
Semantic driven Hierarchical Learning for Energy-Efficient
Image Classification

Priyadarshini Panda, and Kaushik Roy
School of Electrical and Computer Engineering, Purdue University

Email:[pandap, kaushik]@purdue.edu

Abstract—Machine-learning algorithms have shown outstanding image
recognition performance for computer vision applications. While these
algorithms are modeled to mimic brain-like cognitive abilities, they lack
the remarkable energy-efficient processing capability of the brain. Recent
studies in neuroscience reveal that the brain resolves the competition
among multiple visual stimuli presented simultaneously with several
mechanisms of visual attention that are key to the brain’s ability to
perform cognition efficiently. One such mechanism known as saliency
based selective attention simplifies complex visual tasks into characteristic
features and then selectively activates particular areas of the brain based
on the feature (or semantic) information in the input. Interestingly, we
note that there is a significant similarity among underlying characteristic
semantics (like color or texture) of images across multiple objects in real
world applications. This presents us with an opportunity to decompose
a large classification problem into simpler tasks based on semantic or
feature similarity. In this paper, we propose semantic driven hierarchical
learning to construct a tree-based classifier inspired by the biological
visual attention mechanism for optimizing energy-efficiency of machine-
learning classifiers. We exploit the inherent feature similarity across
images to identify the input variability and use recursive optimization
procedure, to determine data partitioning at each tree node, thereby,
learning the feature hierarchy. A set of binary classifiers is organized on
top of the learnt hierarchy to minimize the overall test-time complexity.
The feature based-learning allows selective activation of only those
branches and nodes of the classification tree that are relevant to the
input while keeping the remaining nodes idle. The proposed framework
has been evaluated on Caltech-256 dataset and achieves ∼3.7x reduction
in test complexity for 1.2% accuracy improvement over state-of-the-art
one-vs-all tree-based method, and even higher improvements in test-time
(of ∼5.5x) when some loss in output accuracy (up to 2.5%) is acceptable.

Index Terms—Efficient Classification, Feature Similarity, Feature Hi-
erachy, SVM Tree, Selective Activation.

I. INTRODUCTION

With the massive growth of digital image data due to social

media, surveillance camera, among others, there is a growing demand

for computing platforms to perform cognitive tasks. Most of these

computing platforms have limited resources in terms of process-

ing power and battery life. Hence, researchers have been strongly

motivated to design efficient large-scale image recognition methods

to enable resource constrained IoT (Internet of Things) devices

with cognitive intelligence [1], [2]. Several machine-learning models

including Support Vector Machines (SVM) [3], random forest [4],

and Adaboost [5] have proven to be very successful for image classi-

fication. However, these classifiers do not scale well with increasing

number of image categories. Deep Learning Networks like ConvNets

[6] have achieved state-of-the-art accuracies, even surpassing human

performance for recognition applications [7]. However, they have

been criticized for their enormous training cost and computational

complexity. Similarly, the one-versus-all linear SVM, one of the most

popular classifiers for large-scale classification, is computationally

inefficient as its complexity increases linearly with the number of

categories. While these classifiers are modeled to mimic the brain-

like cognitive abilities, they lack the remarkable energy-efficient pro-

cessing capability of the brain. Seeking to attain the brain’s efficiency,

Fig. 1. (Left) Selective attention mechanism observed in the frontal and
parietal cortex involved in the generation and control of salient attentional
signals [8] (Right) Toy example of hierarchical tree formed on the basis of
different semantic categories and inter-class relationships of object types.

we draw inspiration from its underlying processing mechanisms to

design a multi-class classification method that is both accurate and

computationally efficient.

One such mechanism known as “saliency based selective atten-

tion” shown in Fig. 1 (left) simplifies complex visual tasks into

characteristic features and then selectively activates particular areas

of the brain based on the feature information in the input [9]. When

presented with new visual images, the brain associates the already

learnt features to the visual appearance of the new object types to

perform recognition [8]. This facilitates the brain to learn a host

of new information with limited capacity and also speeds up the

recognition process. Interestingly, we note that there is significant

similarity among underlying characteristic features (like color or

texture) of images across multiple objects in real world applications.

