful. Success in this kind of business requires strong technical skills, capacity to deal with high risk of failure, and extremely hard work. In this panel we will discuss which are the challenges, opportunities and risks of creating technology startups.

End of session

DATE-Party DATE Party | Networking Event

Date: Wednesday 29 March 2017
Time: 19:00 - 23:00
Location / Room: The Olympic Museum

The highlight of the DATE week will again be the DATE Party, which offers the perfect occasion to meet friends and colleagues in a relaxed atmosphere while enjoying local amenities. Thus, it states one of the main networking opportunities during the DATE week.

The party is scheduled on March 29, 2017, from 1900 to 2300, and will take place in Lausanne's most outstanding museum location: The Olympic Museum. It is beautifully located in the heart of the city, with magnificent views over the Lake Geneva and the Swiss-French Alps. Since its renovation at the end of 2013, it now hosts more than 3,000 sqm of exhibition space and a new scenography which perfectly reflects the idea and spirit behind and how rich and diverse Olympism is. Some of the themes highlighted include sports, history, culture, design, sociology, and technology.

During the evening, all delegates will have the chance to visit the different expositions for free.

Please kindly note that it is not a seated dinner. Drinks and snacks (flying buffet) will be served in the TOM Café & delegates, exhibitors and their guests are invited to attend the party. Please be aware that entrance is only possible with a valid party ticket. Each full conference registration includes a ticket for the DATE Party (which needs to be booked during the online registration process though). Additional tickets can be purchased on-site at the registration desk (subject to availability of tickets). Price for extra ticket: CHF 80.00 per person.
9.1 Wearable and Smart Medical Devices Day: New tools and devices for chronic and acute care

Date: Thursday 30 March 2017
Time: 08:30 - 10:00
Location / Room: 5BC

Organisers:
José L. Ayala, Universidad Complutense de Madrid, ES
Chris Van Hoof, IMEC, BE

Chair:
José L. Ayala, Universidad Complutense de Madrid, ES

Co-Chair:
Mario Konijnenburg, IMEC, BE

This session will present the recent advances in medical devices for the clinical practice. We will attend how Industry and Academia work on designing novel wearable, ASICs and computational systems that help on promoting the novel healthcare paradigms in the treatment of chronic and acute diseases.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>9.1.1</td>
<td>WEARABLE ROBOTICS IN CLINICAL PRACTICE: PROSPECTS</td>
<td>José Luis Pons, CSIC, ES</td>
</tr>
<tr>
<td>09:00</td>
<td>9.1.2</td>
<td>OVERCOMING HEARING LOSS THROUGH NEW IMPLANT TECHNOLOGIES</td>
<td>Carl Van Himbeeck, Cochlear Technology Centre, BE</td>
</tr>
<tr>
<td>09:30</td>
<td>9.1.3</td>
<td>CIRCUITS AND SYSTEMS AS ENABLERS FOR NOVEL HEALTHCARE PARADIGMS</td>
<td>Mario Konijnenburg, imec, BE</td>
</tr>
</tbody>
</table>

9.2 Emerging Schemes for Memory Management

Date: Thursday 30 March 2017
Time: 08:30 - 10:00
Location / Room: 4BC

Chair:
Arne Heittman, RWTH, DE

Co-Chair:
Costin Anghel, ISEP, FR

This topic covers aspects of emerging memory architectures and functional blocks with respect to performance and endurance enhancement. In particular, caches, FTL, logic-in-memory and error correction schemes covering strategies like error correction wear leveling and cache replacement are covered. NVMs like PCM, Flash and RRAMs are considered in this track.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>9.2.1</td>
<td>WEARABLE ROBOTICS IN CLINICAL PRACTICE: PROSPECTS</td>
<td>José Luis Pons, CSIC, ES</td>
</tr>
<tr>
<td>09:00</td>
<td>9.2.2</td>
<td>OVERCOMING HEARING LOSS THROUGH NEW IMPLANT TECHNOLOGIES</td>
<td>Carl Van Himbeeck, Cochlear Technology Centre, BE</td>
</tr>
<tr>
<td>09:30</td>
<td>9.2.3</td>
<td>CIRCUITS AND SYSTEMS AS ENABLERS FOR NOVEL HEALTHCARE PARADIGMS</td>
<td>Mario Konijnenburg, imec, BE</td>
</tr>
</tbody>
</table>

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

- **Tuesday, March 28, 2017**
 - Coffee Break 10:30 - 11:30
 - Coffee Break 16:00 - 17:00

- **Wednesday, March 29, 2017**
 - Coffee Break 10:00 - 11:00
 - Coffee Break 16:00 - 17:00

- **Thursday, March 30, 2017**
 - Coffee Break 10:00 - 11:00
 - Coffee Break 15:30 - 16:00
A LOG-AWARE SYNERGIZED SCHEME FOR PAGE-LEVEL FTL DESIGN

Speaker:
Chu Li, Huazhong University of Science & Technology, CN

Abstract
NAND flash-based Solid State Drives (SSDs) employ the Flash Translation Layer (FTL) to perform logical-to-physical address translation. Modern page-level FTLs selectively cache the address mappings in the limited SRAM while storing the mapping table in flash pages (called translation pages). However, many extra accesses to the translation pages are required for address translation, which decreases the performance and lifetime of an SSD. In this paper, we propose a Log-aware Synergized scheme for page-level FTL to reduce the extra overheads, called LSFTL. The contribution of LSFTL consists of two key elements: (i) Exploiting garbage collection overhead via reserving a small portion of each translation page as a logging area to hold multiple updates to the entries of that translation page. (ii) "Log-aware flash back" reduces the number of translation page updates by evicting multiple dirty cache lines that share the translation page in a single transaction. Extensive experimental results of trace-driven simulations show that LSFTL decreases the system response time by 39.40% on average, and up to 58.35%, and reduces the block erase count by 37.55% on average, and up to 39.99%, compared to the well-known DFTL.

MALRU: MISS-PENALTY AWARE LRU-BASED CACHE REPLACEMENT FOR HYBRID MEMORY SYSTEMS

Speaker:
Chen Di, Huazhong University of Science and Technology, CN

Abstract
Routing Random Access Memory (RRAM) is a promising non-volatile memory technology which enables modern in-memory computing architectures. Although RRAMs are known to be superior to conventional memories in many aspects, they suffer from a low write endurance. In this paper, we focus on balancing memory write traffic as a solution to extend the lifetime of resistive crossbar architectures. As a case study, we monitor the write traffic in a Programmable Logic-in-Memory (PLiM) architecture, and propose an endurance management scheme for it. The proposed endurance-aware compilation is capable of handling different trade-offs between write balance, latency, and area of the resulting PLiM implementations. Experimental evaluations on a set of benchmarks including large arithmetic and control functions show that the standard deviation of writes can be reduced by 86.65% on average compared to a naive compiler, while the average number of instructions and RRAM devices also decreases by 36.45% and 12.67%, respectively.

ENDURANCE MANAGEMENT FOR RESISTIVE LOGIC-IN-MEMORY COMPUTING ARCHITECTURES

Speaker:
Saeideh Shirinzadeh, University of Bremen, DE

Abstract
Resistive Random Access Memory (RRAM) is a promising non-volatile memory technology which enables modern in-memory computing architectures. Although RRAMs are known to be superior to conventional memories in many aspects, they suffer from a low write endurance. In this paper, we focus on balancing memory write traffic as a solution to extend the lifetime of resistive crossbar architectures. As a case study, we monitor the write traffic in a Programmable Logic-in-Memory (PLiM) architecture, and propose an endurance management scheme for it. The proposed endurance-aware compilation is capable of handling different trade-offs between write balance, latency, and area of the resulting PLiM implementations. Experimental evaluations on a set of benchmarks including large arithmetic and control functions show that the standard deviation of writes can be reduced by 86.65% on average compared to a naive compiler, while the average number of instructions and RRAM devices also decreases by 36.45% and 12.67%, respectively.
The goal of this special session is to revisit the depth and breadth of CPS security, with focus on practical system and design automation aspects. In a practical system, the possible sources of security vulnerabilities and recent attacks are discussed, and it is argued that there are significant varieties of attacks that need to be accounted for in a holistic manner.

Date: Thursday, March 30, 2017

Time: 08:30 - 10:00

Location / Room: SBC

Organisers:
Anupam Chattopadhyay, Nanyang Technological University, SG
Muhammad Shaﬁque, CARE-Tech, TU Wien, AT

Chair: Ahmad Sadeghi, TU Darmstadt, DE

Co-Chair: Muhammad Shaﬁque, CARE-Tech, TU Wien, AT

The goal of this special session is to revisit the depth and breadth of CPS security, with focus on practical system and design automation aspects. In a practical system, the possible sources of security vulnerabilities and recent attacks are discussed, and it is argued that there are significant varieties of attacks that need to be accounted for in a holistic manner.
Security Cyber-Physical Systems: Current Trends, Tools and Open Research Problems

Speaker: Anupam Chattopadhyay, Nanyang Technological University, Singapore
Authors: Anupam Chattopadhyay, Alok Prakash and Muhammad Shafique

Don't Fall Into a Trap: Physical Side-Channel Analysis of ChaCha20-Poly1305

Speaker: Bernhard Jungk, Temasek Laboratories @ Nanyang Technological University, Singapore
Authors: Bernhard Jungk, Shivam Bhasin

The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser

Speaker and Author: Onur Mutlu, ETH Zurich, Switzerland

Compromising FPGA SoCs Using Malicious Hardware Blocks

Speaker: Nisha Jacob, Fraunhofer AISEC, Germany
Authors: Nisha Jacob, Carsten Rolfes, Andreas Zankl, Johann Heyssel and Georg Sigl

Inspiring Trust in Outsourced Integrated Circuit Fabrication

Speaker and Author: Siddharth Garg, New York University, USA

Analyzing Security Breaches of Countermeasures Throughout the Refinement Process in Hardware Design Flow

Speaker: Jean-Luc Danger, Secure-IC, France
Authors: Sylvain Guillery, Jean-Luc Danger, Philippe Nguyen, Robert Nguyen and Youssef Souissi, Secure-IC S.A.S., France
This session features methods that extract desired implementation options from the huge design space of digital systems. The first talk presents a method to pick valuable operating points from a Pareto optimal set of task mappings for an efficient online resource management. The second presentation presents a rapid estimation framework to evaluate performance/area metrics of various accelerator options for an application at an early design phase. A design space exploration for implementing convolutional layers of operating points from a Pareto optimal set of task mappings for an efficient online resource management. The fourth talk presents an HLS scheduling method that is optimized for incorporating Radix 8 Booth multipliers. The session concludes with two short introductions of interactive presentations.

Automatic Operating Point Distillation for Hybrid Mapping Methodologies

Speaker: Behnaz Pourmohseni, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE
Authors:
Behnaz Pourmohseni 1, Michael Glaß 2 and Jürgen Teich 1
1Friedrich-Alexander-Universität Erlangen-Nürnberg, DE; 2Ulm University, DE
Abstract
Efficient execution of applications on heterogeneous many-core platforms requires mapping solutions that address different aspects of run-time dynamism like resource availability, energy budgets, and timing requirements. Hybrid mapping methodologies employ a static design space exploration (DSE) to obtain a set of mapping alternatives termed operating points that trade off quality properties (compute performance, energy consumption, etc.) and resource requirements (number of allocated resources of each type, etc.) among which one is selected at run-time by a run-time resource manager (RRM). Given multiple quality properties and the presence of heterogeneous resources, the DSE typically delivers a substantially large set of operating points handling of which may impose an intolerable run-time overhead to the RRM. This paper investigates the problem of truncation of operating points termed operating point distillation, such that (a) an acceptable run-time overhead is achieved, (b) on-line quality requirements are met, and (c) dynamic resource constraints are satisfied, i.e., application embeddability is preserved. We propose an automatic design-time distillation methodology that employs a hyper grid-based approach to retain diverse trade-off options wrt. quality properties, while selecting representative operating points based on their resource requirements to achieve a high level of run-time embeddability. Experimental results for a variety of applications show that compared to existing truncation approaches, proposed methodology significantly enhances the run-time embeddability while achieving a competitive and often improved efficiency in the distilled quality properties.

Download Paper (PDF; Only available from the DATE venue WiFi)

Design Space Exploration of FPGA-Based Accelerators with Multi-Level Parallelism

Speaker: Guanwen Zhong, National University of Singapore, SG
Authors: Guanwen Zhong 1, Alok Prakash 2, Siqi Wang 1, Yun (Eric) Liang 3, Tulika Mitra 1 and Smail Niar 4
1National University of Singapore, SG; 2Nanyang Technological University, SG; 3Peking University, CN; 4LAMIH-University of Valenciennes, FR
Abstract
Applications containing compute-intensive kernels with nested loops can effectively leverage FPGAs to exploit fine- and coarse-grained parallelism. HLS tools used to translate these kernels from high-level languages (e.g., C/C++), however, are inefficient in exploiting multiple levels of parallelism automatically, thereby producing sub-optimal accelerators. Moreover, the large design space resulting from the various combinations of fine- and coarse-grained parallelism options makes exhaustive design space exploration prohibitively time-consuming with HLS tools. Hence, we propose a rapid estimation framework, MPSeeker, to evaluate performance/area metrics of various accelerator options for an application at an early design phase. Experimental results show that MPSeeker can rapidly (in minutes) explore the complex design space and accurately estimate performance/area of various design points to identify the near-optimal (95.7% performance of the optimal on average) combination of parallelism options.

Download Paper (PDF; Only available from the DATE venue WiFi)
9.5 Modeling and optimization of Internet-of-things (IoT) devices

Date: Thursday 30 March 2017
Time: 08:30 - 10:00
Location / Room: 3C

Chair:
William Fornaciari, Politecnico di Milano, IT

Co-Chair:
Shusuke Yoshimoto, Osaka University, JP

Modeling and optimization of Internet-of-things (IoT) devices from energy sources to computing components including battery, energy harvesting system, power converter, and microprocessor

### Time	Label	Presentation Title
09:30 | 9.4.3 | DESIGN SPACE EXPLORATION OF FPGA ACCELERATORS FOR CONVOLUTIONAL NEURAL NETWORKS
Speaker: Jongeun Lee, UNIST, KR
Authors: Atul Rahman¹, Sangyun Oh², Jongeun Lee³ and Kiyoung Choi ⁴
¹Samsung Electronics, KR; ²UNIST, KR; ³Ulsan National Institute of Science and Technology (UNIST), KR; ⁴Seoul National University, KR

Abstract
The increasing use of machine learning algorithms, such as Convolutional Neural Networks (CNNs), makes the hardware accelerator approach very compelling. However, the question of how to best design an accelerator for a given CNN has not been answered yet, even on a very fundamental level. This paper addresses that challenge, by providing a novel framework that can universally and accurately evaluate and explore various architectural choices for CNN accelerators on FPGAs. Our exploration framework is more extensive than that of any previous work in terms of the design space, and takes into account various FPGA resources to maximize performance including DSP resources, on-chip memory, and off-chip memory bandwidth. Our experimental results using some of the largest CNN models including one that has 16 convolutional layers demonstrate the efficacy of our framework, as well as the need for such a high-level architecture exploration approach to find the best architecture for a CNN model.

Download Paper (PDF; Only available from the DATE venue WiFi)

09:45 | 9.4.4 | A SLACK-BASED APPROACH TO EFFICIENTLY DEPLOY RADIX 8 BOOTH MULTIPLIERS
Speaker: Alberto Antonio Del Barrio Garcia, Universidad Complutense de Madrid, ES
Authors: Alberto Antonio Del Barrio Garcia and Hermida Roman, Complutense University of Madrid, ES

Abstract
In 1951 A. Booth published his algorithm to efficiently multiply signed numbers. Since the appearance of such algorithm, it has been widely accepted that Booth 4-based Booth multipliers are the most efficient. They allow the height of the multiplier to be halved, at the expense of a simple recoding that consists of just shifts and negations. Theoretically, higher radix should produce even larger reductions, especially in terms of area and power, but the readcing process is much more complex. Notably, in the case of radix 8 it is necessary to compute 3X, X being the multiplicand. In order to avoid the penalty due to this calculation, we propose decoupling it from the product and considering 3X as an extra operation within the application’s Dataflow Graph (DFG). Experiments show that typically there is enough slack in the DFGs to do this without degrading the performance of the circuit, which permits the efficient deployment of radix 8 multipliers that do not calculate the 3X multiple. Results show that our approach is 10% and 17% faster than radix 4 and radix 8 Booth based implementations, respectively, and 12% and 10% more energy efficient in terms of Energy Delay Product.

Download Paper (PDF; Only available from the DATE venue WiFi)

10:00 | IP4-10 | A SCHEDULABILITY TEST FOR SOFTWARE MIGRATION ON MULTICORE SYSTEMS
Speaker: Jung-Eun Kim, Department of Computer Science at the University of Illinois at Urbana-Champaign, US
Authors: Jung-Eun Kim¹, Richard Bradford², Tarek Abdelzaher³ and Lui Sha ³
¹Department of Computer Science, University of Illinois at Urbana-Champaign, US; ²Rockwell Collins, Cedar Rapids, IA, US; ³University of Illinois, US

Abstract
This paper presents a new schedulability test for safety-critical software undergoing a transition from single-core to multicore systems - a challenge faced by multiple industries today. Our migration model consists of a schedulability test and execution model. Its properties enable us to obtain a utilization bound that places an allowable limit on total task execution times. Evaluation results demonstrate the advantages of our scheduling model over competing resource partitioning approaches, such as Periodic Server and TDMA.

Download Paper (PDF; Only available from the DATE venue WiFi)

10:00 | | End of session

Coffee Break

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

- **Tuesday, March 28, 2017**
 - Coffee Break 10:30 - 11:30
 - Coffee Break 16:00 - 17:00

- **Wednesday, March 29, 2017**
 - Coffee Break 10:00 - 11:00
 - Coffee Break 16:00 - 17:00

- **Thursday, March 30, 2017**
 - Coffee Break 10:00 - 11:00
 - Coffee Break 15:30 - 16:00
A METHODOLOGY FOR THE DESIGN OF DYNAMIC ACCURACY OPERATORS BY RUNTIME BACK BIAS

Speaker: Daniele Ajher Pagliari, Politecnico di Torino, IT
Authors: Daniele Ajher Pagliari1, Yves Durand2, David Coriat2, Anca Molnos2, Edith Beigne2, Enrico Macii3 and Massimo Poncino1
1Politecnico di Torino, IT; 2CEA-Leti, FR
Abstract
Mobile and IoT applications must balance increasing processing demands with limited power and cost budgets. Approximate computing achieves this goal leveraging the error tolerance features common in many emerging applications to reduce power consumption. In particular, adequate (i.e., energy/quality-configurable) hardware operators are key components in an error tolerant system. Existing implementations of these operators require significant architectural modifications, hence they are often design-specific and tend to have large overheads compared to accurate units. In this paper, we propose a methodology to design adequate datapath operators in an automatic way, which uses threshold voltage scaling as a knob to dynamically control the power/accuracy tradeoff. The method overcomes the limitations of previous solutions based on supply voltage scaling, in that it introduces lower overheads and it allows fine-grain regulation of this tradeoff. We demonstrate our approach on a state-of-the-art 28nm FDSOI technology, exploiting the strong effect of back biasing on threshold voltage. Results show a power consumption reduction of as much as 39% compared to solutions based only on supply voltage scaling, at iso-accuracy.
Download Paper (PDF; Only available from the DATE venue WiFi)
9.6 Reliability and Optimization Techniques for Analog Circuits

Date: Thursday 30 March 2017
Time: 08:30 - 10:00
Location / Room: 5A

Chair:
Manuel Barragan, TIMA, FR

Co-Chair:
Said Hamdioui, TU Delft, NL

The first two papers discuss optimizations for yield and performances of analog circuits. The third paper proposes methods for flip-flop soft error protection in sequential circuits with the last paper discusses methods based on machine learning for timing error detection.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| 08:30 | 9.6.1 | SLOT: A SUPERVISED LEARNING MODEL TO PREDICT DYNAMIC TIMING ERRORS OF FUNCTIONAL UNITS | Xun Jiao, University of California San Diego, US
Authors:
Xun Jiao, Yu Jiang, Abbas Rahimi, and Rajesh Gupta
1University of California, San Diego, US;
2Tsinghua University, CN;
3University of California, Berkeley, US |

Abstract

Dynamic timing errors (DTEs), that are caused by the timing violations of sensitized critical timing paths, have emerged as an important threat to the reliability of digital circuits. Existing approaches model the DTEs without considering the impact of input operands on dynamic path sensitization behaviors, making it hard to represent in DTE modeling. In this paper, we propose SLoT, a supervised learning model to predict the output of functional units (FUs) to be one of two timing classes: (timing correct, timing erroneous), as a function of input operands and clock period. We apply random forest classification (RFC) method to construct SLoT, by using input operands, computation history and circuit toggling as input features and outputs' timing classes as labels. The outputs timing classes are measured using gate-level simulation (GLS) of a post place-and-route design in TSMC 45nm process. For evaluation, we apply SLoT to several FUs and on average 95% predictions are consistent with GLS, which is 6.3X higher compared to the existing instruction-level model. SLoT-based reliability analysis of FUs under different benchmark datasets can achieve 0.7-4.8% average difference compared with GLS-based analysis, and execute more than 20X faster than GLS.

