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Abstract—In the design optimization of real-time systems, the
schedulability analysis is used to define the feasibility region
within which tasks meet their deadlines, so that optimization
algorithms can find the best solution within the region. However,
the complexity of current schedulability analysis techniques often
makes it difficult to leverage existing optimization frameworks
and scale to large designs. In this paper, we consider the design
optimization problems for real-time systems scheduled with fixed
priority, where task priority assignment is part of the decision
variables. We propose the concept of unschedulability core, a
compact representation of the schedulability conditions, and
develop efficient algorithms for its calculation. We present a
new optimization procedure based on lazy constraint paradigm
that leverages such a concept. Experimental results on two
case studies show that the new optimization procedure provides
optimal solutions, but is a few magnitudes faster than other exact
algorithms (Branch-and-Bound, Integer Linear Programming).

I. INTRODUCTION

The design of real-time embedded systems is often subject
to many requirements and objectives in addition to real-time
constraints, including limited resources (e.g., memory), cost,
quality of control, and energy consumption. For example,
automotive industry is hard pressed to deliver products with
low cost, due to the large volume and the competitive inter-
national market [1]. Similarly, the technology innovation for
medical devices is mainly driven by reduced size, weight,
and power (SWaP) [2]. In these application domains, it is
important to perform design optimization in order to find the
best design (i.e., optimized according to an objective function)
while satisfying all the critical requirements.

Formally, a design optimization problem is defined by
decision variables, constraints, and an objective function. The
decision variables represent the set of design choices under the
designers’ control. The set of constraints forms the feasibility
region, the domain of the allowed values for the decision
variables. The objective function characterizes the optimization
goal. In general, the optimal design can be obtained by
solving an optimization problem where the objective function
is optimized within the feasibility region. For real-time sys-
tems, the feasibility region (also called schedulability region
if concerning only real-time schedulability) must only contain
the designs that satisfy the schedulability constraints whereby
tasks complete before their deadlines.

In this paper, we consider the design optimization for
real-time systems scheduled with fixed priority, where priority
assignment is part of the decision variables. There is a large
body of work on priority assignment for real-time systems with
fixed priority scheduling. In particular, Audsley’s algorithm [3]
is proven to be “optimal” for many task models and scheduling
schemes, if the designer is only concerned to find a schedulable
solution. See a recent survey by Davis et al. [4] on a complete
list of applicable settings. However, if the design optimization

problem contains constraints or an objective function related
to other metrics (such as memory, power, thermal, etc.),
Audsley’s algorithm is no longer guaranteed to be optimal. In
fact, such problems typically are NP-hard, including the two
case studies in this paper: the optimization of Simulink models
with Adaptive Mixed Criticality scheduling (Section V-A), and
the memory minimization in the implementation of AUTOSAR
models (Section V-B).
Related Work. In general, the current approaches for opti-
mizing priority assignment in complex design optimization
problems (i.e., those without known polynomial-time optimal
algorithms) can be classified into three categories. The first is
based on meta heuristics such as simulated annealing (e.g., [5],
[6]) and genetic algorithm (e.g., [7]). The second is to develop
problem specific heuristics (e.g., [8], [9], [10]). These two
categories do not have any guarantee on optimality.

The third category is to search for the exact optimum, often
applying existing optimization frameworks such as branch-
and-bound (BnB) (e.g., [11]), or integer linear programming
(ILP) (e.g., [12]). However, this approach typically suffers
from scalability issues and may have difficulty to handle large
industrial designs. For example, automotive engine control
system contains over a hundred runnables [13], but the ILP
based approach can only scale up to about 40 runnables
(see Section V). Furthermore, not all problems can easily be
formulated in a particular framework due to the complexity of
schedulability conditions. For example, the exact schedulabil-
ity analysis for tasks with non-preemptive scheduling requires
to check all the task instances in the busy period, but the
number of instances is unknown a priori. Hence, it is difficult
to formulate the exact schedulability constraints in ILP [14].
Our Contributions. In this paper, instead of directly reusing
the standard techniques (BnB, ILP, etc.), we aim at developing
techniques for optimizing priority assignment that can guaran-
tee the optimality of the solution while drastically improving
the scalability. The observation is that schedulability conditions
are often inefficient or even impossible to be directly formu-
lated in these generic optimization frameworks. We develop a
set of new techniques and make the following contributions:

• We propose the concept of unschedulability core, an
abstraction of the schedulability condition in real-time systems
scheduled with fixed priority. It can be represented by a set of
new and compact constraints to be learned efficiently during
the execution of the optimization procedure (i.e., at runtime).

• We devise an optimization procedure based on lazy con-
straint paradigm that judiciously utilizes the unschedulability
cores to drastically improve the scalability.

• We use two design optimization problems to illustrate
the benefit of the proposed approach. The new unschedula-
bility core guided optimization algorithm runs one or more
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magnitudes faster than other optimal algorithms (BnB, ILP)
while maintaining the optimality of the solutions.

The rest of the paper is organized as follows. Section II
describes the task models that are suitable for the proposed
approach. Section III proposes the concept of unschedulability
core and studies its efficient calculation. Section IV presents
the optimization procedure that leverages the unschedulability
cores for optimizing priority assignment. Section V demon-
strates the effectiveness of the proposed approach with two
example problems. Finally, Section VI concludes the paper.

II. PRELIMINARY

We consider a real-time system scheduled by fixed pri-
ority. It consists of a set of periodic or sporadic tasks Γ =
{τ1, τ2, ...τn}. Each task τi is assumed to have a unique
priority πi (the higher the number, the higher the priority) to be
assigned by the designer. The concept of unschedulability core
applies to any systems scheduled with fixed priority. However,
its application in design optimization is most effective when
there is a simple algorithm to determine the existence of a
schedulable priority assignment for a given task set. Hence,
we consider a list of task models and scheduling schemes
where some simple priority assignment policy (such as Rate
Monotonic or Deadline Monotonic) or Audsley’s algorithm [3]
is applicable (i.e., it can find a schedulable priority assignment
if there exists one). The list, as summarized in [4], includes:

• The periodic task model, where independent tasks are
scheduled on a single-core platform with preemptive schedul-
ing. Each task is characterized by a tuple of parameters: Ti

denotes the period; Di = Ti represents the implicit relative
deadline; Ci denotes the worst case execution time (WCET).

• Sporadic tasks with arbitrary deadlines, or static offsets.
• Probabilistic real-time systems where task WCETs are

described by independent random variables [15].
• Systems scheduled with deferred preemption [16].
• Tasks modeled as arbitrary digraphs [17], where vertices

represent different kinds of jobs, and edges represent the
possible flows of control.

• Tasks access shared resources that may be protected by
semaphore locks to ensure mutual exclusion.

The set of binary variables denoting task priority assign-
ment is defined as P = {pi,j |i �= j, τi ∈ Γ, τj ∈ Γ}, where

pi,j =

{
1 πi > πj ,
0 otherwise.

(1)

The priority assignment shall satisfy the antisymmetric and
transitive properties: If τi has a higher priority than τj (pi,j =
1), then τj has a lower priority than τi (pj,i = 0); If τi has a
higher priority than τj (pi,j = 1) and τj has a higher priority
than τk (pj,k = 1), then τi must have a higher priority than τk
(pi,k = 1). These properties can be formally formulated as

{
Antisymmetry: pi,j + pj,i = 1, ∀i �= j

Transitivity: pi,j + pj,k ≤ 1 + pi,k, ∀i �= j �= k
(2)

We focus on a design optimization problem where the decision
variables X include the task priority assignment, i.e., P ⊆ X.

minC(X)
s.t. F(X) ≤ 0

(3)

Here C(X) is the objective function to be minimized, F(X) ≤
0 defines the set of constraints that the solutions in the
feasibility region shall satisfy, including those in Equation (2).