This presents us with an opportunity to build an efficient visual

recognition system incorporating inter-class feature similarities and

relationships.

In this work, we propose a computationally efficient classification

method that exploits the feature similarity among multiple classes in

the dataset to build a hierarchical tree structure composed of binary

classifiers (or SVMs). We use a variant of the boosted tree algorithm

[10] that combines Adaboost with a SVM based decision tree. The

resultant structure learns a hierarchy of features that transition from

general to specific as we go deeper into the tree in a top-down manner.

This is similar to the state-of-the-art Deep Learning convolutional

Networks (DLNs) where the convolutional layers exhibit a generic-

to-specific transition in the learnt features [11]. In case of DLNs,

the entire network is utilized for the recognition of a particular

test input. In contrast, the construction of the feature hierarchy

incorporates effective and active pruning of the dataset during training

of the individual tree nodes resulting in an efficient instance-specific

classification path. In addition, as we will see in later sections, our

model captures both inter and intra class feature similarity to build

a tree hierarchy with decision paths of varying lengths even for

the same class. This provides substantial benefits in test speed and

1582978-3-9815370-8-6/17/$31.00 c©2017 IEEE



computational efficiency for large-scale problems while maintaining

competitive classification accuracy.

Fig. 1 (right) shows a toy example of our proposed tree based

on real-world broad semantic categories for different object classes.

For example, to recognise a car, it is not sensible to learn all the

specific appearance details. Instead, first we learn the general vehicle-

type features (wheels, shape etc) and then learn more discriminative

details (brand symbol). Thus, we learn a hierarchy of features

generalizing over object instances like: Wheeled vehicle→Motor

vehicles→Cars→BMW. If presented with new motorbike object

types, the hierarchy now associates this new category of objects to

the already learnt ”Wheeled vehicle” features and then learns more

discriminative details corresponding to the motorbike types. Each

node of the tree is then associated with different features based on

inter-class relationships. It is evident from Fig. 1 that the proposed

tree method bears resemblance to the selective attention mechanism

of the brain (Fig. 1 left) by exploiting feature similarity and the

implicit relationships among different visual data to learn a mean-

ingful hierarchy for recognition. Please note, the words ‘semantic’

and ‘feature’ are used interchangeably in the remainder of the paper.

II. RELATED WORK

In recent years, there has been substantial work that propose

different ways to construct a hierarchical classification tree [12]–[14].

However, most of these methods rely on a greedy prediction algorithm

for class prediction through a single path of the tree. While these

algorithms achieve sublinear complexity, the accuracy is typically

sacrificed as errors made at higher nodes of the hierarchy cannot be

corrected later. Researchers have also looked at developing efficient

and effective feature representations for large-scale classification

problems [15]–[17]. [6], [7] learn discriminative features using deep

convolutional networks to achieve state-of-the-art accuracy. Please

note that our proposed tree is orthogonal to such models since

our method can use various feature respresentations to explore the

accuracy vs. efficiency tradeoff. Hence, we do not optimize over

different features in this work, rather compare the efficiency benefits

of our approach with existing hierarchical methods.

While our proposed model draws inspiration from other tree-based

methods such as [10], [14], [18], we have a different focus, design

and evaluation strategy. As mentioned, most of these methods use

a greedy prediction algorithm to achieve a good tradeoff between

output quality (accuracy) and complexity. The novelty of our work

is that we use the recursive Adaboost training [5] as a unified and

principled optimization procedure to determine data partitioning (or

learning feature hierarchy) based on feature similarity. This in turn

enables the binary SVM to construct a maximum-margin hyperplane

for optimal decision boundary modelling (with lower generalization

error) leading to better performance. In addition, organizing the

binary classifiers in a hierarchical tree structure on top of the feature

hierarchy further reduces complexity.