Download Paper (PDF; Only available from the DATE venue WiFi)

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| 09:00 | 9.6.2 | EXPLOITING DATA-DEPENDENCE AND FLIP-FLOP ASYMMETRY FOR ZERO-OVERHEAD SYSTEM SOFT ERROR MITIGATION | Liangzhen Lai and Vikas Chandra, ARM, US
Authors:
Liangzhen Lai and Vikas Chandra, ARM, US |

Abstract

Soft error is one of the major threats for resilient computing. Unlike SRAM soft error, which can be effectively protected by ECC, Flip-Flop soft error protection can be costly. We observe that flip-flops/batches can have asymmetric soft error rates when storing different logic values. This asymmetry can be used in conjunction with the different signal probabilities of registers in a design. In this work, we first demonstrate that flip-flop cells can be designed to have different soft error rates when storing different logic values. We also propose a methodology to match registers in a design with the flip-flop cells that minimize the soft error rates. Experimental results on commercial processor show that, with only flip-flop layout changes, our proposed scheme can reduce system SER by 16% with no overhead in performance, power and area. The system SER reduction can be improved to 48% with schematic changes and 6.7% average increase in flip-flop area.

Download Paper (PDF; Only available from the DATE venue WiFi)
10:00 | IP4-13, 140

ENHANCING ANALOG YIELD OPTIMIZATION FOR VARIATION-AWARE CIRCUITS SIZING

Speaker:
Ons Lahieux, Concordia University, CA

Authors:
Ons Lahieux, Mohamed H. Zaki and Sofiene Tahar, Concordia University, CA

Abstract
This paper presents a novel approach for improving automated analog yield optimization using a two step exploration strategy. First, a global optimization phase relies on a modified Lipschitzian optimization to sample the potential optimal sub-regions of the feasible design space. The search locates a design point near the optimal solution that is used as a starting point by a local optimization phase. The local search constructs linear interpolating surrogate models of the yield to explore the basin of convergence and to rapidly reach the global optimum. Experimental results show that our approach locates higher quality design points in terms of yield rate within less run time and without affecting the accuracy.

Download Paper (PDF; Only available from the DATE venue WiFi)

10:01 | IP4-14, 276

A NEW SAMPLING TECHNIQUE FOR MONTE CARLO-BASED STATISTICAL CIRCUIT ANALYSIS

Speaker:
Hiwa Mahmoudi, Vienna University of Technology, AT

Authors:
Hiwa Mahmoudi and Horst Zimmermann, Vienna University of Technology, AT

Abstract
Variability is a fundamental issue which gets exponentially worse as CMOS technology shrinks. Therefore, characterization of statistical variations has become an important part of the design phase. Monte Carlo-based simulation method is a standard technique for statistical analysis and modeling of integrated circuits. However, crude Monte Carlo sampling based on pseudorandom selection of parameter variations suffers from low convergence rates and thus, providing high accuracy is computationally expensive. In this work, we present an extensive study on the performance of two widely used techniques, Latin Hypercube and Low Discrepancy sampling methods, and compare their speed-up and accuracy performance properties. It is shown that these methods can exhibit a better efficiency as compared to the pseudorandom sampling but only in limited applications. Therefore, we propose a new sampling scheme that exploits the benefits of both methods by combining them. Through representative circuit examples, it is shown that the proposed sampling technique provides a major improvement in terms of computational effort and offers better properties as compared to each solely.

Download Paper (PDF; Only available from the DATE venue WiFi)

10:02 | IP4-15, 257

AUTOMATIC TECHNOLOGY MIGRATION OF ANALOG IC DESIGNS USING GENERIC CELL LIBRARIES

Speaker:
Jose Cachaco, Nuno Machado, Nuno Lourenço and Nuno Horta

Authors:
Jose Cachaco1, Nuno Machado1, Nuno Lourenço1, Jorge Guilherme2 and Nuno Horta3

Abstract
This paper addresses the problem of automatic technology migration of analog IC designs. The proposed approach introduces a new level of abstraction, for EDA tools addressing analog IC design, allowing a systematic and effortless adaption of a design to a new technology. The new abstraction level is based on generic cell libraries, which includes topology and testbenches descriptions for specific circuit classes. The new approach is implemented and tested using a state-of-the-art multi-objective multi-constraint circuit-level optimization tool, and is validated for the sizing and optimization of continuous-time comparators, including technology migration between two different design nodes, respectively, XFAB 350 nm technology (XH035) and ATME 150 nm SOI technology (AT77K).

Download Paper (PDF; Only available from the DATE venue WiFi)
NOISE-SENSITIVE FEEDBACK LOOP IDENTIFICATION IN LINEAR TIME-VARYING ANALOG CIRCUITS

Speaker:
Peng Li, Texas A&M University, US

Authors:
Ang Li, Peng Li, Tingwen Huang and Edgar Sánchez-Sinencio
1Texas A&M University, US; 2Texas A&M University at Qatar, QA

Abstract
The continuing scaling of VLSI technology and design complexity has rendered robustness of analog circuits a significant concern. Parasitic effects may introduce unexpected marginal instability within multiple noise-sensitive loops and hence jeopardize circuit operation and processing precision. The Loop Finder algorithm has been recently proposed to allow detection of noise-sensitive return loops for circuits that are described using a linear time-invariant (LTI) system model. However, many practical circuits such as switched-capacitor filters and mixers present time-varying behaviors which are intrinsically coupled with noise propagation and introduce new noise generation mechanisms. For the first time, we take an in-depth look into the marginal instability of linear periodically time-varying (LPTV) analog circuits and further develop an algorithm for efficient identification of noise-sensitive loops, unifying the solution to noise sensitivity analysis for both LTI and LPTV circuits.

Download Paper (PDF; Only available from the DATE venue WiFi)

Time	Label	Presentation Title	Authors
10:03 | IP4-16, 440 | NOISE-SENSITIVE FEEDBACK LOOP IDENTIFICATION IN LINEAR TIME-VARYING ANALOG CIRCUITS | Peng Li, Texas A&M University, US

Authors:
Ang Li, Peng Li, Tingwen Huang and Edgar Sánchez-Sinencio
1Texas A&M University, US; 2Texas A&M University at Qatar, QA

Abstract
The continuing scaling of VLSI technology and design complexity has rendered robustness of analog circuits a significant concern. Parasitic effects may introduce unexpected marginal instability within multiple noise-sensitive loops and hence jeopardize circuit operation and processing precision. The Loop Finder algorithm has been recently proposed to allow detection of noise-sensitive return loops for circuits that are described using a linear time-invariant (LTI) system model. However, many practical circuits such as switched-capacitor filters and mixers present time-varying behaviors which are intrinsically coupled with noise propagation and introduce new noise generation mechanisms. For the first time, we take an in-depth look into the marginal instability of linear periodically time-varying (LPTV) analog circuits and further develop an algorithm for efficient identification of noise-sensitive loops, unifying the solution to noise sensitivity analysis for both LTI and LPTV circuits.

Download Paper (PDF; Only available from the DATE venue WiFi)

Coffee Break in Exhibition Area
On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

9.7 Front-row seats for Temperature and Variability

Date: Thursday 30 March 2017
Time: 08:30 - 10:00
Location / Room: 3B

Chair:
Marina Zapater Sancho, EPFL, CH

Co-Chair:
Giovanni Ansaloni, USI, CH

This session sets highlights on the impact of temperature and variability sources at the overall system level. Firstly, an approach that incorporates leakage in thermal simulations is presented and a thermal simulation framework is devised. After that, temperature is not only estimated but also minimized in the context of global interconnects by means of an analytic methodology. Finally, timing variability plays its role in the session and its effects in variable-latency designs.

Time	Label	Presentation Title	Authors
08:30 | 9.7.1 (Best Paper Award Candidate) | AN EFFICIENT LEAKAGE-AWARE THERMAL SIMULATION APPROACH FOR 3D-ICS USING CORRECTED LINEARIZED MODEL AND ALGEBRAIC MULTIGRID | Chao Yan, Microelectronics Dept., Fudan University, CN

Authors:
Chao Yan, Hengliang Zhu, Dian Zhou and Xuan Zeng
1Fudan University, CN; 2University of Texas at Dallas, US

Abstract
Thermal control has become a great challenge for 3D-ICs due to the ever increasing power density and 3D integration. Among techniques to address the problem, fast thermal simulation approach is basically required to accurately characterize the runtime temperature variations of 3D-ICs. In this paper, we propose an accurate and fast leakage-aware thermal simulation approach for 3D-ICs with consideration of both heatsink cooling and microfluidic cooling. First, the proposed approach is based on a corrected linearized model for leakage power approximation, which is proved to be equivalent to the Newton-Chord method for solving nonlinear algebra equations. A convergence comparison is presented in this paper to show that such approach is more efficient than other methods for leakage-aware thermal simulation. Second, an aggregation-based algebraic multigrid (AMG) preconditioned iterative linear solver is adopted that greatly reduces the computation time for solving the linear equations during calculation, which makes the proposed approach even more efficient. Numerical experiments show that the proposed approach can achieve 8x-139x speedup in comparison with the state-of-the-art methods, and with almost negligible average temperature error no more than 0.025K and maximum temperature error no more than 0.095K.

Download Paper (PDF; Only available from the DATE venue WiFi)
In this paper we present an adaptive meshing technique suitable for steady state finite element (FE) based thermal analysis of integrated circuits (ICs). The algorithm presented is a non iterative one where the technology used is first pre-characterized. The characterization results are then used for scanning the appropriate DTM for a given chip.

Abstract
Dynamic thermal management (DTM) techniques based on task migration provide a promising solution to mitigate thermal emergencies and thereby ensuring safe operation and reliability of Many-Core systems. These techniques can be classified as central or distributed on the basis of a central DTM controller for the whole system or individual DTM controllers for each core or set of cores in the system, respectively. However, having a trustworthy comparison between central (c-) and distributed (d-) DTM techniques to find out the most suitable one for a given system is quite challenging. This is primarily due to the systemic difference between cDTM and dDTM controllers, and the inherent non-exhaustiveness of simulation and emulation methods conventionally used for DTM analysis. In this paper, we present a novel methodology called CANdy-TM (stands for Comparative Analysis of Dynamic Thermal Management) that employs Model Checking to perform formal comparative analysis for cDTM and dDTM techniques. We identify a set of generic functional and performance properties to provide a common ground for their comparison. We demonstrate the usability and benefits of our methodology by comparing state-of-the-art cDTM and dDTM techniques, and illustrate which technique is good w.r.t. thermal stability and other task migration parameters. Such an analysis helps in selecting the most appropriate DTM for a given chip.

Download Paper (PDF; Only available from the DATE venue WiFi)
Today everything from the door locks, a heating system or vehicle can be connected to internet opening the endless possibilities of future innovative technologies. As more low-power and internet-connected gadgets and sensors are integrated to our lives, an increase in demand for developing secure and trustworthy IoT-based systems is becoming the key element to make winning products.

Although, there has been a steady increase in improving the security, still proper authentication and encrypted communications are not common; making the overall Internet as a network of insecure things. This session proposes a journey through several speeches to show the advances in technologies that master the security aspects of IoT.

The session starts with an in-depth overview of security challenges and the trends in the IoT ecosystem against cyber-threats. Then, introduces the STM32 and the secure IoT networks of insecure things. This session proposes a journey through several speeches to show the advances in technologies that master the security aspects of IoT.

Although there has been a steady increase in improving the security, still proper authentication and encrypted communications are not common; making the overall Internet as a network of insecure things. This session proposes a journey through several speeches to show the advances in technologies that master the security aspects of IoT.

The session starts with an in-depth overview of security challenges and the trends in the IoT ecosystem against cyber-threats. Then, introduces the STM32 and the secure IoT platforms based on STM32 called SECube. Finally, the session provides some real use cases for smart vehicle, where IoT have a big impact on the type of applications and services that can be deployed using the association between vehicle and the homes of their owners. Last but not least, all the pre-registered attendees are eligible to get one of IoT platforms presented by the speakers via the www.secube.eu website.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>9.8.3</td>
<td>UNIVERSITY EXPERIENCES USING A SECURE IOT PLATFORM BASED ON STM32</td>
<td>George Kornarors, Univ. of Applied Sciences of Crete, GR</td>
</tr>
<tr>
<td>09:15</td>
<td>9.8.4</td>
<td>SECURE™: THE SECURE COMMERCIAL IOT PLATFORM</td>
<td>Antonio Varriale, Blu5 Labs Ltd, MT</td>
</tr>
<tr>
<td>09:30</td>
<td>9.8.5</td>
<td>SECURE COMMUNICATION IN AUTOMOTIVE</td>
<td>Giovanni Gherardi, Energica Motor Company, IT</td>
</tr>
</tbody>
</table>

The SEcube™ (Secure Environment cube) platform presented in this session is an open source security-oriented hardware and software platform constructed with ease of integration and service-orientation in mind. It is based on a single-chip design embedding three main cores: a highly powerful processor, a Common Criteria certified smartcard, and a flexible FPGA. The software components include several libraries of ready-to-use components that provide developers with different entry levels to adoption. This way, security experts can avail of the open source character and verify, change or write from scratch the entire system, starting from the elementary low-level blocks. At the same time developers who use the predefined primitives can experience the SEcube™ as a high-security black box suitable for security-oriented services in several fields, like IoT, Automotive, etc.

Although there has been a steady increase in improving the security, still proper authentication and encrypted communications are not common; making the overall Internet as a network of insecure things. This session proposes a journey through several speeches to show the advances in technologies that master the security aspects of IoT.

The session starts with an in-depth overview of security challenges and the trends in the IoT ecosystem against cyber-threats. Then, introduces the STM32 and the secure IoT platforms based on STM32 called SECube. Finally, the session provides some real use cases for smart vehicle, where IoT have a big impact on the type of applications and services that can be deployed using the association between vehicle and the homes of their owners. Last but not least, all the pre-registered attendees are eligible to get one of IoT platforms presented by the speakers via the www.secube.eu website.
IP4 Interactive Presentations

Date: Thursday 30 March 2017
Time: 10:00 - 10:30

Location / Room: IP sessions (in front of rooms 4A and 5A)

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the morning. Additionally, each IP paper is briefly introduced in a one-minute presentation in a corresponding regular session, prior to the actual Interactive Presentation. At the end of each afternoon Interactive Presentations session the award ‘Best IP of the Day’ is given.

<table>
<thead>
<tr>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| **IP4-1** | 1024-CHANNEL 3D ULTRASOUND DIGITAL BEAMFORMER IN A SINGLE 5W FPGA | Speaker: Aya Ibrahim, EPFL, CH
Authors: Federico Angiolini¹, Aya Ibrahim¹, William Simon¹, Ahmet Caner Yüzügüler¹, Marcel Arditì¹, Jean-Philippe Thiran¹ and Giovanni De Micheli²
¹EPFL, CH; ²École Polytechnique Fédérale de Lausanne (EPFL), CH |

Abstract

3D ultrasound, an emerging medical imaging technology that is presently only used in hospitals, has the potential to enable breakthrough telemedicine applications, provided that its cost and power dissipation can be minimized. In this paper, we present an FPGA architecture suitable for a portable medical 3D ultrasound device. We show an optimized design for the digital part of the imager, including the delay calculation block, which is its most critical part. Our computationally efficient approach requires a single FPGA for 3D imaging, which is unprecedented. The design is scalable; a configuration supporting a 32×32-channels probe, which enables high-quality imaging, consumes only about 5W.

Download Paper (PDF; Only available from the DATE venue WiFi)

| **IP4-2** | LAANT: A LIBRARY TO AUTOMATICALLY OPTIMIZE EDP FOR OPENMP APPLICATIONS | Speaker: Arthur Francisco Lorenzon, Federal University of Rio Grande do Sul, BR
Authors: Arthur Lorenzon, Jeckson Dellagostin Souza and Antonio Carlos Schneider Beck Filho, Universidade Federal do Rio Grande do Sul, BR |

Abstract

Efficiently exploiting thread level parallelism from new multicore systems has been challenging for software developers. While blindly increasing the number of threads may also result in disproportionate increase in energy consumption. For this reason, rightly choosing the number of threads is essential to reach the best compromise between both. However, such task is extremely difficult: besides the huge number of variables involved, many of them will change according to different aspects of the system at hand and are only possible to be defined at run-time. To address this complex scenario, we propose LAANT, a novel library to automatically find the optimal number of threads for OpenMP applications, by dynamically considering their particular characteristics, input set, and the processor architecture. By executing nine well-known benchmarks on three real multicore processors, LAANT improves the EDP (Energy-Delay Product) by up to 61%, compared to the standard OpenMP execution; and by 44%, when the dynamic adjustment of the number of threads of OpenMP is activated.

Download Paper (PDF; Only available from the DATE venue WiFi)

| **IP4-3** | IMPROVING THE ACCURACY OF THE LEAKAGE POWER ESTIMATION OF EMBEDDED CPUS | Speaker: Shiao-Li Tsao, National Chiao Tung University, TW
Authors: Ting-Wu Chin, Shiao-Li Tsao, Kuo-Wei Hung and Pei-Shu Huang, National Chiao Tung University, TW |

Abstract

Previous studies have used on-chip thermal sensors (diodes) to estimate the leakage power of a CPU. However, an embedded CPU equips only a few thermal sensors and may suffer from considerable spatial temperature variances across the CPU core, and leakage power estimation based on insufficient temperature information introduces errors. According to our experiments, the conventional leakage power models may have up to 22.9% estimation error for a 70-nm embedded CPU. In this study, we first evaluated the accuracy of leakage power estimates based on thermal sensors on different locations of a CPU and suggested locations that can reduce the error to 0.9%. Then, we proposed temperature-referred and counter-tracked estimation (TRACE) that relies on temperature sensors and hardware activity counters to estimate leakage power. The simulation results demonstrated that employing TRACE could reduce the error to 3.4%. Experiments were also conducted on a real platform to verify our findings.

Download Paper (PDF; Only available from the DATE venue WiFi)
Reducing Code Management Overhead in Software-Managed Multicores

Speaker: Aviral Shrivastava, Arizona State University, US
Authors: Jiai Cai¹, Yooseong Kim¹, Youngbin Kim², Aviral Shrivastava¹ and Kyoungwoo Lee²
¹Arizona State University, US; ²Yonsei University, KR
Abstract
Software-managed architectures, which use scratch-pad memories (SPMs), are a promising alternative to cache-based architectures for multicores. SPMs provide scalability but require explicit management. For example, to use an instruction SPM, explicit management code needs to be inserted around every call site to load functions to the SPM. Such management code would check the state of the SPM and perform loading operations if necessary, which can cause considerable overhead at runtime. In this paper, we propose a compiler-based approach to reduce this overhead by identifying management code that can be removed or simplified. Our experiments with various benchmarks show that our approach reduces the execution time by 14% on average. In addition, compared to hardware caching, using our approach on an SPM-based architecture can reduce execution times of the benchmarks by up to 15%.

Download Paper (PDF; Only available from the DATE venue WiFi)
A NEW SAMPLING TECHNIQUE FOR MONTE CARLO-BASED STATISTICAL CIRCUIT ANALYSIS

Hiwa Mahmoudi and Horst Zimmermann, Vienna University of Technology, AT

Abstract

This paper presents a novel approach for improving automated analog yield optimization using a two step exploration strategy. First, a global optimization phase relies on theoretical analysis and optimization methodology for flying and decoupling capacitance values for area-constrained on-chip SCVRs to achieve the highest system-level power efficiency. The proposed models for efficiency and droop voltage are validated with on-chip 2:1 SCVR implementations in both 65nm and 32nm CMOS, which show high model accuracy. The maximum and average error of the predicted optimal ratio between flying and decoupling capacitance are 5% and 1.7%, respectively.

Download Paper (PDF; Only available from the DATE venue WiFi)
CANDY-TM: COMPARATIVE ANALYSIS OF DYNAMIC THERMAL MANAGEMENT IN MANY-CORES USING MODEL CHECKING

Abstract

Dynamic thermal management (DTM) techniques based on task migration provide a promising solution to mitigate thermal emergencies and thereby ensuring safe operation and reliability of Many-Core systems. These techniques can be classified as central or distributed (C-) and distributed (D-) DTM controllers for each core or set of cores in the system, respectively, having a trustworthy comparison between the two different design nodes, respectively, XFAB 350 nm technology (XH035) and ATTEL 150 nm SOI technology (AT77K).

Download Paper (PDF; Only available from the DATE venue WiFi)

NOISE-SENSITIVE FEEDBACK LOOP IDENTIFICATION IN LINEAR TIME-VARYING ANALOG CIRCUITS

Abstract

The scaling up of VLSI technology and design complexity has rendered robustness of analog circuits a significant concern. Parasitic effects may introduce unexpected marginal instability within multiple noise-sensitive loops and hence jeopardize circuit operation and processing precision. The Loop Finder algorithm has been recently proposed to allow detection of noise-sensitive feedback loops for circuits that are described using a linear time-invariant (LTI) system model. However, many practical circuits such as switched-capacitor filters and mixers present time-varying behaviors which are intrinsically coupled with noise propagation and introduce new noise generation mechanisms. For the first time, we take an in-depth look into the marginal instability of linear periodically time-varying (LPTV) analog circuits and further develop an algorithm for efficient identification of noise-sensitive feedback loops, unifying the solution to noise sensitivity analysis for both LTI and LPTV circuits.

Download Paper (PDF; Only available from the DATE venue WiFi)

AUTOMATIC TECHNOLOGY MIGRATION OF ANALOG IC DESIGNS USING GENERIC CELL LIBRARIES

Abstract

Addressing analog IC design, allowing a systematic and effortless adaption of a design to a new technology. The new abstraction level is based on generic cell libraries, which includes topology and testbenches descriptions for specific circuit classes. The new approach is implemented and tested using a state-of-the-art multi-objective multi-constraint circuit-level optimization tool, and is validated for the sizing and optimization of continuous-time comparators, including technology migration between two different design nodes, respectively, XFAB 350 nm technology (XH035) and ATTEL 150 nm SOI technology (AT77K).