TABLE I: An Example Task System Γe

τi Ti Di Ci τi Ti Di Ci

τ1 10 10 2 τ2 20 20 3
τ3 40 40 16 τ4 100 100 3
τ5 200 200 17 τ6 400 400 32

III. THE CONCEPT OF UNSCHEDULABILITY CORE

Central to our technique is the concept of unschedulability
core. Intuitively, it is an irreducible representation of the
priority assignment that causes the system unschedulable. In
this section, we establish its formal definition, and study its
properties and efficient calculation. We use a running example
system Γe configured as in Table I to illustrate, where all tasks
are assumed to be independent and preemptive.

Definition 1. A partial priority order (PPO), denoted as
ri,j ≡ (pi,j = 1), defines a priority order that τi has a higher
priority than τj . A PPO set R = {ri1,j1 , ri2,j2 , ..., rim,jm}
is a collection of one or more partial priority orders that are
consistent with the properties in Equation (2). The number of
elements in R is defined as its cardinality, denoted as |R|.
Definition 2. Let Γ be a task system and R be a PPO set on
Γ. Γ is R-schedulable if and only if there exists a feasible
priority assignment P that respects the partial priority order
corresponding to each element in R.

Example 1. Consider the example task system Γe in Table I
and two PPO sets R1 = {r1,2, r2,3}, R2 = {r5,4, r4,3}. Γe

is R1-schedulable, since the system is schedulable under rate-
monotonic priority assignment which respects R1. However,
Γe is not R2-schedulable: τ1 must have a higher priority than
τ3 (due to C3 > D1), hence assigning τ4 and τ5 with higher
priority than τ3 will result in deadline miss for τ3.

The follow theorem intuitively states that if the system is
schedulable for a PPO set, then the system is also schedulable
for any of its subset.

Theorem 1. Let R and R′ be two PPO sets on Γ such that
R′ ⊆ R. The following always holds

Γ is R-schedulable ⇒ Γ is R′-schedulable (4)

The proof is straightforward as any priority assignment
satisfying R must also satisfy R′. Applying contrapositive law
on Theorem 1, we have

Γ is not R′-schedulable ⇒ Γ is not R-schedulable (5)

We now give the definition of unschedulability core. In-
tuitively, it is an irreducible representation of the reason why
the system is unschedulable, in the sense that removing any
element from it will allow schedulable priority assignment.

Definition 3. Let Γ be a task system and R be a PPO set
on Γ. R is an unschedulability core for Γ if and only if R
satisfies the following two conditions:

• Γ is not R-schedulable;
• ∀R′ ⊂ R, Γ is R′-schedulable.

Remark 1. By Theorem 1, the second condition in Defini-
tion 3 can be replaced by

• ∀R′ ⊂ R s.t. |R′| = |R| − 1, Γ is R′-schedulable.

Example 2. Consider the PPO set R3 = {r5,4, r4,3, r3,6},
which equivalently defines the priority order π5 > π4 >
π3 > π6. Obviously, Γe is not R3-schedulable as it is not
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schedulable for the subset R2 = {r5,4, r4,3} of R3 (see
Example 1). However, R3 is not an unschedulability core since
it has a proper subset R2 for which Γe is not schedulable.
R2 is a valid unschedulability core, as for each of its proper
subset, there exists a respecting feasible priority assignment:

P = [π1 > π2 > π3 > π5 > π4 > π6] respects R(1)
2 = {r5,4}

and R(2)
2 = ∅, and P ′ = [π1 > π2 > π4 > π3 > π5 > π6]

respects R(3)
2 = {r4,3}.

Let U denote an unschedulability core for Γ. The constraint
that the PPOs in U cannot be simultaneously satisfied is:∑

ri,j∈U
pi,j ≤ |U| − 1 (6)

Remark 2. Constraint (6) are more friendly to ILP solver. Its
coefficients on the left hand side are all small integral (0 or 1),
which in many cases makes the ILP solver more efficient [18].

We now prove that the set of all unschedulability cores
is a necessary and sufficient condition that makes the system
unschedulable.