III. ADABOOST: KEY PRINCIPLES AND LIMITATIONS

The Adaboost algorithm combines a set of simple or weak clas-

sifiers (ht(x)) [19] to form the final classifier (H(x)) given by

H(x) =
∑T

t=1 αt ∗ ht(x), where αt is the assigned weight for

each weak classifier. The output of the final or strong classifier is

f(x) = sign(H(x)). The weak classifiers can be thought of as

feature or basis vectors. Given a set of training samples, Adaboost

maintains a probability distribution, W (uniform in the first iteration),

of the samples. Then, Adaboost calls a WeakLearn algorithm [19] that

trains the weak learner or classifier (ht) on the weighted sample in

a series of iterations (t = 1, 2, ..T ). The distribution W is updated

in each iteration to minimize the overall error (ε). Finally, Adaboost

uses a weighted linear combination of the weak learners (or features)

to obtain the final output f . The Adaboost and WeakLearn algorithm

have been explained in detail in [19].

One of the key principles of Adaboost is that “easy” samples that

are correctly classified by the weak classifiers get low weights while

those misclassified (“hard” samples) get higher weights. The weight

distribution W captures all the information about selected “features”

in a given iteration. However, due to the weight update rule and

normalization of W in each iteration, the information about previously

selected features might be lost. This will result in misclassification

of correctly classified (“easy”) samples from earlier iterations in the

present epoch. Thus, the algorithm does not maintain a generic-to-

specific transition while learning the weak classifiers (or features)

that proves to be ineffective after a few iterations. To address this,

we build a tree of strong classifiers, instead of constructing a single

strong classifier from a linear combination of weak learners. The tree

utilizes the features learnt from the previous nodes to construct the

subsequent nodes. As we traverse down the tree, the classifiers learn

more specific features that are useful for classifying the “hard” inputs

correctly while preserving the feature information learnt at the early

nodes for “easy” input samples.

IV. PROPOSED FEATURE BASED HIERARCHICAL TREE:

LEARNING AND IMPLEMENTATION

A. Training for a 2-class problem

Now, we discuss the procedure for training the tree for a two-class

problem. A tree is recursively trained to learn the feature transition

hierarchy and determine the data partitioning at each node as shown

in Algorithm 1. It learns and preserves a hierarchy of features

essential for understanding the underlying image representations and

for efficient classification. At each node, a classifier is learnt using

the Adaboost algorithm described in [19] that identifies the optimal

feature (available from the training dataset) to separate the training

inputs at a particular node into the corresponding sub-branches.

It is shown in [20] that Adaboost is essentially approximating a

logistic regression. For convenience in notation, we denote the output

computed by each classifier at the tree node as

p(+1|x) = 1

1 + exp(−H(x))
(1)

p(−1|x) = 1

1 + exp(H(x))
(2)

Depending upon the probabilities computed by the classifier node,

the training set (D) is divided as Dleft and Dright that are then

passed to the sub-branches for training the following nodes of the

tree. As the tree expands, only a subset of the input samples are

passed to the subsequent nodes. Thus, the final nodes or leaves of

the tree will consist of input samples belonging to one particular

class. Please refer to Fig. 2 for an overview of the tree structure and

input sub-sampling obtained with the learning model. Later, in section

IV(D), we give a detailed explanation about the input sub-sampling

and the hierarchical feature learning achieved with our model.