Download Paper (PDF; Only available from the DATE venue WiFi)

POWER PRE-CHARACTERIZED MESHING ALGORITHM FOR FINITE ELEMENT THERMAL ANALYSIS OF INTEGRATED CIRCUITS

Abstract

In this paper we present an adaptive meshing technique suitable for steady state finite element (FE) based thermal analysis of integrated circuits (ICs). The algorithm presented is a non iterative one where the technology used is first pre-characterized. The Loop Finder algorithm has been recently proposed to allow detection of noise-sensitive feedback loops for circuits that are described using a linear time-invariant (LTI) system model. However, many practical circuits such as switched-capacitor filters and mixers present time-varying behaviors which are intrinsically coupled with noise propagation and introduce new noise generation mechanisms. For the first time, we take an in-depth look into the marginal instability of linear periodically time-varying (LPTV) analog circuits and further develop an algorithm for efficient identification of noise-sensitive feedback loops, unifying the solution to noise sensitivity analysis for both LTI and LPTV circuits.

Download Paper (PDF; Only available from the DATE venue WiFi)

More information ...
UB09.3 FLEXPORT: FLEXIBLE PLATFORM FOR OBJECT RECOGNITION & TRACKING TO ENHANCE INDOOR LOCALIZATION AND MAPPING

Presenter:
Christian Schott, Murali Padmanabha and Ulrich Heinke, TU Chemnitz, DE

Abstract
Object detection plays a crucial role in realizing intelligent indoor localization and mapping techniques. With the advantages of these techniques comes the complexity of computing hardware and the mobility. While the availability of open source computer vision algorithms and High-Level-Synthesis framework accelerates the development, the hybrid processing architecture of an All Programmable System on Chip (APSoC) enables efficient hardware-software partitioning. Using these tools, a generic platform was designed for evaluating the computer vision algorithms. Open source components such as Linux kernel and OpenCV libraries were integrated for evaluation of the algorithms on the software while Vivado HLS framework was used to synthesize the hardware counter parts. Algorithms such as Sobel filtering and Hough Line transformation were implemented and analyzed. The capabilities of this platform were used to realize a mobile object detection system for enhancing the localization techniques.

More information ...
Abstract
Heterogeneous parallel systems have been recently exploited for a wide range of application domains, for both the dedicated (e.g. embedded) and the general purpose products. Such systems can include different processor cores, memories, dedicated ICs and a set of connections between them. They are so complex that the design methodology plays a major role in determining the success of the products. So, this demo addresses the problem of the electronic system-level hw/sw co-design of heterogeneous parallel dedicated systems. In particular, it shows an enhanced CSP/SystemC-based design space exploration step (and related ESL-EDA prototype tools), in the context of an existing hw/sw co-design flow that, given the system specification and related F/NF requirements, is able to (semi)automatically propose to the designer: - a custom heterogeneous parallel architecture; - an hw/sw partitioning of the application; - a mapping of the partitioned entities onto the proposed architecture.

More information ...

UB09.10 PULP: A ULTRA-LOW POWER PLATFORM FOR THE INTERNET-OF-THINGS

Presenter:
Francesco Conti, ETH Zurich, CH

Authors:
1Stefan Mach1, Florian Zaruba1, Antonio Pullini1, Daniele Palossi1, Giovanni Rovere1, Florian Glaser1, Germain Haugou1, Schekeb Fateh1 and Luca Benini2
1ETH Zurich, CH; 2ETH Zurich, CH and University of Bologna, IT

Abstract
The PULP (Parallel Ultra-Low Power) platform strives to provide high performance for IoT nodes and endpoints within a very small power envelope. The PULP platform is based on a tightly-coupled multi-core cluster and on a modular architecture, which can support complex configurations with autonomous I/O without SW intervention, HW-accelerated execution of hot computation kernels, fine-grain event-based computation - but can also be deployed in very simple configuration, such as the open source PULPino microcontroller. In this demonstration booth, we will showcase several prototypes using PULP chips in various configuration. Our prototypes perform demos such as real-time deep-learning based visual recognition from a low-power camera, and online biosignal acquisition and reconstruction on the same chip. Application scenarios for our technology include healthcare wearables, autonomous nano-UAVs, smart networked environmental sensors.

More information ...

10.1 Wearable and Smart Medical Devices Day: Diagnosis and prevention systems

Date: Thursday 30 March 2017

Time: 11:00 - 12:30

Location / Room: SBC

Organisers:
José L. Ayala, Universidad Complutense de Madrid, ES
Chris Van Hoof, IMEC, BE

Chair:
Oliver Romain, Université de Cergy-Pontoise, FR

Co-Chair:
Mario Konijnjemburg, IMEC, BE

This session will present novel approaches, techniques and devices for the improvement of diagnosis and prevention systems. Improved bioanalytics-on-chip designs, wearables in the prevention of elderly, computational mechanisms for prevention of symptoms, and bioelectronics medicines will be covered.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00</td>
<td>10.1.1</td>
<td>ENABLING TECHNOLOGIES FOR NEXT GENERATION BIOANALYTICS ON CHIP</td>
</tr>
</tbody>
</table>

Author:
Carlota Guiducci, EPFL, CH

Abstract
The adoption of lab-on-chip based solutions in clinical practice and in the framework of the most common bioanalytics protocols has long been sought for the possibility to fine control the movement of fluids and the flow of molecules and particles. Nevertheless, the existing solutions inherently limit both throughput and the possibility to sense and manipulate single particles. A few years ago, we undertook a major challenge in this context, starting from the consideration that the lack of solutions to localize electric fields in micro-regions and to control their distribution over the height of the chambers fundamentally limited the efficiency and the scalability of these systems. Our strategy, based on monolithic process, results in highly conductive and singularly addressable vertical microelectrodes, fully integrated in high-aspect-ratio microfluidics. We have applied this novel process to develop a new generation of microfluidic flow cytometers that could successfully detect, for the first time, activated T lymphocytes in a cellular sample. In this talk we will describe as well our contribution to the integration of biosensors on IC layers and to solve the issues related to the specific surface treatments involved in the analytical protocol.
In this hot topic session, we demonstrate how design automation enables emerging technologies. Four talks will be provided. The first talk will review how logic synthesis has and the application of these new synthesis techniques in the early assessment of emerging nanodevices with enhanced functionality. Finally, we argue that new technology, from an industrial perspective. First, we present new synthesis techniques which embed detailed physical informations at the core optimization engine. Experiments show improved Quality of Results (QoR) and better correlation between RTL synthesis and physical implementation. Second, we discuss the optimization of the energy consumption of monitoring devices for the prediction of symptomatic events in chronic diseases in real time. To do this, we have developed an optimization methodology that incorporates information of several sources of energy consumption: the running code for prediction, and the sensors for data acquisition. As a result of our methodology, we are able to improve the energy consumption of the computing process up to 90% with a minimal impact on accuracy. The proposed optimization methodology can be applied to any prediction modeling scheme to introduce the concept of energy efficiency. In this work we test the framework using Grammatical Evolutionary algorithms in the prediction of chronic migraines. This paper deals with the synergy between logic synthesis and design automation to capture advantageous design opportunities. This paper deals with the synergy between logic synthesis and design automation to capture advantageous design opportunities. Logic synthesis is a key design step which optimizes abstract circuit representations and links them to technology. With CMOS technology moving into the deep nanometer regime, logic synthesis needs to be aware of physical informations early in the flow. With the enhanced functionality of nanodevices, research on technology needs the help of logic synthesis to capture advantageous design opportunities. This paper deals with the synergy between logic synthesis and technology, from an industrial perspective. First, we present new synthesis techniques which embed detailed physical informations at the core optimization engine. Experiments show improved Quality of Results (QoR) and better correlation between RTL synthesis and physical implementation. Second, we discuss the application of these new synthesis techniques in the early assessment of emerging nanodevices with enhanced functionality. Finally, we argue that new synthesis methods can push further the progress of electronics, as we have reached a multiforking point of technology where choices are tougher than ever.
power measurement setup specifically targeting static power consumption is presented and evaluated from the side-channel attack viewpoint. This session introduces new side-channel attacks techniques against cryptographic primitives, namely leakage resilient protocols and storage encryption based on AES.

Wieland Fischer, Infineon Technologies, DE
Co-Chair:
Oscar Reparaz, Katholieke Universiteit Leuven, BE
Chair:

10.2.3 Side-Channel Plaintext-Recovery Attacks on Leakage-Resilient Encryption
Speaker:
Thomas Unterluggauer, Graz University of Technology, AT
Authors:
Thomas Unterluggauer, Mario Werner and Stefan Mangard, Graz University of Technology, AT
Abstract
Differential power analysis (DPA) is a powerful tool to extract the key of a cryptographic implementation from observing its power consumption during the encryption/decryption of many different inputs. Therefore, cryptographic schemes based on frequent re-keying such as leakage-resilient encryption aim to inherently prevent DPA on the secret key by limiting the amount of data being processed under one key. However, the original asset of encryption, namely the plaintext, is disregarded. This paper builds on this observation and shows that the re-keying countermeasure does not only protect the secret key, but also induces another DPA vulnerability that allows for plaintext recovery. Namely, the frequent re-keying in leakage-resilient streaming modes causes constant plaintexts to be attackable through first-order DPA. Similarly, constant plaintexts can be revealed from re-keyed block ciphers using templates in a second-order DPA. Such plaintext recovery is particularly critical whenever long-term key material is encrypted and thus leaked. Besides leakage-resilient encryption, the presented attacks are also relevant for a wide range of other applications in practice that implicitly use re-keying, such as multi-party communication and memory encryption with random initialization for the key. Practical evaluations on both an FPGA and a microcontroller support the feasibility of the attacks and thus suggest the use of cryptographic implementations protected by mechanisms like masking in scenarios that require data encryption with multiple keys.

Download Paper (PDF; Only available from the DATE venue WiFi)
<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30</td>
<td>10.3.2</td>
<td>(Best Paper Award Candidate) STATIC POWER SIDE-CHANNEL ANALYSIS OF A THRESHOLD IMPLEMENTATION Prototype Chip</td>
<td>Thorben Moos, Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum, DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thorben Moos¹, Amir Moradi² and Bastian Richter¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>¹Ruhr-Universität Bochum, DE; ²Ruhr University Bochum, DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abstract</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The static power consumption of modern CMOS devices has become a substantial concern in the context of the side-channel security of cryptographic hardware. The continuous growth of the leakage power dissipation in nanometer-scaled CMOS technologies is not only inconvenient for effective low power designs, but does also create a new target for power analysis adversaries. In this paper, we present the first experimental results of a static power side-channel analysis targeting an ASIC implementation of a provably first-order secure hardware masking scheme. The investigated 150 nm CMOS prototype chip realizes the PRESENT-80 lightweight block cipher as a threshold implementation and allows us to draw a comparison between the information leakage through its dynamic and static power consumption. By employing a sophisticated measurement setup dedicated to static power analysis, including a very low-noise DC amplifier as well as a climate chamber, we are able to recover the key of our target implementation with significantly less traces compared to the corresponding dynamic power analysis attack. In particular, for a successful third-order attack exploiting the static currents, less than 200 thousand traces are needed. Whereas for the same attack in the dynamic power domain around 5 million measurements are required. Furthermore, we are able to show that only-first-order resistant approaches like the investigated threshold implementation do not significantly increase the complexity of a static power analysis. Therefore, we firmly believe that this side channel can actually become the target of choice for real-world adversaries against masking countermeasures implemented in advanced CMOS technologies.</td>
</tr>
<tr>
<td>12:00</td>
<td>10.3.3</td>
<td>SIDE-CHANNEL POWER ANALYSIS OF XTS-AES</td>
<td>Chao Luo, Northeastern University, CN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chao Luo, Yunsi Fei and A. Adam Ding, Northeastern University, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abstract</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XTS-AES is an advanced mode of AES for data protection of sector-based devices. Compared to other AES modes, it features two secret keys instead of one, and an additional tweak for each data block. These characteristics make the mode resistant against cryptanalysis attacks, and also make side-channel attacks on it more challenging. In this paper, we propose two attack methods on XTS-AES overcoming these challenges. In the first attack, we analyze side-channel leakage of the particular modular multiplication in XTS-AES mode. In the second one, we utilize the relationship between two consecutive block tweaks and propose a method to work around the masking of ciphertext by the tweak. These attacks are verified on an FPGA implementation of XTS-AES. The results show that XTS-AES is susceptible to side-channel power analysis attacks, and therefore dedicated protections are required for security of XTS-AES in storage devices.</td>
</tr>
<tr>
<td>12:30</td>
<td>IPS-1</td>
<td>FORMAL MODEL FOR SYSTEM-LEVEL POWER MANAGEMENT DESIGN</td>
<td>Mirela Simonovic, Aggiós, RS</td>
</tr>
<tr>
<td></td>
<td>702</td>
<td></td>
<td>Mirela Simonovic¹, Vojin Zivojnovic² and Lazar Saranovac³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>¹University of Belgrade, RS; ²Aggiós Inc., US; ³University of Belgrade, School of Electrical Engineering, RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abstract</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In this paper we present a new formal model, called p-FSM, for system-level power management design. The p-FSM is a modular, compositional, hierarchical, and unified model for hardware and software components. The model encapsulates power management control mechanisms, operating states and properties of a component that affect power, energy and thermal aspects of the system. Inter-component dependencies are modeled through a component-based interface. By connecting multiple p-FSMs we gradually compose the model of the whole system which ensures correct-by-construction system-level control sequencing. The model can also be used to formally verify the functional correctness of the power management design.</td>
</tr>
<tr>
<td>12:30</td>
<td></td>
<td>End of session</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lunch Break in Garden Foyer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keynote Lecture session 11.0 in "Garden Foyer" 1320 - 1350</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lunch Break in the Garden Foyer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On all conference days (Tuesday to Thursday), a buffet lunch will be offered in the Garden Foyer, in front of the session rooms. Kindly note that this is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>restricted to conference delegates possessing a lunch voucher only. When entering the lunch break area, delegates will be asked to present the corresponding lunch voucher of the day. Once the lunch area is being left, re-entrance is not allowed for the respective lunch.</td>
<td></td>
</tr>
</tbody>
</table>

10.4 Emerging Architectures for Reconfigurable Computing

Date: Thursday 30 March 2017
Time: 11:00 - 12:30
Location / Room: 3A
Chair:
Alessandro Cilardo, University of Naples Federico II, IT
Co-Chair:
Florent de Dinechin, ENS-Lyon, FR

This session presents a view of future reconfigurable architectures. These include a field programmable transistor array, a programmable methodology for power gating FPGA routing network, and a dynamic instruction issue technique for coarse grain reconfigurable architectures.
10.5 Emerging NoC Directions

Date: Thursday 30 March 2017
Time: 11:00 - 12:30
Location / Room: 3C

Chair:
Jiang Xu, Hong Kong University of Science and Technology, HK

Co-Chair:
Tushar Krishna, GeorgiaTech, US

This session presents papers on emerging directions in NoC design. The first paper uses machine learning for effective power management in NoCs. The next three papers use emerging technologies - wireless, 3D, and Optical - for efficient on-chip communications.

Time
10:50
11:00
11:10
11:20
11:30
11:40
11:50
12:00
12:10
12:20
12:30

Label
10.4.1
10.4.2
10.4.3

Presentation Title
A FIELD PROGRAMMABLE TRANSISTOR ARRAY FEATURING SINGLE-CYCLE PARTIAL/FULL DYNAMIC RECONFIGURATION
A POWER GATING SWITCH BOX ARCHITECTURE IN ROUTING NETWORK OF SRAM-BASED FPGAS IN DARK SILICON ERA
A STATIC-PLACEMENT, DYNAMIC-ISSUE FRAMEWORK FOR CGRA LOOP ACCELERATOR

Authors
Zhongyuan Zhao, Department of NaNo/Micro Electronics, CN
Hossein Asadi, Sharif University of Technology, IR
Jingxiang Tian, Gaurav Rajavendra Reddy, Jiajia Wang, William Swartz Jr., Yogos Makris and Carl Sechen, The University of Texas at Dallas, US

Abstract
This paper presents a static-placement, dynamic issue (SPDI) framework for the coarse-grained reconfigurable architecture (CGRA) in order to tackle the inefficiencies of the static-issue, static-placement (SISP) CGRA. This framework includes the compiler that statically places the operations and hardware design, a SPDI CGRA, that automatically schedule the operations. We stress on introducing the SPDI CGRA in this paper. This newly designed hardware model adds transform and control data flow among the PE array. This design lets the hardware share the responsibility for the compiler, making them cooperate to deal with the issuing, placement and routing problem. Evaluation of our study shows that our framework can reach on average 1.28, 1.30 and 1.33 higher than three state-of-the-art SISP CGRA using REGIMap, RS compile flow and the EPIMap approaches respectively. The area overhead is nearly 0.93% per token buffer entry for each PE relative to SISP CGRA.

Download Paper (PDF; Only available from the DATE venue WiFi)

Time
10:30
10:40
10:50
11:00
11:10
11:20
11:30
11:40
11:50
12:00
12:10
12:20
12:30

Label
10.4.1
10.4.2
10.4.3

Presentation Title
A STATIC-PLACEMENT, DYNAMIC-ISSUE FRAMEWORK FOR CGRA LOOP ACCELERATOR
A POWER GATING SWITCH BOX ARCHITECTURE IN ROUTING NETWORK OF SRAM-BASED FPGAS IN DARK SILICON ERA

Authors
Zhongyuan Zhao, The University of Texas at Dallas, US
Hossein Asadi, Sharif University of Technology, IR

Abstract
We introduce a CMOS computational fabric consisting of carefully arranged regular rows and columns of transistors which can be individually configured and appropriately interconnected in order to implement a target digital circuit. Termed Field Programmable Transistor Array (FPTA), this novel reconfigurable architecture enables several highly-desirable features including (i) simultaneous storage of three configurations along with the ability to dynamically switch between them within a single cycle, despite retaining the fabric’s computational state, (ii) rapid partial or full modification of a stored configuration in a time proportional to the number of modified configuration bits through the use of hierarchically-arranged, high-throughput, asynchronously pipelined memory buffers, and (iii) support for libraries containing cells of the same height and variable width, just as in a typical standard cell circuit, thereby simplifying transition from a prototype to a custom IC design. Besides presenting the design details of this fabric in a 130nm technology and demonstrating the aforementioned capabilities, we also briefly discuss the development of a complete CAD flow for programming this fabric and we use numerous benchmark circuits to contrast its area efficiency against a typical FPGA implemented in the same technology node.

Download Paper (PDF; Only available from the DATE venue WiFi)

11:00 10.4.1

Presentation Title
A FIELD PROGRAMMABLE TRANSISTOR ARRAY FEATURING SINGLE-CYCLE PARTIAL/FULL DYNAMIC RECONFIGURATION

Authors
Zhongyuan Zhao, Department of NaNo/Micro Electronics, CN
Carl Sechen, The University of Texas at Dallas, US

Abstract
On all conference days (Tuesday to Thursday), a buffet lunch will be offered in the Garden Foyer, in front of the session rooms. Kindly note that this is

11:10 10.4.2

Presentation Title
A POWER GATING SWITCH BOX ARCHITECTURE IN ROUTING NETWORK OF SRAM-BASED FPGAS IN DARK SILICON ERA

Authors
Hossein Asadi, Sharif University of Technology, IR
Zeinab Seifoori, Behnam Khaleghi and Hossein Asadi, Sharif University of Technology, IR

Abstract
Continuous down scaling of CMOS technology in recent years has resulted in exponential increase in static power consumption which acts as a power wall for further transistor integration. One promising approach to throttle the substantial static power of Field-Programmable Gate Array (FPGAs) is to power off unused routing resources such as switch boxes, known as dark silicon. In this paper, we present a Power gating Switch Box Architecture (PESA) for routing network of SRAM-based FPGAs to overcome the obstacle for further device integration. In the proposed architecture, by exploring various patterns of used multiplexers in switch boxes, we employ a configurable controller to turn off unused resources in the routing network. Our study shows that due to the significant percentage of unused switches in the routing network, PESA is able to considerably improve power efficiency in SRAM-based FPGAs. Experimental results carried out on different benchmarks using VPR toolset show that PESA decreases power consumption of the routing network up to 75% as compared to the conventional architectures while preserving the performance intact.

Download Paper (PDF; Only available from the DATE venue WiFi)

11:30 10.4.3

Presentation Title
A STATIC-PLACEMENT, DYNAMIC-ISSUE FRAMEWORK FOR CGRA LOOP ACCELERATOR

Authors
Zhongyuan Zhao, Department of NaNo/Micro Electronics, CN
Carl Sechen, The University of Texas at Dallas, US

Abstract
This framework includes the compiler that statically places the operations and hardware design, a SPDI CGRA, that automatically schedule the operations. We stress on introducing the SPDI CGRA in this paper. This newly designed hardware model adds transform and control data flow among the PE array. This design lets the hardware share the responsibility for the compiler, making them cooperate to deal with the issuing, placement and routing problem. Evaluation of our study shows that our framework can reach on average 1.28, 1.30 and 1.33 higher than three state-of-the-art SISP CGRA using REGIMap, RS compile flow and the EPIMap approaches respectively. The area overhead is nearly 0.93% per token buffer entry for each PE relative to SISP CGRA.