Theorem 2. Let Γ be a schedulable task system and R be a
PPO set on Γ. Γ is not R-schedulable if and only if R contains
at least one unschedulability core.

Proof. Necessity: It is straightforward by the definition of
unschedulability core and the result in Equation (5).
Sufficiency: Proof by induction on the cardinality of R.

Base case. Let R be any PPO set such that |R| = 1 and Γ
is not R-schedulable. The only proper subset of R is R′ = ∅.
Since Γ is schedulable, R itself is an unschedulability core.

Inductive step. Assume any PPO set of cardinality from 1
to k− 1 such that Γ is not schedulable contains an unschedu-
lability core. We prove that any R of cardinality k such that
Γ is not R-schedulable shall contain an unschedulability core.

By Definition 3, there must exist R′ ⊂ R such that Γ is
not R′-schedulable (otherwise, R itself is an unschedulability
core). Now we consider R′, which has a cardinality smaller
than k. By the assumption for the inductive step, R′ contains
an unschedulability core, so does R.

Theorem 2 implies that if all the unschedulability cores
for the system are known, then we can formulate the exact
schedulability region by adding Constraint (6) for each un-
schedulability core. However, the number of unschedulability
cores may be exponential to the number of tasks. Hence,
it is inefficient to rely on the complete knowledge of the
unschedulability cores. In the following, we develop proce-
dures that judiciously and efficiently add a selective subset
of unschedulability cores to gradually form the schedulability
region. In the rest of the section, we present a procedure
(Algorithm 1) that, starting from an unschedulable priority
assignment, efficiently calculate an unschedulability core. In
the next section, we propose an unschedulability core guided
optimization algorithm.

Algorithm 1 takes as input the task set Γ and a PPO set
R, where Γ is not R-schedulable. It leverages Remark 1 and
checks if those subset of R with cardinality |R| − 1 (i.e.,
one less element) can allow Γ schedulable. Hence, it iterates
through and tries to remove each element r in R. If the resulted
PPO set still does not allow Γ to be schedulable, then r is
removed. In the end, it will return one unschedulability core.
Since the cardinality of R is at most O(n2), the number of
iterations in Algorithm 1 is O(n2).

Algorithm 1 Algorithm for Computing Unschedulability Core

1: function UNSCHEDCORE(Task set Γ, PPO set R)
2: for each r ∈ R do
3: if Γ is not R\{r}-schedulable then
4: remove r from R
5: end if
6: end for
7: return R
8: end function

Remark 3. Note that R may contain more than one unschedu-
lability cores. To compute a different core than known ones,
a straightforward way is to start with a subset R′ ⊂ R such
that R′ is not a superset of any known core.

The above algorithm depends on an efficient R-
schedulability test (Line 3 in the algorithm). Depending on the
type of system, the forms of such procedure vary. In this paper,
we assume that Audsley’s algorithm is applicable to the task
system. For such systems, a revised Audsley’s algorithm can
check if Γ is R-schedulable. Similar to Audsley’s algorithm,
it iteratively picks a task that can be assigned at a particular
priority level starting from the lowest priority. However, when
choosing the candidate task, it shall guarantee that assigning
the priority does not violate any partial priority order in R.
This is done by checking if the current task is a legal candidate:
A task τi is a legal candidate if and only if (a) it has not
been assigned a priority; and (b) all the tasks that should have
a lower priority than τi according to R have already been
assigned.