After learning the feature hierarchy, a binary SVM (with any

suitable kernel) is trained at each node of the tree using the Dright

and Dleft training sub-samples obtained from Algorithm 1. The

training labels (+ for Dright, - for Dleft and * for instances that

are passed to both Dleft/Dright) are assigned to each input xi

in the corresponding subsets for training the binary SVM. As the

training set size decreases (owing to the input partitioning) at the

2017 Design, Automation and Test in Europe (DATE) 1583



Algorithm 1 Learning feature hierarchy

Input: Training dataset D={(x1, y1, w1), . . . ., (xn, yn, wn)}; yi ∈
{+1,−1}, Σiwi = 1
Output: Tree with feature hierarchy of depth L

1: initialize treedepth=1

2: while (treedepth ≤ L)

3: Using Adaboost, Train a strong classifier on D combining T

weak classifiers. EXIT Adaboost if εt > γ (user-defined, γ=0.48

in our experiments).

4: for i = 1 : n //n=# of samples

5: Compute p(+1|xi) and p(−1|xi) using Eqn 1 and 2 for the

strong classifier learnt in Step 3.

6: if (p(+1|xi) > Δ) then Dright = (xi, yi, 1), assign yi =
{+}

7: elseif (p(−1|xi) > Δ) then Dleft = (xi, yi, 1), assign

yi = {−}
8: else Dright = (xi, yi, p(+1|xi)) and Dleft =

(xi, yi, p(−1|xi)), assign yi = {∗}
9: end if

10: end for
11: treedepth ++
12: Normalize weights in Dleft subset and goto Step 2.

13: Normalize weights in Dright subset and goto Step 2.

//Recursively repeat until treedepth is reached

14: end while
15: SVM optimization on the learnt feature hierarchy using Dleft

and Dright at a given node ignoring all samples with yi = {∗}
with standard regularized hinge loss minimization [21].

successive nodes as we traverse down the tree, the complexity of

the problem and hence that of the SVM also reduces. This in turn

enables better decision boundary modelling with low computational

complexity in the subsequent nodes (SVMs) for improved classifica-

tion performance. Adding SVMs at the nodes on top of the learnt

feature hierarchy (Algorithm 1) enables the tree model to achieve

state-of-the-art accuracies on challenging benchmark databases with

significantly lower cost.

The threshold value, Δ in Algorithm 1, determines the fraction of

training samples separated as positive (+) and negative (-) subsets. If

Δ=1, then all training samples are passed to both branches (or sub-

trees) of a tree node. The weights for both sub-trees are re-computed

based on the node classifier’s output. In that case, the tree based

Adaboost training converges to a standard boosting algorithm wherein

the feature hierarchy (general-to-specific) is not learnt. For all our

experiments discussed in section V, we set the Δ value to be > 0.5.

For Δ < 0.5, easy inputs that can be correctly classified with general

features at the top nodes will be unnecessarily passed down to bottom

nodes for classification. This will result in computational inefficiency,

defeating the purpose of the propsed model. If Δ = 0.5, then, each

training sample is either passed to the right or left sub-tree which

leads to a constrained partition. In this case, the hard or confusing

classes will be assigned to one of the sub-trees causing overfitting of

data in the subsequent nodes. This will lead to a decline in accuracy.

However, the test complexity will be low since the depth of the tree

will be short leading to a quicker decision at the cost of degraded

performance.

Those samples whose output probability lies in the range [1−Δ,Δ]
when 0.5 < Δ < 1 can be considered as hard or confusing ones. For

0.5 < Δ < 1, the hard samples are passed to both the left and the

right sub-trees for training (*). The hard or confusing inputs/classes

are ignored while training the SVM at the corresponding node. This

is adopted from the relaxed hierarchy structure in [14], [22]. This

is done to enhance the accuracy of our model. It is understood that

the decision boundary becomes progressively non-linear to model

the hard or confusing classes in a dataset as we traverse down the

tree. The hard or confusing instances are ignored and passed to

the bottom nodes that construct better decision boundary models,

thereby, decreasing the overall error. In case the hard classes are

not passed to bottom nodes, the SVMs at the top will construct

overfitted models for the complex data instances, thereby, decreasing

the accuracy considerably. In section V, we vary the threshold Δ to

build constrained and relaxed hierarchical tree models and analyze

the tradeoff between computational efficiency and accuracy for both

approaches.