Download Paper (PDF; Only available from the DATE venue WiFi)
11:00 10.5.1 MACHINE LEARNING ENABLED POWER-AWARE NETWORK-ON-CHIP DESIGN
Speaker: Avinash Kodi, Ohio University, US
Authors: Dominic DiTomaso, Ashif Sikder, Avinash Kodi and Ahmed Louri
Abstract: Although Network-on-Chips (NoCs) are fast becoming pervasive as the interconnect fabric for multicores architectures and systems-on-chips, they still suffer from excessive static and dynamic power consumption. High dynamic power consumption results from switching and storing data within routers/links while excess static power is consumed when routers and links are not utilized for communication and yet have to be powered up. In this paper, we propose LESSON (Learning Enabled Sleepy Storage Links and Routers in NoCs) to reduce both static and dynamic power consumption by power-gating the links and routers at low network utilization and moving the data storage from within the routers to the links at high network utilization. As the network utilization increases from low-to-high, to accommodate more traffic, we design the same channels to flow traffic in either direction, thereby avoiding complex routing or look-ahead wake-up algorithms. Machine learning algorithms predict when to power-gate the channels and routers and when to increase the channel bandwidths such that power savings are maximized while performance penalty is minimized. Our results show that we can improve total network power consumption when compared to conventional NoC buffer designs by 85.6% and when compared with aggressive NoC buffer designs by 31.7%. Our predictor shows marginal performance penalties and by dynamically changing the direction of the links, we can improve packet latency by 14%.
Download Paper (PDF; Only available from the DATE venue WiFi)

11:30 10.5.2 PERFORMANCE EVALUATION AND DESIGN TRADE-OFFS FOR WIRELESS-ENABLED SMART NOC
Speaker: Karthi Duraisamy, Washington State University, US
Authors: Karthi Duraisamy and Partha Pande, Washington State University, US
Abstract: SMART (Single-Cycle Multi-hop Asynchronous Repeated Traversal) NoC architectures enable single cycle data transfers, even between the physically far apart nodes. However, enabling single cycle hops over long distance restricts the achievable clock frequency of the system. In other words, increasing the NoC clock frequency lowers the number of hops that can be traversed in a single-cycle in a conventional SMART NoC. In this work, we demonstrate that by integrating wireless links and a novel look-ahead request mechanism in the SMART NoC, it is possible to enable low-latency and energy efficient data transfers, even when the system is designed with high clock frequencies. For various applications considered in this work, our wireless-enabled SMART (WISMART) NoC achieves on average 33% reduction in message latency compared to the wireline SMART mesh NoC. This network level improvement translates into 16% savings in full system energy-delay-product.
Download Paper (PDF; Only available from the DATE venue WiFi)

12:00 10.5.3 ROBUST TSV-BASED 3D NOC DESIGN TO COUNTERACT ELECTROMIGRATION AND CROSSTALK NOISE
Speaker: Partha Pande, Washington State University, US
Authors: Sourav Das, Janardhan Rao Doppa, Partha Pande and Krishnendu Chakrabarty
Abstract: A 3D network-on-chip (3D NoC) is an enabler for the design of high-performance and energy-efficient manycore chips. Most popular 3D NoCs utilize the Through-Silicon-Via (TSV)-based vertical links (VLSs) as the communication pillar between the planar dies. However, the TSVs in a 3D NoC may fail due to both workload-induced stress and crosstalk capacitance. This failure negatively affects the overall achievable performance of the 3D NoC. In this work, we analyze the joint effects of workload-induced stress and crosstalk on the TSVs due to workload-induced stress and the subsequently lifetime of 3D NoC are too optimistic. Due to the combined effects of workload and crosstalk noise, the lifetime of 3D NoC reduces significantly. Furthermore, we demonstrate that a spare TSV allocation methodology considering the joint effects of workload and crosstalk noise enhances the lifetime of the 3D NoC by a factor of 4.6 compared to when only the workload is considered for a given spare budget of 5%.
Download Paper (PDF; Only available from the DATE venue WiFi)

12:15 10.5.4 PERFORMANCE AND ENERGY AWARE WAVELENGTH ALLOCATION ON RING-BASED WDM 3D OPTICAL NOC
Speaker: Jiating Luo, INRIA/IRISA, FR
Authors: Jiating Luo, Ashraf Elantably, Pham Van-Dung, Cedric Killian, Daniel Chillet, Sébastien Le Beux, Olivier Sentieys and Ian D’Connor
Abstract: Optical Network-on-Chip (ONoC) is a promising communication medium for large-scale Multiprocessor System on Chip (MPSoC). ONoC outperforms classical electrical NoC in terms of throughput and latency. The medium can support multiple transactions at the same time on different wavelengths by using Wavelength Division Multiplexing (WDM). Moreover multiple wavelengths can be used as high-bandwidth channel to reduce transmission time. However, multiple signals sharing simultaneously a waveguide can lead to inter-channel crosstalk noise. This problem impacts the Signal to Noise Ratio (SNR) of the optical signal, which leads to an increase in the Bit Error Rate (BER) at the receiver side. In this paper we first formulate the crosstalk noise and execution time penalties and then propose a Wavelength Allocation (WA) method in a ring-based WDM ONoC allowing to search for performance and energy trade-offs, based on the application constraints. As result, most promising WA solutions are highlighted for a defined application mapping onto 16-core WDM ONoC.
Download Paper (PDF; Only available from the DATE venue WiFi)

12:30 End of session
Lunch Break in Garden Foyer
Keynote Lecture session 11.0 in “Garden Foyer” 1320 - 1350
Lunch Break in the Garden Foyer
On all conference days (Tuesday to Thursday), a buffet lunch will be offered in the Garden Foyer, in front of the session rooms. Kindly note that this is restricted to conference delegates possessing a lunch voucher only. When entering the lunch break area, delegates will be asked to present the corresponding lunch voucher of the day. Once the lunch area is left, re-entrance is not allowed for the respective lunch.
In this session ideas related to approximate computing and neural networks are presented, which can be applied in novel communication and multimedia systems.

EXPLOITING SPECIAL-PURPOSE FUNCTION APPROXIMATION FOR HARDWARE-EFFICIENT QR-DECOMPOSITION

Speaker: Jochen Rust, University of Bremen, DE

Authors: Jochen Rust¹ and Steffen Paul²

¹University of Bremen, DE; ²University Bremen, DE

Abstract

Efficient signal processing takes a key role in application-specific circuit design. For instance, future mobile communication standards, e.g., high-performance industrial mobile communication, require high data rates, low latency and/or high energy-efficiency. Hence, sophisticated algorithms and computing schemes must be explored to satisfy these challenging constraints. In this paper we leverage the paradigm of approximate computing to enable hardware-efficient QR-decomposition for channel precoding. For an efficient computation of the Givens-Rotation, bivariate, non-linear numeric functions are taken into account. An effective design method is introduced leading to highly adapted (special-purpose) functions. For evaluation, our work is tested with different configurations in a Tomlinson-Harashima precoding downlink environment. In addition, a corresponding HDL implementation is set up and logic and physical CMOS synthesis is performed. The comparison to actual references prove our work to be a powerful approach for future mobile communication systems.

Download Paper (PDF; Only available from the DATE venue WiFi)

EMBRACING APPROXIMATE COMPUTING FOR ENERGY-EFFICIENT MOTION ESTIMATION IN HIGH EFFICIENCY VIDEO CODING

Speaker: Muhammad Shaflque, Vienna University of Technology (TU Wien), AT

Authors: Walaa El-Harouni¹, Semeen Rehman², Bharath Srinivas Prabakaran², Akash Kumar², Rehan Hafiz³ and Muhammad Shaflque⁴

¹Private Researcher, DE; ²Technische Universität Dresden, DE; ³Technische Universitaet Dresden, DE; ⁴TU, PK; ⁵Vienna University of Technology (TU Wien), AT

Abstract

Approximate Computing is an emerging paradigm for developing highly energy-efficient computing systems. It leverages the inherent resilience of applications to trade output quality with energy efficiency. In this paper, we present a novel approximate architecture for energy-efficient motion estimation (ME) in high efficiency video coding (HEVC). We synthesized our designs for both ASIC and FPGA design flows. ModelSim gate-level simulations are used for functional and timing verification. We comprehensively analyze the impact of heterogeneous approximation modes on the power/energy-quality tradeoffs for various video sequences. To facilitate reproducible results for comparisons and further research and development, the RTL and behavioral models of approximate SAD architectures and constituting approximate modules are made available at https://sourceforge.net/projects/pacclib/.

Download Paper (PDF; Only available from the DATE venue WiFi)

HARDWARE ARCHITECTURE OF BIDIRECTIONAL LONG SHORT-TERM MEMORY NEURAL NETWORK FOR OPTICAL CHARACTER RECOGNITION

Speaker: Vladimir Rybalkin, University of Kaiserslautern, DE

Authors: Vladimir Rybalkin¹, Mohammad Reza Yousefi², Norbert Wehn³ and Didier Stricker³

¹University of Kaiserslautern, DE; ²Augmented Vision Department, German Research Center for Artificial Intelligence (DFKI), DE; ³German Research Center for Artificial Intelligence (DFKI), DE

Abstract

Optical Character Recognition is conversion of printed or handwritten text images into machine-encoded text. It is a building block of many processes such as machine research, text-to-speech conversion and text mining. Bidirectional Long Short-Term Memory Neural Networks have shown a superior performance in character recognition with respect to other types of neural networks. In this paper, to the best of our knowledge, we propose the first hardware architecture of Bidirectional Long Short-Term Memory Neural Network with Connectionist Temporal Classification for Optical Character Recognition. Based on the new architecture, we present an FPGA hardware accelerator that achieves 459 times higher throughput than state-of-the-art. Visual recognition is a typical task on mobile platforms that usually use two scenarios either the task runs locally on embedded processor or offloaded to a cloud to be run on high performance machine. We show that computationally intensive visual recognition task benefits from being migrated to our dedicated hardware accelerator and outperforms high-performance CPU in terms of runtime, while consuming less energy than low power systems with negligible loss of recognition accuracy.

Download Paper (PDF; Only available from the DATE venue WiFi)

EXTENDING MEMORY CAPACITY OF NEURAL ASSOCIATIVE MEMORY BASED ON RECURSIVE SYNAPTIC BIT REUSE

Speaker: Tianchan Guan, Columbia University, US

Authors: Tianchan Guan¹, Xiaoyang Zeng¹ and Mingoo Seok²

¹Fudan University, CN; ²Columbia University, US

Abstract

Neural associative memory (AM) is one of the critical building blocks for cognitive workloads such as classification and recognition. It learns and retrieves memories as human brain does, i.e., changing the strengths of plastic synapses (weights) based on inputs and retrieving information by information itself. One of the key challenges in designing AM is to extend memory capacity (i.e., memories that a neural AM can learn) while minimizing power and hardware overhead. However, prior arts show that memory capacity scales slowly, often logarithmically or in square root with the total bits of synaptic weights. This makes it prohibitive in hardware and power to achieve large memory capacity for practical applications. In this paper, we propose a synaptic model called recursive synaptic bit reuse, which enables near-linear scaling of memory capacity with total synaptic bits. Also, our model can handle input data that are correlated, more robustly than the conventional model. We experiment our proposed model in Hopfield Neural Networks (HNN) which contains the total synaptic bits of 5K to 32K and find that our model can increase the memory capacity as large as 30x over conventional models. We also study hardware cost via VLSI implementation of HNNs in a 65nm CMOS, confirming that our proposed model can achieve up to 10X area savings at the same capacity over conventional synaptic model.

Download Paper (PDF; Only available from the DATE venue WiFi)

END OF SESSION

Keynote Lecture session 11.0 in "Garden Foyer" 1320 - 1350

Lunch Break in the Garden Foyer

On all conference days (Tuesday to Thursday), a buffet lunch will be offered in the Garden Foyer, in front of the session rooms. Kindly note that this is restricted to conference delegates possessing a lunch voucher only. When entering the lunch break area, delegates will be asked to present the corresponding lunch voucher of the day. Once the lunch area is being left, re-entrance is not allowed for the respective lunch.
The session contains four regular papers and four IP papers addressing different aspects of adaptivity and resilience for Cyber-Physical Systems. The topic of the first paper is distributed architectures for deep neural networks executing on a set of mobile nodes. The second paper considers scheduling of imprecise computation tasks on MPSoC systems taking the uncertainty of harvested energy into account. The final two papers both considers resilience of CPS. The first presents a scheme for preventing GPS-based hijacking of drones and the last considers how to avoid adversaries from learning what is printed using a 3D printer. The four IP papers considers control and scheduling co-design, contract-based design, medical CPS, utility-driven data transmission strategies for CPS.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| 11:00 | 10.7.1| (Best Paper Award Candidate) MODNN: LOCAL DISTRIBUTED MOBILE COMPUTING SYSTEM FOR DEEP NEURAL NETWORK | Speaker: Kent W. Nixon, University of Pittsburgh, US
Authors: Jiachen Mao 1, Xiang Chen 2, Kent W. Nixon 1, Christopher Krieger 2 and Yiran Chen 1
1University of Pittsburgh, US; 2George Mason University, US; 3University of Maryland, Baltimore County, US |
| 11:30 | 10.7.2| ENERGY-ADAPTIVE SCHEDULING OF IMPRECISE COMPUTATION TASKS FOR QOS OPTIMIZATION IN REAL-TIME MPSOC SYSTEMS | Speaker: Tongquan Wei, East China Normal University, CN
Authors: Junlong Zhou 1, Janning Yan 1, Tongquan Wei 1, Mingsong Chen 1 and X, Sharon Hu 2
1East China Normal University, CN; 2University of Notre Dame, US |
| 12:00 | 10.7.3| FIX THE LEAK! AN INFORMATION LEAKAGE AWARE SECURED CYBER-PHYSICAL MANUFACTURING SYSTEM | Speaker: Mohammad Al Faruque, UCI, US
Authors: Sujit Rokka Chhetri 1, Sina Faizi 1 and Mohammad Al Faruque 2
1University of California, Irvine, US; 2University of California Irvine, US |
| 12:15 | 10.7.4| EFFICIENT DRONE HIJACKING DETECTION USING ONBOARD MOTION SENSORS | Speaker: Zhiwei Feng, Northeastern University, China, CN
Authors: Zhiwei Feng 1, Nan Guan 2, Mingsong Lv 1, Weichen Liu 1, Qingxu Deng 1, Xue Lu 4 and Wang Yi 1
1Northeastern University, CN; 2Hong Kong Polytechnic University, HK; 3Chongqing University, CN; 4McGill University, CA |
The goal of this session is to present three concrete examples of innovative wearable devices: a contactless monitoring system using dedicated imaging to accurately measure heart and respiratory rates of neonates, wearable devices integrated in smart textiles for the long-term monitoring of obese patients, as well as a prototype of next-generation, high-quality, mobile ultrasound imaging device.

Authors:
- Amir Aminifar
- Enrico Bini
- Martin Rajman, EPFL, CH
- Patrick Mayor, EPFL, CH

Organiser:

Location / Room:

Date:

10.8a Smart and Wearable Sensors for Health

Date: Thursday 30 March 2017
Time: 11:00 - 12:00
Location / Room: Exhibition Theatre
Organiser:
- Patrick Mayor, EPFL, CH
Moderator:
- Martin Rajman, EPFL, CH

The goal of this session is to present three concrete examples of innovative wearable devices: a contactless monitoring system using dedicated imaging to accurately measure heart and respiratory rates of neonates, wearable devices integrated in smart textiles for the long-term monitoring of obese patients, as well as a prototype of next-generation, high-quality, mobile ultrasound imaging device.
Lunch Break in the Garden Foyer

On all conference days (Tuesday to Thursday), a buffet lunch will be offered in the Garden Foyer, in front of the session rooms. Kindly note that this is restricted to conference delegates possessing a lunch voucher only. When entering the lunch break area, delegates will be asked to present the corresponding lunch voucher of the day. Once the lunch area is being left, re-entrance is not allowed for the respective lunch.

UB10 Session 10

Date: Thursday 30 March 2017
Time: 12:00 - 14:30
Location / Room: Booth 1, Exhibition Area

<table>
<thead>
<tr>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| UB10.1 | A FRAMEWORK FOR VARIATION-AWARE ANALOG CIRCUITS SIZING | Presenters: Ons Lahiouel, Concordia University, CA
Authors: Mohamed H. Zaki and Sofiene Tahar, Concordia University, CA |
| UB10.2 | TFA: TRANSPARENT CODE OFFLOADING ON FPGA | Presenters: Roberto Rigamonti, HEIG-VD/HES-SO, CH
Authors: Anthony Convers, Baptiste Delporte, Xavier Ruppen and Alberto Dassatti, HEIG-VD/HES-SO, CH |

More information ...
TTOOL5G: MODEL-BASED DESIGN OF A 5G UPLINK DATA-LINK LAYER RECEIVER FROM UML/SYSML DIAGRAMS

Presenter: Andrea Enrici, Nokia Bell Labs France, FR

Authors: Julien Lallet, Imran Latif, Ludovic Aprvillle, Renaud Pactel and Adrien Canuel

Abstract: Future 5G networks are expected to provide an increase of 10x in data rates. To meet these requirements, the design of the baseband stations will be designed using mixed architectures, i.e., DSPs, FPGAs. However, efficiently programming these architectures is not trivial due to the drastic increase in complexity of their design space. To overcome this issue, we have to use tools capable of rapidly exploring, partitioning and prototyping the mixed architecture designs of 5G systems. At DATE 2017 University Booth, we demonstrate such a unified tool and show our latest achievements in the automatic code generation engine of TTool/DIPLODOCUS, a UML/SysML framework for the hardware/software co-design of data-flow systems, to support mixed architectures. Our demonstration will show the full design and evaluation of a 5G data-link layer receiver for both a DSP-based and an IP-based designs. We will validate the effectiveness of our solution by comparing automated vs manual designs.

More information ...

AF3-MC: DEVELOPMENT OF MIXED CRITICALITY SYSTEMS USING MBSE

Presenter: Thomas Boehm, fortiss, DE

Authors: Johannes Eder and Sebastian Voss, fortiss, DE

Abstract: AF3-MC (https://af3.fortiss.org/) is an open-source model-based development tool, including a number of different analysis- and verification tools as well as design space exploration functionality, task scheduling depending on a number of system requirements (timing, resource, energy, etc.), and code generators targeting C-code or VHDL. The presented demonstrator illustrates both a SW tool demonstrator and a corresponding HW demonstrator setup to show how a seamless model-based system approach could look like, w.r.t. to mixed-critical applications integrated on a (COTS) MC-platform. A floating ball can be controlled by a person by moving his hand over an US sensor, providing input to the control loop implemented in the high criticality part of the system. The low criticality part of the system which is running on the same CPU consists of the computation of the digits of PI and of the Fibonacci sequence, providing computationally intensive neighbors to the control loop.

More information ...

STACKADROP: A MODULAR DIGITAL MICROFLUIDIC BIOCHIP RESEARCH PLATFORM

Presenter: Oliver Keszebo, University of Bremen, DE

Authors: Maximilian Luenert and Rolf Drechsler, University of Bremen & DFKI GmbH, DE

Abstract: Advances in microfluidic technologies have led to the emergence of Digital Microfluidic Biochips (DMFBs), which are capable of automating laboratory procedures. These DMFBs raised significant attention in industry and academia creating a demand for devices. Commercial products are available but come at a high price. So far, there are two open hardware DMFBs available: the DropBot from WheelLab and the OpenDrop from GaudiLab. The aim of the StackADrop was to create a DMFB with many directly addressable cells while still being very compact. The StackADrop strives to provide means to experiment with different hardware setups. Its main feature are the exchangeable top plates, supporting 256 high-voltage pins. It features SPI, UART and 12C connectors for attaching sensors/actuators and can be connected to a computer using USB for interactive sessions using a control software. The modularity allows to easily test different cell shapes, such as squares, hexagons and triangles.

More information ...

MARGOT: APPLICATION ADAPTATION THROUGH RUNTIME AUTOTUNING

Presenter: Gianluca Palermo, Politecnico di Milano, IT

Authors: Davide Gadioli, Emanuele Vitali and Cristina Silvano, Politecnico di Milano, IT

Abstract: Several classes of applications expose parameters that influence their extra-functional properties, such as the quality of the result or the performance. This leads the application designer to tune these parameters to find the configuration that produces the desired outcome. Given that the application requirements and the resources assigned to each application might vary at runtime, finding a one-fit-all configuration is not a trivial task. For this reason, we implemented the mARGOt framework that enhances an application with an adaptation layer in order to continuously tune the parameters according to the evolving situation. More in detail, mARGOt is composed of a monitoring infrastructure, an application-level adaptation engine and an extra-functional configuration framework based on the separation of concerns paradigm between functional and extra-functional aspects. At the booth, we plan to demonstrate the effectiveness of the proposed infrastructure on three real-life applications.

More information ...

EMU: RAPID FPGA PROTOTYPING OF NETWORK SERVICES IN C#

Presenter: Salvador Galea, University of Cambridge, GB

Authors: Nik Sultanin, Pietro Bressana, David Greaves, Robert Soulé, Andrew W Moore and Noa Zilberman

Abstract: General-purpose CPUs and OS abstractions impose overheads that make it challenging to implement network functions and services in software. On the other hand, programmable hardware such as FPGAs suffer from low-level programming models, which make the rapid development of network services cumbersome. We demonstrate Emu, a framework that makes use of an HLS tool (Kiwi) and enables the execution of high-level descriptions of network services, written in C#, on both x86 and Xilinx FPGA. Emu therefore opens up new opportunities for improved performance and power usage, and enables developers to more easily write network services and functions. We demonstrate C# implementations of network functions, such as Memcached and DNS Server, using Emu running on both x86 and NetFPGA-SUME platform and show that they are competitive to natively written hardware counterparts while providing a superior development and debug environment.

More information ...