IV. UNSCHEDULABILITY CORE GUIDED OPTIMIZATION

In this section, we develop a new optimization algorithm,
inspired by three observations. First, the schedulability con-
dition is often difficult to be explicitly included in optimiza-
tion, as the optimization procedure often needs to check the
feasibility of a large number of solutions. For example, the
problem presented in Section V-A essentially is to assign
priority orders to n mixed-criticality function blocks under
Adaptive Mixed Criticality (AMC) scheduling [19], resulting
n! different solutions. For a decent sized problem, e.g., n = 30,
the design space contains 30! = 2.7 × 1032 solutions, too
large a space to explore with simple branch-and-bound method.
Second, the complexity of the schedulability analysis may
prevent us from leveraging existing optimization frameworks.
For example, the most accurate schedulability analysis for
AMC, AMC-max [19], hinders a possible formulation in ILP:
It requires to check, for each possible time instant s of
criticality change, whether the corresponding response time
is within the deadline, However, the range of s is unknown
a priori as it depends on the task response time in LO mode.
Third, the optimization objective may only be sensitive to a
small set of schedulability constraints.

As discussed earlier, finding all the unschedulability cores
is hardly practical due to their exponential growth with system
size. Hence, we consider the lazy constraint paradigm that
only selectively adds unschedulability cores into the problem
formulation. The paradigm starts with a relaxed problem
containing only a selected subset of constraints that leaves out
all the schedulability conditions. The rest of the constraints is
temporarily put in a lazy constraint pool. A constraint from
the pool is added back only if it is violated by the solution
returned for the relaxed problem. In addition, instead of adding
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Algorithm 2 Unsched Core Guided Optimization Algorithm

1: function FINDOPTIMAL(Task set Γ, Integer k)
2: Build initial problem Π as in (7)
3: while true do
4: X∗ =SOLVE(Π)
5: if Π is not feasible then
6: return Infeasibility
7: end if
8: Compute RX∗ as in (8)
9: if Γ is not RX∗ -schedulable then

10: Compute maximally k unschedulability cores
U1, ...,Uk with Algorithm 1

11: Add Constraint (9) to Π
12: else
13: return priority assignment P respecting RX∗

14: end if
15: end while
16: end function

the violated schedulability conditions back, we leverage the
concept of unschedulability core to provide a much more
compact representation of these constraints.

The proposed procedure is summarized in Algorithm 2. It
takes as input arguments a task system Γ and an integer number
k which denotes the maximum number of unschedulability
cores to compute for each infeasible solution (see Remark 5).
The algorithm works as follows.

Step 1. Instantiate the initial problem Π as

minC(X)
s.t. F′(X) ≤ 0

(7)

Different from the original problem in (3), F′(X) ≤ 0 excludes
all the schedulability conditions from F(X) ≤ 0.

Step 2. Solve the initial problem Π in (7). If Π is not fea-
sible, then the algorithm terminates. Otherwise, let X∗ denote
the optimal solution obtained. Construct the corresponding
PPO set RX∗ as follows

RX∗ = {ri,j |pi,j = 1 in X∗} (8)

Apply the revised Audsley’s algorithm to test Rx∗ -
schedulability. If Γ is not RX∗ -schedulable, go to step 3.
Otherwise go to step 4.

Step 3. Apply Algorithm 1 to compute k number of
unschedulability cores U1, ...,Uk. Update problem Π by adding
the following constraints, then go to step 2.∑

ri,j∈Um

pi,j ≤ |Um| − 1, ∀m = 1, ..., k (9)

Step 4. Return the optimal priority assignment P that
respects RX∗ with the revised Audsley’s algorithm.

Remark 4. As the number of unschedulability cores is clearly
bounded, Algorithm 2 shall always terminate as it either returns
a solution (Line 13), or adds more constraints corresponding to
the newly detected (and different from known ones) unschedu-
lability cores to the problem (Line 11), or reports infeasibility
(Line 6). If a solution is returned, Algorithm 2 guarantees
that it is feasible since it confirms that the system Γ is RX∗ -
schedulable. Algorithm 2 also guarantees the optimality of the
solution since it always maintains an over-approximation of
the exact feasibility region (a subset of all constraints).

Remark 5. The parameter k in Algorithm 2 does not affect
the optimality of the algorithm, but influences its runtime. A
good choice is k = 5, as in our experiments it is almost always
within 10% compared to the optimal setting.