B. Training for multi-class problem

To conserve the feature transition in the tree, we use a simple

method for extending the two-class training model into a multi-class

one. We use the minimum entropy measure to select a feature that

can be used to categorize the multiple category of objects into two

broad classes. The entropy calculation is done as follows:

• For each feature fj at value vj (given in the training dataset

with multiple labels yi ∈ {1, ..., n}), compute histogram

Histleft(k) = Σiδ(k = yi)wi for yi < vj and Histright(k) =
Σiδ(k = yi)wi for yi ≥ vj .

• Find optimal fj and vj that have minimum entropy

Entropy(Histleft) + Entropy(Histright).
• if Histleft(yi) ≥ Histright(yi) then assign yi

′ = {−1} else
assign yi

′ = {+1}. Now the multi-class is reduced to a 2-class

problem

The optimal feature (available from the training dataset) is selected

from the entropy calculation across multiple classes that separates the

input patterns into 2-classes and then the 2-class training procedure

(Algorithm 1) is used to learn the subsequent classifier nodes of

the tree. In our experiments, we observed that the feature chosen

for transforming the multi-class to 2-class problem is often the

feature selected by Algorithm 1 to construct the top node of the

tree. Intuitively, after the first selection, the features selected at the

subsequent nodes help in making a stronger and more accurate

decision. Thus, similar objects (with similar features) of different

classes are clustered together in the initial nodes of the hierarchy.

As the tree expands, these classes are gradually set apart. The

tree is terminated when the algorithm does not find any common

feature to partition the inputs (at the leaves of the tree). Thus, each

leaf of the tree corresponds to a particular class. After the feature

hierarchy is learned, SVMs at each node (excluding the leaves) of

the hierarchy are trained using regularized hinge loss minimization

[21], as discussed earlier.

Traditionally, boosting algorithms use multi-class weak learners to

construct a multi-class final strong classifier [20], [23]. However, for

large number of classes, constructing reasonably accurate multi-class

weak learners turns out to be highly computationally expensive. Thus,

we use the minimum entropy measure to transform the multi-class

into a 2-class problem and then learn the feature hierarchy.

C. Testing

The tree composed of SVM nodes is then used for testing. Those

instances (easy) that can be easily distinguished with general features

are identified with SVMs at the top nodes. The SVMs at the bottom

nodes perform more accurate classification on the hard instances in

the dataset. When an input instance is presented at the root node, the

branch with higher output probability at the SVM node is activated.

1584 2017 Design, Automation and Test in Europe (DATE)



Fig. 2. Learnt tree hierarchy formed for a synthesized dataset of 3000 points.
Features for weak classifiers are position or distance to some specific 2D lines

Based on the path activated by the output of SVM nodes, the instance

then traverses the hierarchy until a leaf node where a final decision

(or class assignment) is made. Note that a subset of classes are

eliminated at each tree node as the tree is traversed. The feature

based hierarchy, thus, scales sub-linearly O(log(n)) with respect to the

number of classes. In the current era of “data deluge” that presents

vision problems with a hefty task of recognizing from hundreds or

thousands of classes, the sub-linearly growing tree model can be very

useful.

D. Understanding the feature hierarchy

The training algorithm naturally divides the samples into left and

right sub-groups based on the configuration of features. Fig. 2 shows

an example of how the tree learns and divides the samples on a

synthesized dataset of 3000 points. The dataset consists of inputs

belonging to two classes (denoted as orange and blue). The samples

that are clustered together can be termed as hard inputs. Such samples

are passed down the sub-branches of the tree forming the successive

nodes. The top node of the tree partitions the inputs into two subsets.

This division is intuitive as the right set of orange points are distant

from the remaining inputs that are clustered together. The tree then

expands on the hard inputs where the two sets are clustered together.