TIDES: NON-LINEAR WAVEFORMS FOR QUICK TRACE NAVIGATION

Presenter: Jannic Stoppe, University of Bremen, DE

Author: Rolf Drechsler, University of Bremen / DFKI, DE

Abstract: System trace analysis is mostly done using waveform viewers -- tools that relate signals and their assignments at certain times. While generic hardware design is subject to some innovative visualisation ideas and software visualisation has been a research topic for much longer, these classic tools have been part of the design process since the earlier days of hardware design -- and have not changed much over the decades. Instead, the currently available programs have evolved to look practically the same, all following a familiar pattern that has not changed since their initial appearance. We argue that there is still room for innovation beyond the very classic waveform display though. We implemented a proof-of-concept waveform viewer (codenamed Tides) that has several unique features that go beyond the standard set of features for waveform viewers.

More information ...
As technology slows down, matures, and the industry consolidates, we are presented with opportunities for applying our talents for the analysis, modeling, optimization and solution of difficult large scale problems in adjacent fields. This talk is about one such opportunity in the area of radiation therapy, where Medical Physicists work hand-in-hand with Oncologists to provide life-saving treatments for Cancer. Making the transition from EDA to Medicine required some significant sacrifices and humility - but the end result is a commercial and scientific success and a far greater level of relevance to people’s lives.

More information ...

WE DARE: WEARABLE ELECTRONICS DIRECTIONAL AUGMENTED REALITY

Abstract
Current augmented reality (AR) eyewear solutions require large form factors, weight, cost and energy that reduce usability. In fact, connectivity, image processing, localization, and direction evaluation lead to high processing and power requirements. A multi-antenna system, patented by the industrial partner, enables a new generation of smart eye-wear that elegantly requires less hardware, connectivity, and power to provide AR functionalities. They will allow users to directionally locate nearby radio emitting sources that highlight objects of interest (e.g., people or retail items) by using existing standards like Bluetooth Low Energy, Apple’s iBeacon and Google’s Eddystone. This booth will report the current level of research addressed by the Computer Science Department of University of Verona and the company Wagoo LLC. In the presented demo, different objects emit an "I am here" signal and a prototype of the smart glasses shows the information related to the observed object.

More information ...

THE ENGINEERING TO MEDICINE METAMORPHOSIS

Abstract
We EDA engineers are justifiably proud of the tremendous success that integrated electronics has enjoyed over the last 50 years. After all the world has been irrevocably changed by the pervasive connectivity and computing capability we have enabled. Today’s smart devices are just the beginning of an avalanche of "intelligence" that will be enabled by the internet of things and further change our lives for the better. But it can sometimes be difficult to explain to a layperson what part we have played in this narrative, somehow a 2% improvement in routing density or simulation accuracy sounds quite far from "the next iPhone". As technology slows down, matures, and the industry consolidates, we are presented with opportunities for applying our talents for the analysis, modeling, optimization and solution of difficult large scale problems in adjacent fields. This talk is about one such opportunity in the area of radiation therapy, where Medical Physicists work hand-in-hand with Oncologists to provide life-saving treatments for Cancer. Making the transition from EDA to Medicine required some significant sacrifices and humility - but the end result is a commercial and scientific success and a far greater level of relevance to people’s lives.

End of session
design challenges will be analysed in a broad range of medical applications.

This session will present the current efforts on making optimal electronic designs for biomedical devices. Therefore, the issues of low power consumption, reconfigurability and advanced, modular and low-power wearable solutions.

ULTRA LOW POWER MICROELECTRONICS FOR WEARABLE AND MEDICAL DEVICES

The requirements for wearables and portable medical devices present a number of challenges in terms of integration, autonomy and connectivity, and demand a careful co-design of hardware and software to reach optimum performance. This paper addresses these challenges by way of some recent examples of ASICs designed for ECG, EIT (Electrical Impedance Tomography) and PPG (Photoplethysmography) sensors as well as for non-invasive blood pressure monitoring.

Download Paper (PDF; Only available from the DATE venue WiFi)

DESIGN CHALLENGES FOR WEARABLE EMG APPLICATIONS

Wearable technologies are changing the way we deal with health and fitness in our daily life. Nevertheless, while MEMS-enabled inertial sensors have conquered the consumer market, physiological monitoring has still to face barriers due to the complexity and costs of physical interfaces (e.g. electrodes), the degree of intuitiveness of the interaction and the processing required to reach satisfying performance. These limitations are mitigated by the embedded systems' growing integration of interfacing capabilities and efficient computing power. In this paper, we describe the main applications and the related technologies for the intuitive interaction and processing required to reach satisfying performance. These limitations are mitigated by the embedded systems' growing integration of interfacing capabilities and efficient computing power. In this paper, we describe the main applications and the related technologies for the

Download Paper (PDF; Only available from the DATE venue WiFi)
Coffee Break 10:30 - 11:30
Coffee Break 16:00 - 17:00

11.2 Emerging Technologies for Future Memory Design

Date: Thursday 30 March 2017
Time: 14:00 - 15:30
Location / Room: 4BC

Chair: Weisheng Zhao, Beihang University, CN
Co-Chair: Jean-Michel Portal, Aix-Marseille Université, FR

Memory design based on emerging technologies is critical for the future VLSI design targeting low power and high performance. This session involves novel design method and evaluation tool for emerging technologies (i.e. STT-MRAM, Racetrack memory, Phase Change Memory and Ferroelectric memory etc.) including variation aware design, novel architecture implementation and reliability concern.

14:00 11.2.1 (Best Paper Award Candidate) HYBRID VC-MTJ/CMOS NON-VOLATILE STOCHASTIC LOGIC FOR EFFICIENT COMPUTING
Speaker: Shaodi Wang, University of California, Los Angeles, US
Authors: Shaodi Wang¹, Saptadeep Pal², Tianmu Li², Andrew Pan², Cecile Grezes³, Pedram Khalili-Amiri³, Kang L. Wang³ and Puneet Gupta²
¹University of California, Los Angeles, US; ²UCLA, US

Abstract
In this paper, we propose a non-volatile stochastic computing (SC) scheme using voltage-controlled magnetic tunnel junction (VC-MTJ) and negative differential resistance (NDR). The proposed design includes a VC-MTJ based true stochastic bit stream generator and VC-MTJ and NDR based stochastic adder, multiplier, register, which are experimentally demonstrated using 60nm VC-MTJ and CMOS NDR connected on die. These components are then used to realize FIR filter and AdaBoost (machine-learning algorithm). 3X - 37X energy advantage is shown for the proposed SC compared with CMOS binary arithmetic ASIC and SC designs.

Download Paper (PDF; Only available from the DATE venue WiFi)

14:30 11.2.2 DESIGN AND BENCHMARKING OF FERROELECTRIC FET BASED TCAM
Speaker: Xunzhao Yin, University of Notre Dame, US
Authors: Xunzhao Yin, Michael Niemier and X. Sharon Hu, University of Notre Dame, US

Abstract
We consider how emerging transistor technologies, specifically ferroelectric field effect transistors (or FeFETs), can realize compact and energy efficient ternary content addressable memories (TCAMs). As Moore's Law-based performance scaling trends slow, and many computational tasks of interest are now more data-centric than compute-centric, researchers are looking to improve performance/save energy by integrating efficient and compact logic-processing elements into various levels of the memory hierarchy. Potential benefits include reduced I/O traffic, energy/delay from data transfers, etc. A TCAM is an example of a logic-in-memory element that is ubiquitous in routers, caches, databases, and even neural networks. Not surprisingly, researchers continue to study how emerging technologies could lead to improved TCAMs. Recent work has considered how non-volatile (NV) memory technologies (e.g., resistive random access memory (ReRAM) or magnetic tunnel junctions (MTJs)) could best be used to construct low energy, NV TCAMs. However, acceptable Ron-Roff ratios and the two terminal nature of these devices introduce energy and area overheads. Due to hysteresis in a device's I-V curve, an FeFET-based NV TCAM, offers low area overhead, as well as search energies and search speeds that are superior to other TCAM designs (i.e., based on MTJ, ReRAM and CMOS in array- and architectural-level evaluations.)

Download Paper (PDF; Only available from the DATE venue WiFi)
15:00 11.2.3 LEVERAGING ACCESS PORT POSITIONS TO ACCELERATE PAGE TABLE WALK IN DWM MAIN MEMORY
Speaker: Chengmo Yang, University of Delaware, US
Authors: Hoda Aghaei Khouzani 1, Pouya Fotouhi 2, Chengmo Yang 1 and Guang R. Gao 1
1University of Delaware, US; 2Department of Electrical and Computer Engineering, University of Delaware, US
Abstract
Domain Wall Memory (DWM) with ultra-high density and comparable read/write latency to SRAM/DRAM is an attractive replacement for CMOS-based devices. Unlike SRAM/DRAM, DWM has non-uniform data access latency that is proportional to the number of shift operations. While previous works have demonstrated the feasibility of using DWM as main memory and have proposed different ways to alleviate the impact of shift operations, none of them have addressed the performance-critical metadata accesses, in particular page table accesses. To bridge this gap, this paper aims at accelerating page table walk in DWM main memory from two innovative aspects. First of all, we propose a new page table layout and leverage the positions of access ports in DWM to differentiate the state of page table entries. In addition, we propose a technique to pre-align the access ports to the positions to be accessed in the near future, thus hiding shift latency to the maximum extent. Since both address translation and context switching are affected by page table access latency, the proposed technique can effectively improve system performance and user experience.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:15 11.2.4 VAET-STT: A VARIATION AWARE ESTIMATOR TOOL FOR STT-MRAM BASED MEMORIES
Speaker: Sarath Mohanachandran Nair, KIT, Germany, DE
Authors: Sarath Mohanachandran Nair 1, Rajendra Bishnoi 2, Mohammad Saber Golanbari 1, Fabian Oboril 1 and Mehdi Tahoori 1
1Karlsruhe Institute of Technology, DE; 2Karlsruhe Institute of Technology, DE
Abstract
Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM) is a promising candidate to replace CMOS based on-chip memories due to its advantages such as non-volatility, high density and scalability. However, its stochastic switching and higher sensitivity to process variation compared to CMOS memories can significantly affect its performance, energy and reliability. Although a few works exist which analyze the impact of process variation at the bit-cell level, such analysis at the system level is missing. We have bridged this gap in our work. Specifically, we quantify the effect of stochasticity and process variations from the cell-level to the overall memory system and perform a variation-aware memory configuration optimization for energy or performance while meeting reliability constraints. Our system-level variation-aware framework has been built on top of the well-known NVMSim engine. The results show that our framework can provide more realistic margins and the optimized variation-aware memory configuration could be significantly different from the conventional framework.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:30 11.2.5 PROTECT NON-VOLATILE MEMORY FROM WEAR-OUT ATTACK BASED ON TIMING DIFFERENCE OF ROW BUFFER HIT/MISS
Speaker: Haiyu Mao, Tsinghua University, CN
Authors: Haiyu Mao 1, Xian Zhang 2, Guanyu Sun 2 and Jiwu Shu 1
1Tsinghua University, CN; 2Peking University, CN
Abstract
Non-volatile Memories (NVMs), such as PCM and ReRAM, have been widely proposed for future main memory design because of their low standby power, high storage density, fast access speed. However, these NVMs suffer from the write endurance problem. In order to prevent a malicious program from wearing out NVMs deliberately, researchers have proposed various wear-leveling methods, which remap logical addresses to physical addresses randomly and dynamically. However, we discover that side channel leakage based on NVM row buffer hit information can reveal details of address remappings. Consequently, it can be leveraged to side-step the wear-leveling. Our simulation shows that the proposed attack method in this paper can wear out a NVM within 137 seconds, even with the protection of state-of-the-art wear-leveling schemes. To counteract this attack, we further introduce an effective countermeasure named Intra-Row Swap (IRS) to hide the wear-leveling details. The basic idea is to enable an additional intra-row block swap when a new logical address is remapped to the memory row. Experiments demonstrate that IRS can secure NVMs with negligible timing/energy overhead, compared with previous works.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:32 11.2.6 EFFECTS OF CELL SHAPES ON THE ROUTABILITY OF DIGITAL MICROFLUIDIC BIOCHIPS
Speaker: Oliver Keszöcze, University of Bremen, DE
Authors: Kevin Leonard Schneider 1, Oliver Keszöcze 1, Jannis Stoppe 1 and Rolf Drechsler 2
1University of Bremen, DE; 2University of Bremen/DFKI GmbH, DE
Abstract
Digital microfluidic biochips (DMFBs) are an emerging technology promising a high degree of automation in laboratory procedures by means of manipulating small discretized amounts of fluids. A crucial part in conducting experiments on biochips is the routing of discretized droplets. While doing so, droplets must not enter each others’ interference region to avoid unintended mixing. This leads to cells in the proximity of the droplet being impassable for others. For different cell shapes, the effect of these temporary blockages varies as the adjacency of cells changes with their shapes. Yet, no evaluation with respect to routability in relation to cell shapes has been conducted so far. This paper analyses and compares various tessellations for the field of cells. Routing benchmarks are mapped to these and the results are compared in order to determine if and how cell shapes affect the performance of DMFBs, showing that certain cell shapes are superior to others.
Download Paper (PDF; Only available from the DATE venue WiFi)
reconfigurable array architectures targeting emerging applications such as Hadoop map reduce framework and neural networks.

This session introduces new approaches for building reconfigurable accelerators and heterogeneous architectures integrating big-little cores, FPGA hardware, and coarse grain reconfigurable array architectures targeting emerging applications such as Hadoop map reduce framework and neural networks.

Houman Homayoun, George Mason University, US

Chair:
Georgios Keramidas, Think Silicon S.A./Technological Educational Institute of Western Greece, GR

Co-Chair:
Houman Homayoun, George Mason University, US

This session introduces new approaches for building reconfigurable accelerators and heterogeneous architectures integrating big-little cores, FPGA hardware, and coarse grain reconfigurable array architectures targeting emerging applications such as Hadoop map reduce framework and neural networks.

11.3 Exploiting Heterogeneity for Big Data Computing

Date: Thursday 30 March 2017
Time: 14:00 - 15:30
Location / Room: 3BC

This session introduces new approaches for building reconfigurable accelerators and heterogeneous architectures integrating big-little cores, FPGA hardware, and coarse grain reconfigurable array architectures targeting emerging applications such as Hadoop map reduce framework and neural networks.

Soheil Hashemi, Nicholas Anthony, Hokchhay Tann, Iris Bahar and Sherief Reda, Brown University, US

Authors
Sherief Reda, Brown University, US

Speaker
Soheil Hashemi, Nicholas Anthony, Hokchhay Tann, Iris Bahar and Sherief Reda, Brown University, US

A NOVEL ZERO WEIGHT/ACTIVATION-AWARE HARDWARE ARCHITECTURE OF CONVOLUTIONAL NEURAL NETWORK

Abstract
It is imperative to accelerate convolutional neural networks (CNNs) due to their ever-widening application areas from server, mobile to IoT devices. Based on the fact that CNNs can be characterized by significant amount of zero values in both kernel weights (under quality-preserving pruning) and activations (when rectified linear units are applied), we propose a novel architecture of hardware accelerator for CNNs which exploits zero values in both weights and activations. We also report a zero-induced load imbalance problem encountered in the zero-aware parallel architecture and present a zero-aware kernel allocation. In our experiments, we designed a cycle-accurate model, RTL and layout designs of the proposed architecture. In our evaluations with two real deep CNNs, pruned AlexNet and VGG, our proposed architecture offers 4x/1.8x times (AlexNet [1]) and 5.2x/2.1x times (VGG-16 [2]) speedup compared with state-of-the-art zero-agnostic/zero activation-aware architectures.

Download Paper (PDF; Only available from the DATE venue WiFi)

A MECHANISM FOR ENERGY-EFFICIENT REUSE OF DECODING AND SCHEDULING OF X86 INSTRUCTION STREAMS

Abstract
Current superscalar x86 processors decompose each CISC instruction (variable-length and with multiple addressing modes) into multiple RISC-like µops at runtime so they can be pipelined and scheduled for concurrent execution. This challenging and power-hungry process, however, is usually repeated several times on the same instruction sequence, inefficiently producing the very same decoded and scheduled µops. Therefore, we propose a transparent mechanism to save the decoding and scheduling transformation for later reuse, so that next time the same instruction sequence is found it can automatically bypass the costly pipeline stages involved. We use a coarse-grained reconfigurable array as a means to save this transformation, since its structure enables the recovery of µops already allocated in time and space, and also larger ILP exploitation than superscalar processors. The technique can reduce the energy consumption of a powerful 8-issue superscalar by 31.4% at low area costs, while also improving performance by 32.6%.

Download Paper (PDF; Only available from the DATE venue WiFi)

UNDERSTANDING THE IMPACT OF PRECISION QUANTIZATION ON THE ACCURACY AND ENERGY OF NEURAL NETWORKS

Abstract
Deep neural networks are gaining in popularity as they are used to generate state-of-the-art results for a variety of computer vision and machine learning applications. At the same time, these networks have grown in depth and complexity in order to solve harder problems. Given the limitations in power budgets dedicated to these networks, the importance of low-power, low-memory solutions has been stressed in recent years. While a large number of dedicated hardware using different precisions has recently been proposed, there exist no comprehensive study of different bit precisions and arithmetic in both inputs and network parameters. In this work, we address this issue and perform a study of different bit-precisions in neural networks (from floating-point to fixed-point, powers of two, and binary). In our evaluation, we consider and analyze the effect of precision scaling on both network accuracy and hardware metrics including memory footprint, power and energy consumption, and design area. We also investigate training-time methodologies to compensate for the reduction in accuracy due to limited bit precision and demonstrate that in most cases, precision scaling can deliver significant benefits in design metrics at the cost of very modest decreases in network accuracy. In addition, we propose that a small portion of the benefits achieved when using lower precisions can be forfeited to increase the network size and therefore the accuracy. We evaluate our experiments, using three well-recognized networks and datasets to show its generality. We investigate the trade-offs and highlight the benefits of using lower precisions in terms of energy and memory footprint.

Download Paper (PDF; Only available from the DATE venue WiFi)
11.3.4 Advances in Timing and Layout

15:15

BIG VS LITTLE CORE FOR ENERGY-EFFICIENT HADOOP COMPUTING

Speaker:
Amey Kulkarni, University of Maryland Baltimore County, US

Authors:
Amey Kulkarni1, Colin Shea2, Houman Homayoun3 and Tinoosh Mohsenin2
1University of Maryland, Baltimore County, US; 2University of Maryland Baltimore County, US; 3George Mason University, US

Abstract
Ever-growing IoT demands big data processing and cognitive computing on mobile and battery operated devices. However, big data processing on low power embedded cores is challenging due to their limited communication bandwidth and on-chip storage. Additionally, IoT and cloud-based computing demand low overhead security kernels to avoid data breaches. In this paper, we propose a Light-weight Encryption using Scalable Sketching (LESS) framework for big data sketching and encryption using One-Time Random Linear Projections (OTRLP). OTRLP encoded matrix makes the Known Plaintext Attacks (KPA) ineffective, and attackers cannot gain significant information from plaintext-ciphertext pair. LESS framework can reduce data up to 67% with 3.81~dB signal-to-reconstruction error rate (SRER). This framework has two important kernels "sketching" and "sketch-reconstruction", the latter is computationally intensive and costly. We propose to accelerate the sketch reconstruction using Orthogonal Matching Pursuit (OMP) on a domain specific many-core hardware named Power Efficient Nano Cluster (PENC) designed by authors. Detailed performance and power analysis suggests that PENC platform has 15x and 200x less energy consumption and 8x and 177x faster reconstruction time as compared to low power ARM CPU, and K1 GPU, respectively. To demonstrate efficiency of LESS framework, we integrate it with Hadoop MapReduce platform for objects and scenes identification application. The full hardware integration consists of tiny ARM cores which perform task scheduling and objects identification application, while PENC acts as an accelerator for sketch reconstruction. The full hardware integration results show that the LESS framework achieves 46% reduction in data transfers with very low execution overhead of 0.11% and negligible energy overhead of 0.001% when tested for 2.6GB streaming input data. The heterogeneous LESS framework requires 2x less transfer time and achieves 2.25x higher throughput per watt compared to MapReduce platform.

Download Paper (PDF; Only available from the DATE venue WiFi)

15:30

LESS: BIG DATA SKETCHING AND ENCRYPTION ON LOW POWER PLATFORM

Speaker:
Amey Kulkarni, University of Maryland Baltimore County, US

Authors:
Amey Kulkarni1, Colin Shea2, Houman Homayoun3 and Tinoosh Mohsenin2
1University of Maryland, Baltimore County, US; 2University of Maryland Baltimore County, US; 3George Mason University, US

Abstract
TRUNCAPP: A TRUNCATION-BASED APPROXIMATE DIVIDER FOR ENERGY EFFICIENT DSP APPLICATIONS

Speaker:
Shaghayegh Vahdat, University of Tehran, IR

Authors:
Shaghayegh Vahdat1, Mehdi Kamal1, Ali Afzali-Kusha1, Zainalabedin Navabi1 and Massoud Pedram2
1University of Tehran, IR; 2University of Southern California, US

Abstract
In this paper, we present a high speed yet energy efficient approximate divider where the division operation is performed by multiplying the dividend by the inverse of the divisor. In this structure, truncated value of the dividend is multiplied exactly (approximately) by the approximate inverse value of divisor. To assess the efficacy of the proposed divider, its design parameters are extracted and compared to those of a number of prior art dividers in a 45nm CMOS technology. Results reveal that this structure provides 66% and 52% improvements in the area and energy consumption, respectively, compared to the most advanced prior art approximate divider. In addition, delay and energy consumption of the division operation are reduced about 94.4% and 99.93%, respectively, compared to those of an exact SRT radix-4 divider. Finally, the efficacy of the proposed divider in image processing application is studied.