The efficiency of Algorithm 2 comes at three-fold. First, the
procedure avoids modeling the complete schedulability region.
Instead, it explores, in an objective-guided manner, much
simpler over-approximation formulations that are sufficient to
establish optimality. Second, it hides the potentially compli-
cated system schedulability conditions by converting them into
a simple form of unschedulability cores using a separate and
dedicated algorithm. This also makes the framework easily
adaptable to other systems whose analysis are difficult to
formulate in frameworks such as ILP. Third, the conversion
to unschedulability core is essentially a generalization from
one infeasible solution to many, which is a key in allowing a
fast convergence rate to true optimality.

We now illustrate the algorithm by applying it on the
example Γe in Table I, where the parameter k is set to 1.

Example 3. Consider the following objective function

C(X) = −p3,1 − p4,1 − p4,2 − p4,3 − p5,4 (10)

The algorithm constructs the initial problem Π as (7),
where F′(X) ≤ 0 only contains the set of antisymmetry and
transitivity constraints as defined in (2).

The algorithm enters the first iteration and solves Π by
possibly using ILP solvers. The solution is (for simplicity, we
omit those not affecting the objective function)

X∗ = [p3,1, p4,1, p4,2, p4,3, p5,4] = [1, 1, 1, 1, 1]

The corresponding PPO set is RX∗ =
{r3,1, r4,1, r4,2, r4,3, r5,4}. Clearly, Γe is not RX∗ -schedulable.
The algorithm computes one unschedulability core of RX∗ as
U1 = {r4,3, r5,4}. The problem Π then becomes

minC(x)
s.t. F′(X) ≤ 0

p4,3 + p5,4 ≤ 1
(11)

In the second iteration, solving (11) gives the solution
X∗ = [p3,1, p4,1, p4,2, p4,3, p5,4] = [1, 1, 1, 1, 0]. The corre-
sponding PPO set is RX∗ = {r3,1, r4,1, r4,2, r4,3, r4,5}. Since
Γ is still not RX∗ -schedulable, the algorithm computes another
unschedulability core as U2 = {r3,1}. The problem Π is
correspondingly updated as

minC(x)
s.t. F′(X) ≤ 0

p4,3 + p5,4 ≤ 1, p3,1 ≤ 0
(12)

In the third iteration, the problem in (12) is solved
to obtain the solution X∗ = [p3,1, p4,1, p4,2, p4,3, p5,4] =
[0, 1, 1, 1, 0]. The corresponding PPO set is RX∗ =
{r1,3, r4,1, r4,2, r4,3, r4,5}. At this point, Γe becomes RX∗ -
schedulable. The algorithm then terminates and returns the
following optimal solution

P = [π4 > π1 > π2 > π3 > π5 > π6]

V. EXPERIMENTAL EVALUATION

In this section, we demonstrate the advantages of the
proposed approach with two example problems.
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A. Implementation of Mixed-Criticality Simulink Models
The first is the optimization of the semantics-preserving im-

plementation of mixed-criticality Simulink models. We briefly
describe the problem below. A Simulink model is a Directed
Acyclic Graph (DAG) where nodes represent function blocks
and links represent data communication between function
blocks [20]. We assume each function block is implemented in
a dedicated task (hence use the terms function block and task
interchangeably). The semantics-preserving implementation of
the Simulink model has to match its functional behavior.
This typically requires the addition of an Rate Transition
(RT) block between a reader and a writer with different
but harmonic periods, which is a special type of wait-free
communication buffers. However, the costs of RT blocks are
additional memory overheads and in some cases, functional
delays in result delivery. The latter degrades control perfor-
mance. Consider a fast reader τr and slow writer τw that
writes to τr. Assigning higher priority to τr generally helps
schedulability as it conforms with the rate monotonic policy.
However, since the reader now executes before the writer, an
RT block is needed to store the data from the previous instance
of the writer, which also incurs a functional delay. On the
other hand, if τr can be assigned with a lower priority while
keeping the system schedulable, then no RT block is needed
and no functional delay is introduced. The software synthesis
of Simulink model is to exploit priority assignment as the
design variable to minimize the functional delays introduced
by the RT blocks (hence improving control quality). We note
that Audsley’s algorithm is no longer optimal as schedulability
is not the only constraint, and the design should minimize the
weighted sum of functional delays.