If these data points are assumed to be features (like texture or color

components) corresponding to two image classes, it is clearly seen

that the hierarchy formed is coherent with the basic generic-to-

specific feature transition theory of the proposed model. Note, our

model automatically learns this feature hierarchy without any need

to pre-specify the feature clusters. The pruning of the input data as

we traverse down the tree reduces the complexity of the original

multi-class problem. This in turn enables better decision boundary

modelling at the bottom SVM nodes as compared to the top node

resulting in improved classification performance.

A noteworthy observation here is that the model comprises of

multiple decision paths of different lengths. In Fig. 2, the tree consists

of leaf nodes (for orange data points) at every level. For a given

input, the decision can be reached at an earlier leaf node yielding

a more optimal speedup during testing. This imbalanced decision

tree structure is what separates our model from other decision tree

methods where one has to traverse the entire tree to reach a decision

[14], [18]. Even within a particular class, all inputs are not equal.

Ideally, algorithms should spend effort proportional to the difficulty

of the inputs irrespective of whether they belong to the same class

or not [24]. Most existing works [14], [22] focus on optimizing

ABCD

ABC D

AC B

A C

(b) Constrained

ABCD

ABC CD

AC B

A C

C D

(a) Relaxed
Fig. 3. Sample illustration of tree with Relaxed and Constrained hierarchy

the computational complexity based on inter-class feature variability.

In contrast, our imbalanced method captures both inter and intra

class feature variability while expanding the tree thus yielding more

computational benefits.

E. Constrained vs Relaxed Hierarchy

Previously, we discussed that the threshold, Δ, serves as a useful

control parameter to construct either relaxed or constrained models of

the tree. Fig. 3 demonstrates the sample relaxed/constrained hierarchy

for a 4-class problem. The instances from class C are the hard inputs

in the dataset. In the constrained hierarchy, it is clearly seen that

instances from C are forced to the left sub-node. In this case, it is

very likely that the SVM at the root node will misclassify a test

instance from class C due to overfitting. However, the decision path

for recognizing class D is short. So, we will observe an improvement

in efficiency (or test speed) at the cost of accuracy. With relaxed

hierarchy, we see that there is an extra SVM classifier evaluation

required to recognize class D that increases the computational cost.

However, the accuracy in this case will be better as the addition of

an extra classifier node (Node CD in Fig. 3(a)) minimizes overfitting

for complex distribution of data. In addition, the relaxed hierarchy

captures the intra-class feature variability for class C which is not seen

in the constrained model. In the relaxed model, instances of class C

that are relatively easy can be classified at the 2nd level and those that

are hard are only passed to the 3rd level for accurate classification. In

contrast, with constrained model all instances of class C are passed to

the 3rd level for classification. Fig. 4 shows the sample demonstration

of the efficiency vs. accuracy tradeoff obtained for a given dataset

with relaxed/ constrained hierarchy. It is clearly evident that Δ can

be modulated to control the accuracy and efficiency of the proposed

model.

V. EXPERIMENTS

In this section, we evaluate our proposed framework on an object

recognition task for the benchmark dataset, Caltech-256 [25]. We

use Caltech as it consists of images corresponding to a vast range

of classes. It also has been used in contemporary tree-based methods

that form a baseline in our analysis for comparison against our model.

In this work, for simplicity, we used SVMs with linear kernels as our

binary classifiers at the tree nodes.

We use the evaluation metrics: classification accuracy and test

speed (or test complexity) to discuss the benefits of our approach. For

classification accuracy, we use the mean of per-class accuracy that is

reported as a standard way for estimating multi-class classification

performance. Since we use linear SVM kernels, the overall test

complexity is proportional to the number of evaluated classifiers. So,

we report the mean of the number of classifier evaluations for all test

instances for test speed. We compare our method to various existing

approaches: Gao [14], one-vs-all, one-vs-one, DAGSVM, tree-based

2017 Design, Automation and Test in Europe (DATE) 1585



Fig. 4. (a) Relaxed Hierarchy without misclassification error at the cost of longer decision path for ’D’ (b) Constrained Hierarchy with misclassification error
but shorter decision path for ’D’ (Tree structure similar to Fig. 3)

Fig. 5. Comparison of the tradeoff between accuracy and Relative Complexity
on Caltech 256. The computational complexity is normalized by the complex-
ity of one-vs-all. Note that for one-vs-one the relative complexity with linear
kernel is 127.5.

hierarchy [13] and Marszalek [22]. Note, the regularization parameter

of SVM is chosen by cross validation on the training set.