Download Paper (PDF; Only available from the DATE venue WiFi)

15:30

Coffee Break in Exhibition Area

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

11.4 Advances in Timing and Layout

Date: Thursday 30 March 2017
Time: 14:00 - 15:30
Location / Room: 3A
Chair: Mark Po-Hung Lin, National Chung Cheng University, TW
Co-Chair: Ibrahim Elfadel, Masdar Institute of Technology, AE
This session focuses on issues related to timing and layout in the presence of manufacturing variability and photolithographic limitations. The first paper reduces pessimism in timing analysis by estimating path sensitization while accounting for delay variations. The second paper enables patterning with reduced wirelength and overlay violation through placement refinement. The third paper improves manufacturability with an optimization algorithm for cut locations in line-end process. The last paper discusses clock tree synthesis to reduce delay sensitivity mismatch with gate delay circuitry.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>11.4.1</td>
<td>QUANTIFYING ERROR: EXTENDING STATIC TIMING ANALYSIS WITH PROBABILISTIC TRANSITIONS</td>
<td>Kevin Murray, University of Toronto, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Kevin Murray, Andrea Suardi, Vaughn Betz and George Constantinides</td>
<td>1University of Toronto, Canada; 2Imperial College, GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: Timing analysis is a cornerstone of the digital design process. Statistical Static Timing Analysis was introduced to reduce pessimism by modelling device delay variations. However it ignores circuit logic, which may cause some timing paths to never or only rarely be sensitized. We introduce a general timing analysis approach and tool to calculate the probability that individual timing paths are sensitized, enabling the calculation of bounding delay distributions over all input combinations. We show the connection to the well-known #SAT problem and present approaches to improve scalability, achieving average results 46 to 32% less pessimistic than Static Timing Analysis while running 14.6 to 44.0 times faster than Monte-Carlo timing simulation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td>11.4.2</td>
<td>ON REFINING STANDARD CELL PLACEMENT FOR SELF-ALIGNED DOUBLE PATTERNING</td>
<td>Ye-Hong Chen, National Tsing Hua University, TW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Ting-Chi Wang, National Tsing Hua University, TW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: In this paper, we study the problem of refining a standard cell placement for self-aligned double patterning (SADP), which asks to simultaneously refine a detailed placement and find a valid SADP layout decomposition such that both overlay violation and wirelength are as small as possible. We first present an algorithm that adopts the technique of white space insertion for an SADP-aware single-row placement problem. Based on the single-row algorithm, we then describe an approach to the addressed placement refinement problem. Finally, we report encouraging experimental results to support the efficacy of our approach.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>11.4.3</td>
<td>CUT MASK OPTIMIZATION FOR MULTI-PATTERNING DIRECTED SELF-ASSEMBLY LITHOGRAPHY</td>
<td>Ting-Chi Wang, National Tsing Hua University, TW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Wachirawit Ponghiran, Wachirawit Ponghiran, Seongbo Shim and Youngsso Sin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors: Wachirawit Ponghiran, Seongbo Shim, Youngsso Sin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: Line-end cut process has been used to create very fine metal wires in sub-14nm technology. Cut patterns split regular line patterns into a number of wire segments with some segments being used as actual routing wires. In sub-7nm technology, cuts are smaller than optical resolution limit, and a directed self-assembly lithography with multiple patterning (MP-DSAL) is considered as a patterning solution. We address cut mask optimization problem for MP-DSAL, in which cut locations are determined in such a way that cuts are grouped into manufacturable clusters and assigned to one of masks without MP coloring conflicts; minimizing wire extensions is also pursued in the process. Only a restricted version of this problem has been addressed before while we do not assume any such restrictions. The problem is formulated as ILP first, and a fast heuristic algorithm is also proposed for application to larger circuits. Experimental results indicate that the ILP can remove all coloring conflicts, and reduce total wire extensions by 93% on average compared to those obtained by the restricted approach. Heuristic achieves a similar result with less than 1% of coloring conflicts and 91% reduction in total wire extensions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
<td></td>
</tr>
<tr>
<td>15:15</td>
<td>11.4.4</td>
<td>CLOCK DATA COMPENSATION AWARE CLOCK TREE SYNTHESIS IN DIGITAL CIRCUITS WITH ADAPTIVE CLOCK GENERATION</td>
<td>Youngsso Song, KAIST, KR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Saibal Mukhopadhyay, Georgia Institute of Technology, US</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors: Saibal Mukhopadhyay, Georgia Institute of Technology, US</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: Adaptive clock generation to track critical path delay enables lowering supply voltage with improved timing slack under supply noise. This paper presents how to synthesize clock tree in adaptive clocking to fully exploit the clock data compensation (CDC) effect in digital circuits. The paper first provides analytical proof of ideal CDC effect for ring oscillator based clock generation. Second, the paper analyzes non-ideal CDC effect in a gate dominated critical path and wire dominated clock tree design. The paper shows the delay sensitivity mismatch between clock tree and critical path can degrade CDC effect by analyzing timing slack under power supply noise (PSN). Finally, the paper proposes simple but efficient clock tree synthesis (CTS) technique to maximize timing slack under PSN in digital circuits with adaptive clock generation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>IPS-11</td>
<td>TIMING-AWARE WIRE WIDTH OPTIMIZATION FOR SADP PROCESS</td>
<td>Youngsso Song, KAIST, KR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker: Youngsso Song, Sangmin Kim and Youngsso Shin, School of Electrical Engineering, KAIST, KR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract: With the scaling of the minimum feature size, RC delay of interconnect is relatively getting more critical in next node technology. SADP is one of the popular processes used in sub-7nm technology. For SADP process, we can increase wire width using patterns formed by block mask, which can reduce wire resistance of critical nets. We determine the direction and length of each wire widening, so that the resulting layout is conflict-free. We convert this as a maximum weight independent set problem and solve this by formulating an ILP. For various test circuits, the wire resistance of critical nets was reduced on average by 18.5%, which led to 9.9% reduction in clock period. The wire width optimization in SADP process can give an insight into timing optimization through the enhancement of fabrication process.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
<td></td>
</tr>
</tbody>
</table>
Coffee Break

On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

- **Tuesday, March 28, 2017**
 - Coffee Break 10:30 - 11:30
 - Coffee Break 16:00 - 17:00

- **Wednesday, March 29, 2017**
 - Coffee Break 10:00 - 11:00
 - Coffee Break 16:00 - 17:00

- **Thursday, March 30, 2017**
 - Coffee Break 10:00 - 11:00
 - Coffee Break 15:30 - 16:00

11.5 Smart Energy and Automotive Systems

Date: Thursday 30 March 2017
Time: 14:00 - 15:30
Location / Room: 3C

Chair:
Geoff Merrett, University of Southampton, GB

Co-Chair:
Michele Magno, ETHZ, CH

This session presents the state of the art in efficient automotive software, smart battery systems and the latest strives toward energy neutral wireless communications systems.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| 14:00 | 11.5.1 | ON REDUCING BUSY WAITING IN AUTOSAR VIA TASK-RELEASE-DELTA-BASED RUNNABLE REORDERING | Robert Höttger, Dortmund University of Applied Sciences and Arts, DE
Authors:
Robert Höttger¹, Olaf Spinczyk² and Burkhard Igel³
¹FH-Dortmund, DE; ²TU-Dortmund, DE
Abstract
The increasing amount of innovative software technologies in the automotive domain comes with challenges regarding inevitable distributed multi-core and many-core methodologies. Approaches for general purpose solutions have been studied over decades but do not completely meet the specific constraints (e.g. timing, safety, reliability, affinity, etc.) for AUTOSAR compliant applications. AUTOSAR utilizes a spinlock mechanism in combination with the priority ceiling protocol in order to provide mutually exclusive access to shared resources. The essential disadvantages of spinlocks are unpredictable task response times on the one hand and wasted computation time caused by busy waiting periods on the other hand. In this paper, we propose a concept of task-release-delta-based runnable reordering for the purpose of sequentializing parallel accesses to shared resources, resulting in reduced task response times, improved timing predictability, and increased parallel efficiency respectively. To achieve this, runnables that represent smallest executable program parts in AUTOSAR are reordered based on precedence constraints. Our experiments among industrial use cases show that task response times can be reduced by up to 18.2%.
Download Paper (PDF; Only available from the DATE venue WiFi) |
| 14:30 | 11.5.2 | POWER NEUTRAL PERFORMANCE SCALING FOR ENERGY HARVESTING MP-SOCS | Benjamin Fletcher, University of Southampton, GB
Authors:
Benjamin Fletcher, Domenico Balsamo and Geoff Merrett, University of Southampton, GB
Abstract
Using energy ‘harvested’ from the environment to power autonomous embedded systems is an attractive ideal, alleviating the burden of periodic battery replacement. However, such energy sources are typically low-current and transient, with high temporal and spatial variability. To overcome this, large energy buffers such as supercapacitors or batteries are typically incorporated to achieve energy neutral operation, where the energy consumed over a certain period of time is equal to the energy harvested. Large energy buffers, however, pose environmental issues in addition to increasing the size and cost of systems. In this paper we propose a novel power neutral performance scaling approach for multiprocessor system-on-chips (MP-SoCs) powered by energy harvesting. Under power neutral operation, the system’s performance is dynamically scaled through DVFS and DPM such that the instantaneous power consumption is approximately equal to the instantaneous harvested power. Power neutrality means that large energy buffers are no longer required, while performance scaling ensures that available power is effectively utilised. The approach is experimentally validated using the Samsung Exynos5422 big.LITTLE SoC directly coupled to a monocrystalline photovoltaic array, with only 47mF of intermediate energy storage. Results show that the proposed approach is successful in tracking harvested power, stabilising the supply voltage to within 5% of the target value for over 93% of the test duration, resulting in the execution of 69% more instructions compared to existing static approaches.
Download Paper (PDF; Only available from the DATE venue WiFi) |
15:00 11.5.3 EFFICIENT DECENTRALIZED ACTIVE BALANCING STRATEGY FOR SMART BATTERY CELLS
Speaker: Nitin Shrivaraman, Nanyang Technological University, SG
Authors: Nitin Shrivaraman1, Arvind Easwaran1 and Sebastian Steinhorst2
1 Nanyang Technological University, SG; 2 Technical University of Munich, DE
Abstract
Among series-connected cells in large battery packs, such as those found in electric vehicles, a charge imbalance develops over time due to manufacturing and temperature variations. Therefore, active balancing strategies can be employed in Battery Management Systems (BMSs) to attain a charge balance among cells by transferring charge between them, maximizing the usable capacity of the battery pack. Recently, decentralized BMS architectures with smart battery cells have been developed, in which balancing strategies can operate by local cooperation between the cells without requiring global coordination. In this paper, we propose a decentralized active balancing strategy for smart cells where we identify boundary cells having special properties. These boundary cells enable to divide the global balancing problem into independent subproblems, where local decisions on charge transfers eventually converge to a globally balanced battery pack. The proposed strategy is implemented in a simulator framework and compared with two decentralized state-of-the-art strategies. Our results show significantly improved performance and scalability of the proposed strategy in terms of charge transfer losses and communication overhead between cells, while maintaining a comparable time to balance.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:15 11.5.4 WULORA: AN ENERGY EFFICIENT IOT END-NODE FOR ENERGY HARVESTING AND HETEROGENEOUS COMMUNICATION
Speaker: Michele Magno, ETH Zurich, CH
Authors: Michele Magno1, Fawzi Ait Aoudia2, Matthieu Gautier1, Olivier Berder1 and Luca Benini3
1 ETH Zurich, CH; 2 Irisa - University of Rennes, FR; 3 University of Rennes 1, IRISA, INRIA, FR; 4 Irisa - University of Rennes, FR; 5 Universitá di Bologna, IT
Abstract
Intelligent connected objects, which build the IoT, are electronic devices usually supplied by batteries that significantly limit their life-time. These devices are expected to be deployed in very large numbers, and manual replacement of their batteries will severely restrict their large-scale or widearea deployments. Therefore energy efficiency is of utmost importance in the design of these devices. The wireless communication between the distributed sensor devices and the host stations can consume significant energy, even more when data needs to reach several kilometers of distance. In this paper, we present an energy-efficient multi-sensing platform that exploits energy harvesting, long-range communication and ultra-low-power shortrange wake-up radio to achieve self sustainability in a kilometer range network. The proposed platform is designed with power efficiency in mind and exploits the always-on wake-up radio as both receiver and a power management unit to significantly reduce the quiescent current even continuously listening the wireless channel. Moreover the platform allows the building of an heterogeneous long-short range network architecture to reduce the latency and reduce the power consumption in listening phase at only 4.6uW. Experimental results and simulations demonstrate the benefits of the proposed platform and heterogeneous network.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:30 IPS-12, 84 FORMAL TIMING ANALYSIS OF NON-SCHEDULED TRAFFIC IN AUTOMOTIVE SCHEDULED TSN NETWORKS
Speaker: Jürgen Teich, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE
Authors: Fedor Smirnov1, Michael Glaß2, Felix Reimann3 and Jürgen Teich
1 Friedrich-Alexander-Universität Erlangen-Nürnberg, DE; 2 TUM University, DE; 3 Audi Electronics Venture GmbH, DE
Abstract
To cope with requirements for low latency, the upcoming Ethernet standard Time-Sensitive Networking (TSN) provides enhancements for scheduled traffic, enabling mixed-criticality networks where critical messages are sent according to a system-wide schedule. While these networks provide a completely predictable behavior of the scheduled traffic by construction, timing analysis of the critical non-scheduled traffic with hard deadlines remains an unsolved issue. State-of-the-art analysis approaches consider the interference that unscheduled messages impose on each other, but there is currently no approach to determine the worst-case interference that can be imposed by scheduled traffic, so-called schedule interference (SI), without relying on restrictions of the shape of the schedule. Considering all possible interference scenarios during each calculation of the SI is impractical, as it results in an explosion of the computation time. As a remedy, this paper proposes 1) an approach to integrate the analysis of the worst-case SI into state-of-the-art timing analysis approaches and 2) preprocessing techniques that reduce the computation time of the SI-calculation by several orders of magnitude without introducing any pessimism.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:31 IPS-13, 368 ULTRA LOW-POWER VISUAL ODOMETRY FOR NANO-SCALE UNMANNED AERIAL VEHICLES
Speaker: Daniele Palossi, ETH Zurich, CH
Authors: Daniele Palossi1, Andrea Marongiu2 and Luca Benini3
1 ETH - Zurich, CH; 2 Swiss Federal Institute of Technology in Zurich (ETHZ), CH; 3 Università di Bologna, IT
Abstract
One of the fundamental functionalities for autonomous navigation of Unmanned Aerial Vehicles (UAVs) is the hovering capability. State-of-the-art techniques for implementing hovering on standard-size UAVs process camera stream to determine position and orientation (visual odometry). Similar techniques are considered unfeasible in the context of nano-scale UAVs (i.e., few centimeters of diameter), where the ultra-constrained power-enervelopes of tiny rotor-crafts limit the on-board computational capabilities to those of low-power microcontrollers. In this work we study how the emerging ultra-low-power parallel computing paradigm could enable the execution of complex hovering algorithms onto nano-scale UAVs. We provide insight on the software pipeline, the parallelization opportunities and the impact of several algorithmic enhancements. Results demonstrate that the proposed software flow and architecture can deliver unprecedented GOPS/W, achieving 117 frame-per-second within a power envelope of 10 mW.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:32 IPS-14, 598 LONG RANGE WIRELESS SENSING POWERED BY PLANT-MICROBIAL FUEL CELL
Speaker: Maurizio Rossi, University of Trento, IT
Authors: Maurizio Rossi, Pietro Tosato, Luca Gemma, Luca Torquati, Cristian Catania, Sergio Camalò and Davide Brunelli, University of Trento, IT
Abstract
Going low power and having a low or neutral impact on the environment is key for embedded systems, as pervasive and wearable consumer electronics is growing. In this paper, we present a self-sustaining, ultra-low power device, supplied by a Plant-Microbial Fuel Cell (PMFC) and capable of smart sensing and long-range communication. The use of a PMFC as a power source is challenging but has many advantages like the only requirement of watering the plant. The system uses aggressive power management thanks to FRAM technology exploited to retain microcontroller status and to shutdown electronics without losing context information. Experimental results show that the proposed system paves the way to energy neutral sensors powered by biosystems available almost anywhere on Earth.
Download Paper (PDF; Only available from the DATE venue WiFi)
provides a solution for estimating multiprocessor expected lifetime. The section presents two papers investigating the effects of soft errors on critical registers and hardware methods to detect intrusion attacks in microprocessors. A third paper

Authors

Antonio Miele, Politecnico di Milano, IT

Co-Chair:

Maksim Jenihhin, Tallinn University of Technology, EE

Chair:

Location / Room:

Time:

Date:

11.6 Dependable microprocessors and systems

Date: Thursday 30 March 2017

Time: 14:00 - 15:30

Location / Room: SA

Chair:

Maksim Jenihhin, Tallinn University of Technology, EE

Co-Chair:

Antonio Miele, Politecnico di Milano, IT

The section presents two papers investigating the effects of soft errors on critical registers and hardware methods to detect intrusion attacks in microprocessors. A third paper provides a solution for estimating multiprocessor expected lifetime.

Authors

Alexandre Lombard, UTBM, FR

Junchi Ma, School of Computer Science and Engineering, Southeast University, CN

Abstract

As process technology scales, electronic devices become more susceptible to soft error induced by radiation. The stack in the memory implements procedure calls and its behavior under soft error has not been studied yet. To analyze the effects of soft error on the stack behavior, we conduct a series of fault injection experiments in the IA-32 instruction set architecture. The injection targets are the ESP register (used as the stack pointer) and the EBP register (used as the stack-frame base pointer). We obtain a few important observations from the fault injection experiment. Results show that injections on ESP lead to silent data corruption (SDC) or benign only if the flipped ESP points to another return address when executing the RET instruction, otherwise most of the injections cause crash. The injected bits of these SDC and benign cases are distributed in the particular bits (4-7) and the reason for the distribution is given. Moreover, flipped EBP may cause a series of infinite return operations, which is defined as return cycle. We describe the basic mechanism of return cycle and the essential condition for its occurrence.

Download Paper (PDF; Only available from the DATE venue WiFi)

Authors

Brett Meyer, McGill University, CA

Calvin Ma, Aditya Mahajan and Brett Meyer, McGill University, CA

Abstract

Reliability in integrated circuits is becoming a critical issue with the miniaturization of electronics. Smaller process technologies have led to higher power densities, resulting in higher temperatures and earlier device wear-out. One way to mitigate failure is by over-provisioning resources and remapping tasks from failed components to components with spare capacity, or slack. Since the slack allocation design space is large, finding the optimal is difficult, as brute-force approaches are impractical. During design space exploration, device lifetimes are typically evaluated using Monte-Carlo Simulation (MCS) by sampling each design equally; this method is inefficient since poor designs are evaluated as accurately as good designs. A better method will focus sampling time on the designs that are difficult to distinguish, reducing the time required to evaluate a set of designs; this can be accomplished using Multi-armed Bandit (MAB) Algorithms. This work demonstrates that MAB achieve the same level of accuracy as MCS in 1.45 to 5.26 times fewer samples.

Download Paper (PDF; Only available from the DATE venue WiFi)
15:00 11.6.3 HARDWARE-BASED ON-LINE INTRUSION DETECTION VIA SYSTEM CALL ROUTINE FINGERPRINTING
Speaker: Yiorgos Makris, The University of Texas at Dallas, US
Authors: Liwei Zhou and Yiorgos Makris, The University of Texas at Dallas, US
Abstract
We introduce a hardware-based methodology for performing on-line intrusion detection in microprocessors. The proposed method extracts fingerprints from the basic blocks of the routine executed in response to a system call and examines their validity using a Bloom filter. Implementation in hardware renders spoofing attacks, to which operating system or hypervisor-level intrusion detection methods are vulnerable, ineffective. The proposed method is evaluated using kernel rootkits which covertly modify the system call service routines of a Linux operating system running on a 32-bit x86 architecture, implemented in the Simics simulation environment, while hardware overhead is evaluated using a predictive 45nm PDK.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:30 IPS-16, 935 EVALUATING MATRIX REPRESENTATIONS FOR ERROR-TOLERANT COMPUTING
Speaker: Pareesa Golnari, Princeton University, US
Authors: Pareesa Ameneh Golnari and Sharad Malik, Princeton University, US
Abstract
We propose a methodology to determine the suitability of different data representations in terms of their error-tolerance for a given application with accelerator-based computing. This methodology helps match the characteristics of a representation to the data access patterns in an application. For this, we first identify a benchmark of key kernels from linear algebra that can be used to construct applications of interest using any of several widely used data representations. This is then used in an experimental framework for studying the error tolerance of a specific data format for an application. As case studies, we evaluate the error-tolerance of seven data-formats on sparse matrix to vector multiplication, diagonal add, and two machine learning applications (i) principal component analysis (PCA), which is a statistical technique widely used in data analysis and (ii) movie recommendation system with Restricted Boltzmann Machine (RBM) as the core. We observe that the Dense format behaves well for complicated data accesses such as diagonal accessing but is poor in utilizing local memory. Sparse formats with simpler addressing methods and a careful selection of stored information, e.g., CRS and ELLPACK, demonstrate a better error-tolerance for most of our target applications.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:31 IPS-17, 131 SIMULATION-BASED DESIGN PROCEDURE FOR SUB 1 V CMOS CURRENT REFERENCE
Speaker: Dmitry Osipov, University of Bremen, DE
Authors: Dmitry Osipov and Steffen Paul, University of Bremen, DE
Abstract
This paper presents a new compact current reference and a simulation-based design procedure to establish the circuit parameters quickly and efficiently. To verify the proposed design procedure, two sub 1-V example circuits for two different reference current values (80 nA and 800 nA) were designed and simulated using 0.35 µm CMOS technology. The circuits are robust against supply voltage variation without the need for external bandgap. A line sensitivity of approximately 1-2%/V over the supply voltage range from sub 1 V is achieved in both cases. The simulated temperature coefficient (TC) values are 93 ppm/°C and 197 ppm/°C in the temperature range from 0°C to 120°C for the 800 nA and 80 nA references, respectively.
Download Paper (PDF; Only available from the DATE venue WiFi)

15:30 End of session
Coffee Break in Exhibition Area
On all conference days (Tuesday to Thursday), coffee and tea will be served during the coffee breaks at the below-mentioned times in the exhibition area.