A. Caltech-256

With 256 categories and at least 80 images per class, this is a stan-

dard muti-class object recognition dataset. We randomly sampled 80

images for each class, and used half (40 per class) for training and the

remaining half for testing. For features, we used the standard spatial

histograms of visual words based on dense SIFT [16]. We varied

computational parameters for tree [13] (2 to 5 levels), Marszalek

[22] (α ∈ {0.2, 0.5, 0.6, 0.8} ), Gao [14] (ρ ∈ {0.5 to 0.8 with step

size of 0.1}) and our method (Δ ∈ {0.5 to 0.9 in steps of 0.1}) to

obtain a tradeoff between accuracy and speed. Here, α and ρ are the

computational parameters defined in [22] and [14] respectively that

are varied to achieve the complexity vs. accuracy tradeoff.

Fig. 5 shows the results. It is clearly seen that our tree performs

better (faster at same accuracy and more accurate at the same Relative

Complexity (RC)). For instance, our model achieves one of the best

accuracy (∼37.3%) with around 27% of the complexity of one-vs-

all with a relaxed hierarchical model (where 0.5 < Δ < 1) while

achieving a speedup of 3.7x. Also, for Δ = 0.5, when the tree is

modelled as a constrained hierarchy, it achieves a higher speed up

of 5.5x for ∼2.5% accuracy degradation with respect to one-vs-all.

However, to achieve a similar 5x speed up other methods: Gao [14],

Marszalek [22], tree [13] have to suffer 3.2%, 8%, 10% accuracy

degradation. Please note that our model achieves consistently better

accuracy performance than the best result reported in [14] for linear

kernel SVM.

B. Hierarchy of visual features

Our model builds a feature hierarchy in the label space automat-

ically. Fig. 6 shows the tree formed for a subset of some sampled

images from the Caltech-256 dataset. We observe that the images

that have similar features are clustered together in an initial node

and are gradually set apart as the tree is traversed. Conforming to

the imbalanced hierarchical feature model, we observe that for certain

classes: zebra, car tire, the classification is done at earlier nodes while

more confusing classes are passed down. In addition, we also observe

intra-class variability for the camel class in which certain instances

are evaluated earlier than others.

VI. CONCLUSION

We proposed a novel neuro-inspired visual feature learning to

construct an efficient and accurate tree-based classifier for large-scale

image classification. Our learning algorithm is based on the biological

attention mechanism observed in the brain that selects specific

1586 2017 Design, Automation and Test in Europe (DATE)



Zebra

Ostrich
Camel

Camel

Elephant

Car Tire

Roulette
Frisbee

Fig. 6. Tree hierarchy formed for a sub-sample of selected images from
Caltech-256

features for greater neural representations. The tree uses a princi-

pled optimization procedure (recursive Adaboost training) to extract

knowledge about the relationships between object types and integrates

that into the visual appearance learning. We evaluated our method

on the Caltech-256 dataset and obtained significant improvement in

accuracy and efficiency. In fact, our model outperforms the one-vs-

all method in accuracy and yields lower computational complexity

compared to the state-of-the-art “tree-based”methods [14], [22]. The

proposed framework intrinsically embeds clustering in the learning

procedure and identifies both inter and intra class variability. Most

importantly, our proposed tree learns the hierarchy in a systematic and

less greedy way that grows sublinearly with the number of classes

and hence proves to be very effective for large-scale classification

problems. It is noteworthy to mention that the current framework

suffers from overfitting when the training dataset is small. The

overfitting behaviour is checked by modulating the depth of the tree

and also adopting the relaxed hierarchy structure where confusing

or “hard” inputs are passed to both the right and the left sub-

nodes. Additionally, tree pruning methods [26] can be used to control

overfitting . Further research can be done to explore the overfitting

problem. Future work includes using non-linear SVM kernels at the

tree nodes and analyzing other complex and larger datasets [2] to

analyse the efficiency-accuracy tradeoff with the proposed approach.

ACKNOWLEDGMENT

This work was supported in part by C-SPIN, one of the six

centers of StarNet, a Semiconductor Research Corporation Program,

sponsored by MARCO and DARPA, by the Semiconductor Research

Corporation, the National Science Foundation, Intel Corporation and

by the Vannevar Bush Faculty Fellowship.

REFERENCES

[1] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object cate-
gories,” IEEE transactions on pattern analysis and machine intelligence,
vol. 28, no. 4, pp. 594–611, 2006.

[2] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun database:
Large-scale scene recognition from abbey to zoo,” in Computer vision
and pattern recognition (CVPR), 2010 IEEE conference on. IEEE,
2010, pp. 3485–3492.

[3] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[4] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[5] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of
experts,” IEEE transactions on neural networks and learning systems,
vol. 23, no. 8, pp. 1177–1193, 2012.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 1026–1034.

[8] S. K. Ungerleider and L. G, “Mechanisms of visual attention in the
human cortex,” Annual review of neuroscience, vol. 23, no. 1, pp. 315–
341, 2000.

[9] D. Whitney, “Neuroscience: toward unbinding the binding problem,”
Current Biology, vol. 19, no. 6, pp. R251–R253, 2009.

[10] E. Grossmann, “Adatree: boosting a weak classifier into a decision
tree,” in Computer Vision and Pattern Recognition Workshop, 2004.
CVPRW’04. Conference on. IEEE, 2004, pp. 105–105.

[11] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

[12] J. Deng, S. Satheesh, A. C. Berg, and F. Li, “Fast and balanced: Efficient
label tree learning for large scale object recognition,” in Advances in
Neural Information Processing Systems, 2011, pp. 567–575.

[13] G. Griffin and P. Perona, “Learning and using taxonomies for fast visual
categorization,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[14] T. Gao and D. Koller, “Discriminative learning of relaxed hierarchy
for large-scale visual recognition,” in 2011 International Conference on
Computer Vision. IEEE, 2011, pp. 2072–2079.

[15] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang,
“Large-scale image classification: fast feature extraction and svm train-
ing,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on. IEEE, 2011, pp. 1689–1696.

[16] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[17] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp.
886–893.

[18] Z. Tu, “Probabilistic boosting-tree: Learning discriminative models for
classification, recognition, and clustering,” in Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1, vol. 2. IEEE,
2005, pp. 1589–1596.

[19] R. E. Schapire, “Explaining adaboost,” in Empirical inference. Springer,
2013, pp. 37–52.

[20] J. Friedman, T. Hastie, R. Tibshirani et al., “Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the
authors),” The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

[21] X. Li, L. Wang, and E. Sung, “A study of adaboost with svm based weak
learners,” in Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., vol. 1. IEEE, 2005, pp. 196–201.

[22] M. Marszałek and C. Schmid, “Constructing category hierarchies for
visual recognition,” in European Conference on Computer Vision.
Springer, 2008, pp. 479–491.

[23] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
online learning and an application to boosting. 1995,” in European
Conference on Computational Learning Theory.

[24] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for
energy-efficient and enhanced pattern recognition,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 475–480.

[25] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[26] O. T. Yıldız, “Vc-dimension of univariate decision trees,” IEEE trans-
actions on neural networks and learning systems, vol. 26, no. 2, pp.
378–387, 2015.

2017 Design, Automation and Test in Europe (DATE) 1587



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