Tuesday, March 28, 2017
- Coffee Break 10:30 - 11:30
- Coffee Break 16:00 - 17:00

Wednesday, March 29, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 16:00 - 17:00

Thursday, March 30, 2017
- Coffee Break 10:00 - 11:00
- Coffee Break 15:30 - 16:00

11.7 Formal Methods and Verification: Core Technologies and Applications
Date: Thursday 30 March 2017
Time: 14:00 - 15:30
Location / Room: 3B
Chair: Barbara Jobstmann, EPFL / Cadence, CH
Co-Chair: Christoph Scholl, University of Freiburg, DE
The session consists of three papers on formal verification and its applications. The first paper presents the use of grammar-based techniques for the analysis of high-end processor designs at the netlist level. The second paper considers a computer algebra-based technique to reverse engineer the irreducible polynomial used in the implementation of multipliers in finite fields. The third paper applies probabilistic model checking in a case study analyzing the dependability of optical communication networks with double-ring topologies (which have been proposed for multicast traffic in metropolitan areas).
state-of-the-art biologically-inspired techniques and devices that demonstrate the efficacy of such methods to designs focused on smart, low-power, and secure systems on chip.

While advanced well-tuned techniques are employed in current integrated circuits to increase the lifetime of cyber-physical, IoT and other systems, major concerns and important product differentiators such as power, security and variability continue to be major design factors. For many applications a sacrifice of performance or accuracy is acceptable in exchange for extremely low power consumption. However, even when this sacrifice is possible, other conflicting performance features must still be taken into account. Biologically-inspired techniques such as evolutionary algorithms and artificial neural networks have been used in the mainstream circuit design community infrequently. Recent years have witnessed a significant development and progress in these fields. The goal of this Special Session is to present latest research results from worldwide leading experts addressing state-of-the-art biologically-inspired techniques and devices that demonstrate the efficacy of such methods to designs focused on smart, low-power, and secure systems on chip.
Abstract

In recent years, the focus of computing has moved away from performance-centric serial computation to energy-efficient parallel computation. This necessitates run-time optimisation techniques to address the dynamic resource requirements of different applications on many-core architectures. In this paper, we report on intelligent run-time algorithms which have been experimentally validated for managing energy and application performance in many-core embedded system. The algorithms are underpinned by a cross-layer system approach where the hardware, software system and application layers work together to optimise the energy-performance trade-off. Algorithm development is motivated by the biological process of how a human brain (acting as an agent) interacts with the external environment (system) changing their respective states over time. This leads to a pay-off for the action taken, and the agent eventually learns to take the optimal/best decisions in future. In particular, our online approach uses a model-free reinforcement learning algorithm that suitably selects the appropriate voltage-frequency scaling based on workload prediction to meet the applications' performance requirements and achieve energy savings of up to 15% in comparison to state-of-the-art techniques, when tested on four ARM A15 cores of an ODROID-XU3 platform.

Download Paper (PDF; Only available from the DATE venue WiFi)
UB11 Session 11

Date: Thursday, March 30, 2017
Time: 14:30 - 16:30
Location: Booth 1, Exhibition Area

<table>
<thead>
<tr>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| **UB11.1** | **TGV: TESTER GENERIC AND VERSATILE FOR RADIATION EFFECTS ON ADVANCED VLSI CIRCUITS** | Miguel Solinas, TIMA, FR
Alexandre Coelho, Juan Fraire, Nacer Eddine Zergainoh, Raoul Velazco, Univ. Grenoble Alpes, CNRS, Grenoble INP, FR |
| **Abstract** | The purpose of this work is to describe a novel tester for radiation effects experiments, called TGV (Tester Generic and Versatile) based on a commercial development board ZEDBOARD. The main idea is to implement the whole DUT (Device Under Test) board architecture controlled by an FPGA, whose configuration is obtained from compiling the description of key features of the DUT in a high-level language such as C. This tester constitutes a powerful tool with generic capabilities for the functional validation and test under radiation of any digital circuit, with a particular focus on processor-like circuits. In this way, there is only a minor hardware development, limited to wiring the DUT pins to the ones of the tester connector. During the demonstration will be shown details of TGV platform, its use being illustrated by means of fault injection experiments which reproduce in a realistic way the random occurrence in time and location of SEUs in sensitive targets of the considered circuit. More information ... |
| **UB11.2** | **NETFI-2: AN AUTOMATIC METHOD FOR FAULT INJECTION ON HDL-BASED DESIGNS** | Miguel Solinas, Juan Fraire, Nacer Eddine Zergainoh, Pablo Ferreya and Raoul Velazco, TIMA, FR
Alexandre Coelho, Université Grenoble Alpes, FR |
| **Abstract** | Fault injection tools, which include fault simulation and emulation, are a well-known technique to evaluate the susceptibility of integrated circuits to the effects of radiation. This work presents a methodology to emulate Single Event Upsets (SEUs) and Single Event Transients (SETs) in a Field Programmable Gate Array (FPGA). The method proposed combines the flexibility of FPGA with the controllability provided by the MicroBlaze, to emulate HDL circuit and control the fault injection campaign. This approach has been integrated into a fault-injection platform, named NETFI (NETlist Fault Injection), developed by our research group, and received the name of NETFI-2. To validate this methodology fault injection campaign have been performed in Leon3 and Stochastic Bayesian Machine. Results on an Artix-7 FPGA show that NETFI-2 provides accurate measurements while improving the execution time of the experiment by more than 300% compared with analogous simulation-based campaigns. More information ... |
| **UB11.4** | **AF3-MC: DEVELOPMENT OF MIXED CRITICALITY SYSTEMS USING MBSE** | Thomas Boehm, fortiss, DE
Johannes Eder and Sebastian Voss, fortiss, DE |
| **Abstract** | This work presents a methodology for fault injection experiments of SEUs and SETs in a Field Programmable Gate Array (FPGA). The methods proposed combines the flexibility of FPGA with the controllability provided by the MicroBlaze, to emulate HDL circuit and control the fault injection campaign. This approach has been integrated into a fault-injection platform, named NETFI (NETlist Fault Injection), developed by our research group, and received the name of NETFI-2. To validate this methodology fault injection campaign have been performed in Leon3 and Stochastic Bayesian Machine. Results on an Artix-7 FPGA show that NETFI-2 provides accurate measurements while improving the execution time of the experiment by more than 300% compared with analogous simulation-based campaigns. More information ... |
| **UB11.5** | **A VOLTAGE-SCALABLE FULLY DIGITAL ON-CHIP MEMORY FOR ULTRA-LOW-POWER IOT PROCESSORS** | Jun Shiomi, Kyoto University, JP
Tohru Ishihara and Hidetoshi Onodera, Kyoto University, JP |
| **Abstract** | A voltage-scalable RISC processor integrating standard-cell based memory (SCM) is demonstrated. Unlike conventional processors, the processor has Standard-Cell based Memories (SCMs) as an alternative to conventional SRAM macros, enabling it to operate at a 0.4 V single-supply voltage. The processor is implemented with the fully automated cell-based design, which leads to low design costs. By scaling the supply voltage and applying the back-gate biasing techniques, the power dissipation of the SCMs is less than 20 uW, enabling the SCMs to operate with ambient energy source only. In this demonstration, the SCMs of the processor operates with a lemon battery as the ambient energy source. More information ... |
UB11.6 GNOCs: AN ULTRA-FAST, HIGHLY EXTENSIBLE, CYCLE-ACCURATE GPU-BASED PARALLEL NETWORK-ON-CHIP SIMULATOR

Presenter: Amir CHARIF, TIMA, FR

Authors: Nacer-Eddine Zergainoh and Michael Nicolaides, TIMA, FR

Abstract

With the continuous decrease in feature sizes and the recent emergence of 3D stacking, chips comprising thousands of nodes are becoming increasingly relevant, and state-of-the-art NoC simulators are unable to simulate such a high number of nodes in reasonable times. In this demo, we showcase GNOCs, the first detailed, modular and scalable parallel NoC simulator running fully on GPU (Graphics Processing Unit). Based on a unique design specifically tailored for GPU parallelism, GNOCs is able to achieve unprecedented speedsups with no loss of accuracy. To enable quick and easy validation of novel ideas, the programming model was designed with high extensibility in mind. Currently, GNOCs accurately models a VC-based microarchitecture. It supports 2D and 3D mesh topologies with full or partial vertical connections. A variety of routing algorithms and synthetic traffic patterns, as well as dependency-driven trace-based simulation (Netrace), are implemented and will be demonstrated

More information ...

UB11.7 EMU: RAPID FPGA PROTOTYPING OF NETWORK SERVICES IN C#

Presenter: Salvatore Gallea, University of Cambridge, GB

Authors:

Nik Sultančič, Pietro Bressana, David Greaves, Robert Soulé, Andrew W Moore and Noa Zilberman 1 1University of Cambridge, GB; 2Università della Svizzera italiana, CH

Abstract

General-purpose CPUs and OS abstractions impose overheads that make it challenging to implement network functions and services in software. On the other hand, programmable hardware such as FPGAs suffer from low-level programming models, which make the rapid development of network services cumbersome. We demonstrate Emu, a framework that makes use of an HLS tool (Kiwi) and enables the execution of high-level descriptions of network services, written in C#, on both x86 and Xilinx FPGA. Emu therefore opens up new opportunities for improved performance and power usage, and enables developers to more easily write network services and functions. We demonstrate C# implementations of network functions, such as Memcached and DNS Server, using Emu running on both x86 and NetFPGA-SUME platform and show that they are competitive to natively written hardware counterparts while providing a superior development and debug environment.

More information ...

UB11.9 HEPSYCODE: A SYSTEM-LEVEL METHODOLOGY FOR HW/SW CO-DESIGN OF HETEROGENEOUS PARALLEL DEDICATED SYSTEMS

Presenter: Luigi Pomante, University of L’Aquila, IT

Authors: Luigi Pomante, University of L’Aquila, IT; 2Gran Sasso Science Institute, IT

Abstract

Heterogeneous parallel systems have been recently exploited for a wide range of application domains, for both the dedicated (e.g. embedded) and the general purpose products. Such systems can include different processor cores, memories, dedicated ICs and a set of connections between them. They are so complex that the design methodology plays a major role in determining the success of the products. So, this demo addresses the problem of the electronic system-level hw/sw co-design of heterogeneous parallel dedicated systems. In particular, it shows an enhanced CSP/SystemC-based design space exploration step (and related ESL-EDA prototype tools), in the context of an existing hw/sw co-design flow that, given the system specification and related F/NF requirements, is able to (semi)automatically propose to the designer: - a custom heterogeneous parallel architecture; - an HW/SW partitioning of the application; - a mapping of the partitioned entities onto the proposed architecture.

More information ...

16:30 End of session
EXTENDING MEMORY CAPACITY OF NEURAL ASSOCIATIVE MEMORY BASED ON RECURSIVE SYNAPTIC BIT REUSE

Speaker:
Tianchan Guan, Columbia University, US

Authors:
Tianchan Guan1, Xiaoyang Zeng1 and Mingoo Seok2
1Indian Statistical Institute, IN; 2University of Hong Kong, HK

Abstract
Neural associative memory (AM) is one of the critical building blocks for cognitive workloads such as classification and recognition. It learns and retrieves memories as humans do, i.e., changing the strengths of plastic synapses (weights) based on inputs and retrieving information by information itself. One of the key challenges in designing AM is to extend memory capacity (i.e., memories that a neural AM can learn) while minimizing power and hardware overhead. However, prior works show that memory capacity scales slowly, often logarithmically or in square root with the total bits of synaptic weights. This makes it prohibitive in hardware and power to achieve large memory capacity for practical applications. In this paper, we propose a synaptic model called recursive synaptic bit reuse which enables near-linear scaling of memory capacity with total synaptic bits. Also, our model can handle input data that are correlated, more robustly than the conventional model. We experiment our proposed model in Hopfield Neural Networks (HNN) which contains the total synaptic bits of 5kB to 327kB and find that our model can increase the memory capacity as large as 30X over conventional models. We also study hardware cost via VLSI implementation of HNNs in a 65nm CMOS, confirming that our proposed model can achieve up to 10X area savings at the same capacity over conventional synaptic model.

Download Paper (PDF; Only available from the DATE venue WiFi)

ANOMALIES IN SCHEDULING CONTROL APPLICATIONS AND DESIGN COMPLEXITY

Speaker:
Amir Aminifar, Swiss Federal Institute of Technology in Lausanne, CH

Authors:
Amir Aminifar1 and Enrico Bini2
1Swiss Federal Institute of Technology in Lausanne (EPFL), CH; 2University of Turin, IT

Abstract
Today, many control applications in cyber-physical systems are implemented on shared platforms. Such resource sharing may lead to complex timing behaviors and, in turn, instability of control applications. This paper highlights a number of anomalies demonstrating complex timing behaviors caused as a result of resource sharing. Such anomalous scenarios, then, lead to a dramatic increase in design complexity, if not properly considered. Here, we demonstrate that these anomalies are, in fact, very improbable. Therefore, design methodologies for these systems should mainly be devised and tuned towards the majority of cases, as opposed to anomalies, but should also be able to handle such anomalous scenarios.

Download Paper (PDF; Only available from the DATE venue WiFi)

CONTRACT-BASED INTEGRATION OF AUTOMOTIVE CONTROL SOFTWARE

Speaker:
Tobias Sehnke, IAV GmbH, DE

Authors:
Tobias Sehnke1, Matthias Schultalbers2 and Rolf Ernst3

Abstract
The functionalities of automotive control are distributed over a large number of independently developed components that are interconnected by complex data dependencies. During integration it is critical to ensure the functional correctness of each component, due to the safety-critical nature of the automotive system. Thus existing integration processes ensure that interfaces are syntactically correct. Still in many cases communicated signals are semantically incompatible. This results in complicated errors that are hard to detect and fix. Moreover, existing component languages do not provide applicable means for the description and control of correspondant requirements. In this paper we present a novel methodology for an automated identification of integration errors in automotive control software. The key aspect of our approach are contracts, which are used to disclose domain level requirements. These contracts are then checked during integration supported by existing tools. A case study involving an existing engine control software shows the applicability of our approach by detecting a significant number of formerly unknown integration errors.

Download Paper (PDF; Only available from the DATE venue WiFi)

MODELING AND INTEGRATING PHYSICAL ENVIRONMENT ASSUMPTIONS IN MEDICAL CYBER-PHYSICAL SYSTEM DESIGN

Speaker:
Chunhui Guo, Illinois Institute of Technology, US

Authors:
Zhicheng Fu1, Chunhui Guo1, Shangping Ren1, Yu Jiang2 and Lui Sha3
1Illinois Institute of Technology, US; 2Tsinghua University, CN; 3University of Illinois at Urbana-Champaign, US

Abstract
Implicit physical environment assumptions made by safety critical cyber-physical systems, such as medical cyber-physical systems (M-CPS), can lead to catastrophes. Several recent U.S. Food and Drug Administration (FDA) medical device recalls are due to implicit physical environment assumptions. In this paper, we develop a mathematical assumption model and composition rules that allow M-CPS engineers to explicitly and precisely specify assumptions about the physical environment in which the designed M-CPS operates. Algorithms are developed to integrate the mathematical assumption model with system model so that the safety of the system can be not only validated by both medical and engineering professionals but also formally verified by existing formal verification tools. We use an FDA recalled medical ventilator scenario as a case study to show how the mathematical assumption model and its integration in M-CPS design may improve the safety of the ventilator and M-CPS in general.

Download Paper (PDF; Only available from the DATE venue WiFi)

A UTILITY-DRIVEN DATA TRANSMISSION OPTIMIZATION STRATEGY IN LARGE SCALE CYBER-PHYSICAL SYSTEMS

Speaker:
Bei Yu, The Chinese University of Hong Kong, HK

Authors:
Soumi Chattopadhyay1, Ansuman Banerjee1 and Bei Yu2
1Indian Statistical Institute, IN; 2The Chinese University of Hong Kong, HK

Abstract
In this paper, we examine the problem of data dissemination and optimization in the context of a large scale distributed cyber-physical system (CPS), and propose a novel rule-based mechanism for effective observation collection and transmission. Our work rests on the idea that all observations on all parameters are not required at all times, and thereby, selective data transmission can reduce sensor workload significantly. Experiments show the efficacy of our proposal.

Download Paper (PDF; Only available from the DATE venue WiFi)
Abstract
Non-volatile Memories (NVMs), such as PCM and ReRAM, have been widely proposed for future main memory design because of their low standby power, high storage density, fast access speed. However, these NVMs suffer from the write endurance problem. In order to prevent a malicious program from wearing out NVMs deliberately, researchers have proposed various wear-leveling methods, which remap logical addresses to physical addresses randomly and dynamically. However, we discover that side channel leakage based on NVM row buffer hit information can reveal details of address remappings. Consequently, it can be leveraged to side-step the wear-leveling. Our simulation shows that the proposed attack method in this paper can wear out a NVM within 137 seconds, even with the protection of state-of-the-art wear-leveling schemes. To counteract this attack, we further introduce an effective countermeasure named Intra-Row Swap (IRS) to hide the wear-leveling details. The basic idea is to enable an additional intra-row block swap when a new logical address is remapped to the memory row. Experiments demonstrate that IRS can secure NVMs with negligible timing/energy overhead, compared with previous works.

Download Paper (PDF; Only available from the DATE venue WiFi)
FORMAL TIMING ANALYSIS OF NON-SCHEDULED TRAFFIC IN AUTOMOTIVE SCHEDULED TSN NETWORKS

Speaker: Jürgen Teich, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE

Authors: Fedor Smirnovi1, Michael Gläß2, Felix Reimann3 and Jürgen Teich1
1Friedrich-Alexander-Universität Erlangen-Nürnberg, DE; 2TU Munich, DE; 3Audi Electronics Venture GmbH, DE

Abstract: To cope with requirements for low latencies, the upcoming Ethernet standard Time-Sensitive Networking (TSN) provides enhancements for scheduled traffic, enabling mixed-criticality networks where critical messages are sent according to a system-wide schedule. While these networks provide a completely predictable behavior of the scheduled traffic by construction, timing analysis of the non-scheduled traffic with hard deadlines remains an unsolved issue. State-of-the-art analysis approaches consider the interference that unscheduled messages impose on each other, but there is currently no approach to determine the worst-case interference that can be imposed by scheduled traffic, the so-called schedule interference (SI), without relying on restrictions of the shape of the schedule. Considering all possible interference scenarios during each calculation of the SI is impractical, as it results in an explosion of the computation time. As a remedy, this paper proposes a) an approach to integrate the analysis of the worst-case SI into state-of-the-art timing analysis approaches and b) pre-processing techniques that reduce the computation time of the SI calculation by several orders of magnitude without introducing any pessimism.

Download Paper (PDF; Only available from the DATE venue WiFi)
SIMULATION-BASED DESIGN PROCEDURE FOR SUB 1 V CMOS CURRENT REFERENCE

Speaker: Dmitry Osipov, University of Bremen, DE
Authors: Dmitry Osipov and Steffen Paul, University of Bremen, DE

Abstract
This paper presents a new compact current reference and a simulation-based design procedure to establish the circuit parameters quickly and efficiently. To verify the proposed design procedure, two sub 1-V example circuits for two different reference current values (80 nA and 800 nA) were designed and simulated using 0.35 µm CMOS technology. The circuits are robust against supply voltage variation without the need for external bandgap. A line sensitivity of approximately 1-2%/V over the supply voltage range from sub 1 V is achieved in both cases. The simulated temperature coefficient (TC) values are 93 ppm/°C and 197 ppm/°C in the temperature range from 0°C to 120°C for the 800 nA and 80 nA references, respectively.

Download Paper (PDF; Only available from the DATE venue WiFi)
<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30</td>
<td>12.2.2</td>
<td>(Best Paper Award Candidate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COSYN: EFFICIENT SINGLE-CELL ANALYSIS USING A HYBRID MICROFLUIDIC PLATFORM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mohamed Ibrahim, Duke University, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mohamed Ibrahim(^1), Krishnendu Chakrabarty (^1) and Ulf Schlichtmann (^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(^1)Duke University, US; (^2)TU München, DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-cell genomics is used to advance our understanding of diseases such as cancer. Microfluidic solutions have recently been developed to classify cell types or perform single-cell biochemical analysis on pre-isolated types of cells. However, new techniques are needed to efficiently classify cells and conduct biochemical experiments on multiple cell types concurrently. System integration and design automation are major challenges in this context. To overcome these challenges, we present a hybrid microfluidic platform that enables complete single-cell analysis on a heterogeneous pool of cells. We combine this architecture with an associated design-automation and optimization framework, referred to as Co-Synthesis (CoSyn). The proposed framework employs real-time resource allocation to coordinate the progression of concurrent cell analysis. Simulation results show that CoSyn efficiently utilizes platform resources and outperforms baseline techniques.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
</tr>
<tr>
<td>17:00</td>
<td>12.2.3</td>
<td>VERIFICATION OF NETWORKED LABS-ON-CHIP ARCHITECTURES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Andreas Grimmer, Johannes Kepler University of Linz, AT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Andreas Grimmer(^1), Werner Haselmayr(^1), Andreas Springer(^1) and Robert Wille(^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(^1)Johannes Kepler University, AT; (^2)Johannes Kepler University Linz, AT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labs-on-Chips (LoCs) revolutionize conventional biochemical processes and may even replace laboratories by integrating and minimizing their functionalities on a single chip. In a promising and emerging realization of LoCs, small volumes of reagents, so-called droplets, transport the biological sample and flow in closed channels of sub-millimeter diameters. This realization is called Networked Labs-on-Chips (NLoCs). The architecture of an NLoC defines different paths through which the droplets can flow. These paths are realized by splitting channels into multiple successor channels - so-called bifurcations. However, whether the architecture indeed allows to route droplets along the desired paths and, hence, correctly executes the intended experiment is not guaranteed. In this work, we present the first automatic solution for verifying whether an NLoC architecture allows to correctly route the droplets. Our evaluations demonstrate the applicability and importance of the proposed solution on a set of NLoC architectures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
</tr>
<tr>
<td>17:15</td>
<td>12.2.4</td>
<td>SYNTHESIS OF ACTIVATION-PARALLEL CONVOLUTION STRUCTURES FOR NEUROMORPHIC ARCHITECTURES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seban Kim, Incheon National University, KR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seban Kim and Jaeyong Chung, Incheon National University, KR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convolutional neural networks have demonstrated continued success in various visual recognition challenges. The convolutional layers are implemented in the activation-serial or fully parallel manner on neuromorphic computing systems. This paper presents an unrolling method that generates parallel structures for the convolutional layers depending on a required level of parallel processing. We analyze the resource requirements for the unrolling of the two-dimensional filters, and propose methods to deal with practical considerations such as stride, borders, and alignment. We apply the propose methods to practical convolutional neural networks including AlexNet and the generated structures are mapped onto a recent neuromorphic computing system. This demonstrates that the proposed methods can improve the performance or reduce the power consumption significantly even without area penalty.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
</tr>
<tr>
<td>17:30</td>
<td></td>
<td>End of session</td>
</tr>
<tr>
<td>12.3</td>
<td>Security Tools</td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td>Thursday 30 March 2017</td>
<td></td>
</tr>
<tr>
<td>Time:</td>
<td>16:00 - 17:30</td>
<td></td>
</tr>
<tr>
<td>Location / Room: 2BC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair:</td>
<td>Francesco Regazzoni, AlaRI/USI, CH</td>
<td></td>
</tr>
<tr>
<td>Co-Chair:</td>
<td>Georg Sigi, TU Munich, DE</td>
<td></td>
</tr>
<tr>
<td>Security tools provide support to build secure systems. Such techniques have made great progress in past years with improvements in SAT solvers, theorem provers and available computing power. This session includes papers that perform information flow checks on hardware designs, to check for information leaks either directly through analysis of the design or indirectly through timing channels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Label</td>
<td>Presentation Title</td>
</tr>
<tr>
<td>16:00</td>
<td>12.3.1</td>
<td>REGISTER TRANSFER LEVEL INFORMATION FLOW TRACKING FOR PROVABLY SECURE HARDWARE DESIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speaker:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ryan Kastner, University of California, San Diego, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authors:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Armaiti Ardeshiricham(^1), Wei Hu(^2), Joshua Marxen(^2) and Ryan Kastner(^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(^1)University of California San Diego, US; (^2)University of California, San Diego, US; (^3)UCSD, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstract</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information Flow Tracking (IFT) provides a formal methodology for modeling and reasoning about security properties related to integrity, confidentiality, and logical side channel. Recently, IFT has been employed for secure hardware design and verification. However, existing hardware IFT techniques either require designers to rewrite their hardware specifications in a new language or do not scale to large designs due to a low level of abstraction. In this work, we propose Register Transfer Level IFT (RTLIFT), which enables verification of security properties in an early design phase, at a higher level of abstraction, and directly on RTL code. The proposed method enables a precise understanding of all logical flows through RTL design and allows various tradeoffs in IFT precision. We show that RTLIFT achieves over 5x speedup in verification performance as compared to gate level IFT while minimizing the required effort for the designer to verify security properties on RTL designs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download Paper (PDF; Only available from the DATE venue WiFi)</td>
</tr>
</tbody>
</table>
12.3.2 DUDE, IS MY CODE CONSTANT TIME?

Speaker:
Oscar Reparaz, KU Leuven/COSIC, BE

Authors:
Oscar Reparaz, Josep Balasch, Ingrid Verbauwhede
IKatholische Universiteit Leuven, BE; KU Leuven - COSIC, BE

Abstract
This paper introduces dudect: a tool to assess whether a piece of code runs in constant time or not on a given platform. We base our approach on leakage detection techniques, resulting in a very compact, easy to use and easy to maintain tool. Our methodology fits in around 300 lines of C and runs on the target platform. The approach is substantially different from previous solutions. Contrary to others, our solution requires no modeling of hardware behavior. Our solution can be used in black-box testing, yet benefits from implementation details if available. We show the effectiveness of our approach by detecting several variable-time cryptographic implementations. We place a prototype implementation of dudect in the public domain.

Download Paper (PDF; Only available from the DATE venue WiFi)

12.3.3 INFORMATION FLOW TRACKING IN ANALOG/MIXED-SIGNAL DESIGNS THROUGH PROOF-CARRYING HARDWARE IP

Speaker:
Yiorgos Makris, The University of Texas at Dallas, US

Authors:
Mohammad-Mahdi Bidmeshki, Angelos Antonopoulos and Yiorgos Makris, The University of Texas at Dallas, US

Abstract
Information flow tracking (IFT) is a widely used methodology for ensuring data confidentiality in electronic systems and numerous such methods have been developed at various software or hardware description levels. Among them, proof-carrying hardware intellectual property (PCHIP) introduced an IFT methodology for digital hardware designs described in hardware description languages (HDLs). The risk of accidental information leakage, however, is not restricted to the digital domain. Indeed, analog signals originating from sources of sensitive information, such as biometric sensors, as well as analog outputs of a circuit, could carry or leak secrets, respectively. Moreover, similar to digital designs, analog circuits can also be contaminated with malicious information leakage channels capable of evading traditional manufacturing test. Compounding the problem, in analog/mixed-signal circuits such information leakage channels can cross the analog/digital or analog/analog interface, making their detection even harder. To this end, in this paper we introduce a PCHIP-based methodology which enables systematic formal evaluation of information flow policies in analog/mixed-signal designs. As we demonstrate, by integrating information flow tracking across the digital and analog domain, our method is able to detect sensitive data leakage from the digital domain to the analog domain and vice versa, without requiring any modification of the current analog/mixed-signal circuit design flow.

Download Paper (PDF; Only available from the DATE venue WiFi)

12.4 Formal and Predictive Models for System Design

Date: Thursday 30 March 2017
Time: 16:00 - 17:30
Location / Room: 3A

Chair: Jürgen Teich, Friedrich-Alexander-Universität Erlangen-Nürnberg, DE
Co-Chair: Michael Huebner, Ruhr-University Bochum, DE

The first paper presents a predictive approach to measure the impact of platform changes on the application performance. The second paper introduces a unifying approach for expressing multiple models of computations. The final paper compares two alternative implementations to realize faithfully the logical execution time model of computation.
12.5 Power Modeling, Estimation and Verification

Date: Thursday 30 March 2017
Time: 16:00 - 17:30
Location / Room: 3C

Chair: Pascal Vivet, CEA-Leti, FR
Co-Chair: Hiroshi Nakamura, University of Tokyo, JP

This session covers a wide scope on power modeling and estimation in circuit design. The first paper presents a new model for modeling electromigration in power grid network, taking into account transient effects. The second paper introduces a fast and accurate thermal simulator for 3D circuits, taking into account thermal leakage dependency. The third paper proposes a new identification technique of fine grain power sources for multi-core without the knowledge of the thermal model. The last paper presents rule based checking for quick verification at implementation level of the power intent defined in UPP.

<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>12.5.1</td>
<td>PHYSICS-BASED ELECTROMIGRATION MODELING AND ASSESSMENT FOR MULTI-SEGMENT INTERCONNECTS IN POWER GRID NETWORKS</td>
<td>Xiaoyi Wang, Beijing University of Technology, CN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Authors: Xiaoyi Wang(^1), Hongyu Wang(^2), Jian He(^3), Sheldon X.-D. Tan(^4), Yici Cai(^4) and Shengqi Yang(^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(^1)Beijing Advanced Innovation Center for Future Internet Technology, Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, CN; (^2)Beijing University of Technology, CN; (^3)University of California, Riverside, US; (^4)Tsinghua University, CN</td>
</tr>
</tbody>
</table>
| | | | **Abstract**
Electromigration (EM) is considered to be one of the most important reliability issues for current and future ICs in 10nm technology and below. In this paper we focus on the EM stress evaluation for one-dimensional multi-segment interconnect wires in which all the segments have the same direction, which is a common routing structure for power grid networks. The proposed method, which is based on integral transform technique, could efficiently calculate the hydrostatic stress evolution for multi-segment metal wires stressed with different current densities. The new method can also naturally consider the pre-existing residual stresses coming from thermal or other stress sources. Based on this new transient EM assessment method, a full-chip assessment algorithm for power grid networks is then proposed. The new algorithm is also based on the IR-drop metrics for failure assessment of the power grid networks. However, it finds the precise location and time of EM-induced void nucleation by directly checking the time-changing hydrostatic stresses of all the wires. The resulting EM assessment method can ensure sufficient accuracy of the EM verification for large scale power grid networks without sacrificing the efficiency. The accuracy of the proposed transient analysis approach is validated against the numerical analysis. Also the resulting EM-aware full-chip power grid reliability analysis has been demonstrated and compared with existing methods.
Download Paper (PDF; Only available from the DATE venue WiFi) |
| 16:30 | 12.5.2 | A FAST LEAKAGE AWARE THERMAL SIMULATOR FOR 3D CHIPS | Hameedah Sultan, IIT Delhi, IN |
| | | | Authors: Hameedah Sultan and Smruti R. Sarangi, IIT Delhi, IN |
| | | | **Abstract**
In this paper, we propose, 3DSim, which is an ultrafast thermal simulator for 3D chips. It simulates the effects of both dynamic and leakage power. Our technique captures the steady state as well as the transient response with a high speed and good accuracy. 3DSim uses an approach based on Green's functions, where a Green's function is defined as the impulse response of a unit power source. Our approach incorporates the effects of the leakage-temperature feedback loop, exploits the radial symmetry in the thermal profile, and uses Hankel transforms to yield a closed form solution for the leakage aware Green's function. To further speed up our technique, we use fast numerical discrete Hankel transforms, and pre-compute and store certain functions in a lookup table. Our approach fundamentally converts a 3D problem to a set of 1D problems, thus leading to a 68X speedup as compared to competing simulators with an error limited to 1.5C.
Download Paper (PDF; Only available from the DATE venue WiFi) |
17:00 12.5.3 BLIND IDENTIFICATION OF POWER SOURCES IN PROCESSORS
Speaker: Sherief Reda, Brown University, US
Authors: Sherief Reda¹ and Adel Belouchrani²
¹Brown University, US; ²ENP, Algeria, DZ

Abstract
The ability to measure power consumption is at the heart of power and thermal management techniques. Modern processors are equipped with hardware monitoring mechanisms that can measure total power. However, this lumped measurement is not sufficient if there is a need to execute fine-grain thermal and power management techniques. This paper proposes a new direction for identifying the fine-grain sources of power consumption in many-core processors. For the first time, we show that it is possible to simultaneously identify both the power consumption of different cores and the thermal model of the chip from just the measurements of the thermal sensors and the total power consumption measurement. Our identification technique is blind as it does not require design knowledge of the thermal model to identify the power sources. Furthermore, our technique makes no use of the performance counters, which reduces its overhead, and works seamlessly with dynamic voltage and frequency scaling. We implement our technique on a real multi-core CPU-GPU processor-based system, and we show the ability to identify the runtime power consumption of the individual cores using just the total power measurement and the measurements of the thermal sensors under different workloads. We also verify the superior accuracy of our approach using results from a controlled simulation environment.

Download Paper (PDF; Only available from the DATE venue WiFi)

17:15 12.5.4 FAST LOW POWER RULE CHECKING FOR MULTIPLE POWER DOMAIN DESIGN
Speaker: Iris Hui-Ru Jiang, National Chiao Tung University, TW
Authors: Chien-Pang Lu¹ and Iris Hui-Ru Jiang²
¹MediaTek, TW; ²National Chiao Tung University, TW

Abstract
Power management via multiple power domains can effectively save power by dynamically turning off idle domains. To control domains of a design, introducing low power intent complicates the physical implementation and verification process. During the physical implementation stage, the optimization or manual ECO could be tedious, and error-prone on power/ground signal connections. Therefore, in this paper, we focus on low power rule checking at the physical implementation stage for multiple power domain design. Existing methods adopt an iterative approach, which identifies one error at a time, thus possibly requiring multiple iterations. Different from them, we propose a fast low power rule checking approach to detect all errors at one time. To do so, we separate all paths into inner-domain and cross-domain paths and extract cross-domain net topology before power rule verification. Based on the global topology, we can verify the correctness of connections and detect all errors at the same time. Experimental results show the effectiveness and efficiency of our approach, achieving 3.62X speedups to detect all errors compared with the iterative approach. Moreover, our approach can identify complicated bugs to facilitate subsequent bug fixing.

Download Paper (PDF; Only available from the DATE venue WiFi)

17:30 End of session
<table>
<thead>
<tr>
<th>Time</th>
<th>Label</th>
<th>Presentation Title</th>
<th>Authors</th>
<th>Download Paper (PDF; Only available from the DATE venue WiFi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30</td>
<td>12.6.2</td>
<td>HIGH-DENSITY MOM CAPACITOR ARRAY WITH NOVEL MORTISE-TENON STRUCTURE FOR LOW-POWER SAR ADC</td>
<td>Pang-Yen Chou, Technical University of Munich, DE
Authors: Nai-Chen Chen 1, Pang-Yen Chou 1, Helmut Graeb 2 and Mark Po-Hung Lin 1
1National Chung Cheng University, TW; 2Technische Universität München, DE; 3TU Muenchen, DE</td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td>12.6.3</td>
<td>ADAPTIVE INTERFERENCE REJECTION IN HUMAN BODY COMMUNICATION USING VARIABLE DUTY CYCLE INTEGRATING DDR RECEIVER</td>
<td>Shreyas Sen, Purdue University, US
Authors: Shovan Maity 1, Debayan Das 1 and Shreyas Sen 2
1Purdue University, US; 2ECSE, Purdue University, US</td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td></td>
<td>End of session</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.7 Software optimization for emerging memory architectures and technologies

Date: Thursday 30 March 2017
Time: 16:00 - 17:30
Location / Room: 3B
Chair: Amit Singh, University of Southampton, GB
Co-Chair: Semeen Rehman, Technische Universität Dresden, DE

The papers in this session propose optimization techniques to improve the lifetime and performance of emerging technologies like persistent memory and scalable many-cores. Architectural optimizations are also presented to improve energy and performance of applications executing on GPU-based platforms.
PEGASUS: EFFICIENT DATA TRANSFERS FOR PGAS LANGUAGES ON NON-CACHE-COHERENT MANY-CORES

Speaker: Manuel Mohr, Karlsruhe Institute of Technology, DE

Authors: Manuel Mohr and Carsten Tradowsky, Karlsruhe Institute of Technology, DE

Abstract

To improve scalability, some many-core architectures abandon global cache coherence, but still provide a shared address space. Partitioning the shared memory and communicating via messages is a safe way of programming such machines. However, accessing pointered data structures from a foreign memory partition is expensive due to the required serialization.

In this paper, we propose a novel data transfer technique that avoids serialization overhead for pointered data structures by managing cache coherence in software at object granularity. We show that for PGAS programming languages, the compiler and runtime system can completely handle the necessary cache management, thus requiring no changes to application code. Moreover, we explain how cache operations working on address ranges complement our data transfer technique. We propose a novel non-blocking implementation of range-based cache operations by offloading them to an enhanced cache controller. We evaluate our approach on a non-cache-coherent many-core architecture using a distributed-kernel benchmark suite and demonstrate a reduction of communication time of up to 39.8%.

Download Paper (PDF; Only available from the DATE venue WiFi)

DIGITAL-MICROFLUIDIC BIOCHIPS FOR QUANTITATIVE ANALYSIS: BRIDGING THE GAP BETWEEN MICROFLUIDICS AND MICROBIOLOGY

Speaker: Krishnendu Chakrabarty, Duke University, US

Authors: Mohamed Ibrahim and Krishnendu Chakrabarty, Duke University, US

Abstract

Digital-microfluidics technology has shown considerable promise for advancing sample preparation and point-of-care diagnostics; therefore, it has the potential to transform microbiology and biochemistry research. Over the past decade, a number of microfluidics design-automation techniques have been developed for on-chip droplet manipulation. However, these methods overlook the myriad complexities of biomolecular protocols and they have yet to make a significant impact in biochemistry/microbiology research. A paradigm shift in biochip design automation and a "phase transition" in research are clearly needed to bridge this gap between microfluidics and microbiology. In this paper, we explain how researchers from design-automation and embedded systems can play a key role in this transition. We present a new synthesis flow that uses realistic models of biomolecular protocols and cyberphysical adaptation to address real-world microfluidic applications. We also present a list of metrics that can be used for the assessment of design-automation techniques for microbiology applications.

Download Paper (PDF; Only available from the DATE venue WiFi)
THE CASE FOR SEMI-AUTOMATED DESIGN OF MVLSI BIOCHIPS

Speaker: Jeffrey McDaniel, University of California, Riverside, US
Authors: Jeffrey McDaniel, William H. Grover and Philip Brisk, University of California, Riverside, US

Abstract
In recent years, significant interest has emerged in the problem of fully automating the design of microfluidic very large scale integration (mVLSI) chips, a popular class of Lab-on-a-Chip (LoC) devices that can automatically execute a wide variety of biological assays. To date, this work has been carried out with little to no input from LoC designers. We conducted interviews with approximately 100 LoC designers, biologists, and chemists from academia and industry; uniformly, they expressed frustration with existing design solutions, primarily commercially available software such as AutoCAD and Solidworks; however, they expressed limited interest and considerable skepticism about the potential for "push-button" end-to-end automation. In response, we have developed a semi-automated mVLSI drawing tool that is designed specifically to address the pain points elucidated by our interviewees. We have used this tool to rapidly reproduce several previously published LoC architectures and generate fabrication ready specifications.

SYNTHESIS OF ON-CHIP CONTROL CIRCUITS FOR MVLSI BIOCHIPS

Speaker: Seetal Potluri, Technical University of Denmark, DK
Authors: Seetal Potluri, Alexander Schneider, Martin Horsley-Petersen, Paul Pop and Jan Madsen
1Xilinx Asia Pacific, SG; 2Technical University of Denmark, DK

Abstract
Microfluidic VLSI (mVLSI) biochips help perform biochemistry at miniaturized scales, thus enabling cost, performance and other benefits. Although biochips are expected to replace biochemical labs, including point-of-care devices, the off-chip pressure actuators and pumps are bulky, thereby limiting them to laboratory environments. To address this issue, researchers have proposed methods to reduce the number of off-chip pressure sources, through integration of on-chip pneumatic control logic circuits fabricated using three-layer monolithic membrane valve technology. Traditionally, mVLSI biochip physical design was performed assuming that all of the control logic is off-chip. However, the problem of mVLSI biochip physical design changes significantly, with introduction of on-chip control, since along with physical synthesis, we also need to (i) perform on/off-chip control partitioning, (ii) on-chip control circuit design and (iii) the integration of on-chip control in the placement and routing design tasks. In this paper we present a design methodology for logic synthesis and physical synthesis of mVLSI biochips that use on-chip control. We show how the proposed methodology can be successfully applied to generate biochip layouts with integrated on-chip pneumatic control.

SCHEDULING AND OPTIMIZATION OF GENETIC LOGIC CIRCUITS ON MICROFLUIDIC BIOCHIPS

Speaker: Tsung-Yi Ho, National Tsing Hua University, TW
Authors: Yu-Jhih Chen, Sumit Sharma, Sudip Roy and Tsung-Yi Ho
1National Tsing Hua University, TW; 2Indian Institute of Technology Roorkee, IN

Abstract
Synthetic biologists design genetic logic circuit using living cells. A challenge in this task is the difficulty in constructing bigger logic circuits with several living cells due to the crosstalk effect among the biological cells. In order to remove the crosstalk effect, current practice is to use separate chambers on a flow-based microfluidic biochip to isolate each reaction zone. The state-of-the-art technique assumes different reaction times for each gates in a genetic logic circuit. This assumption is pessimistic as each gate has different reaction rate from others. Hence, it will cause unnecessary waiting time for faster gates and this may in turn increase the total experiment completion time significantly. In this paper, we propose a genetic logic circuit synthesis technique for flow-based microfluidic biochip considering different reaction time of each logic gate. Simulation results show that the proposed scheme reduces the total experiment completion time. We further minimize the number of control valves and optimize the routing of flow and control layers in the chip layout, which in turn reduces the design cost.

Source URL: https://past.date-conference.com/date17/booklet-proof_reading