We consider the problem where the Simulink model con-
tains functional blocks with different criticality levels, sched-
uled with Adaptive Mixed Criticality (AMC) scheme [19].
This problem is NP-hard as the special case where all tasks
are LO-critical is proven to be NP-hard [20]. AMC scheduled
systems can be analyzed with two methods [19]: AMC-max
and AMC-rtb. The straightforward ILP formulation of AMC-
max is excluded due to its extreme high complexity (see
Section IV). We also include brute-force branch-and-bound
(BnB) algorithms, to evaluate the benefit from modern ILP
solvers (e.g., CPLEX). The list of compared methods is:

• UC-AMC-max: Unschedulability core guided algorithm
(Algorithm 2) with AMC-max as schedulability analysis;

• UC-AMC-rtb: Algorithm 2 with AMC-rtb analysis;
• ILP-AMC-rtb: ILP with AMC-rtb analysis, solved by

CPLEX;
• BnB-AMC-rtb: BnB algorithm with AMC-rtb analysis;
• BnB-AMC-max: BnB with AMC-max analysis.
We use TGFF [21] to generate random systems. Each

function block has at most an in-degree of 3 and out-degree
of 2. We first randomly choose a number of sink function
blocks and assign it with HI-criticality. The criticality of the
remaining blocks are determined by the following rules:

• If a block is the predecessor of any HI-critical block,
then it is assigned a HI-critical level as well;

• All blocks not assigned HI-critical by the above rule are
assigned LO-critical level.

We first study the scalability with respect to the number
of function blocks which varies from 5 to 100. The sys-
tem utilization in LO-criticality mode is randomly selected
from [0.5, 0.95]. For each task in the system, utilization is

generated using the UUnifast-Discard algorithm [22]. Task
period is randomly chosen from a predefined set of values
{10,20,40,50,100,200,400,500,1000}, which contains all the
periods for the real-world automotive benchmark in [23]. The
criticality factor of HI-criticality task is uniformly set to 2.0

( Ci(HI)
Ci(LO) = 2.0). We generate 1000 systems and report their

average for each point in the plots. k is set to 5 in Algorithm 2
as the corresponding runtime is typically within 10% of the
optimal setting.

Figs. 1 and 2 illustrate the runtime and minimized func-
tional delay of these methods, respectively. AMC-max based
methods give better optimal solution due to the better accuracy
of AMC-max than AMC-rtb, but they also run slower than
their counterpart based on AMC-rtb (e.g., UC-AMC-max vs.
UC-AMC-rtb). The superiority of branch-and-bound based al-
gorithms in small-sized systems is mainly due to the overhead
in ILP model construction in other methods, which consumes
a significant portion of the runtime when the ILP formulation
is rather simple. The scalability for UC-AMC-rtb and UC-
AMC-max is remarkably better than that of the other methods.
For example, for systems with 35 tasks, the unschedulability
core guided techniques are more than 1000 times faster com-
pared to ILP-AMC-rtb. In addition, UC-AMC-rtb and UC-
AMC-max are quite close in their runtimes, demonstrating
that Algorithm 2 is not very sensitive to the complexity of the
schedulability analysis. Finally, ILP-AMC-rtb scales much
better than BnB-AMC-rtb. This demonstrates that modern
ILP solvers, which are equipped with various sophisticated
techniques, are generally more efficient than brute force BnB.

We also evaluate the scalability of UC-AMC-max and UC-
AMC-rtb with respect to different system utilization ranging
from 0.05 to 0.90. The number of function blocks in a system
is fixed to 70 while the other parameters remain the same.
The runtime of both methods stays almost the same (around
1000ms per system) when the utilization is larger than 40%.
This means that the scalability of unschedulability core guided
algorithms is not sensitive to system utilization.

B. Minimizing Memory Usage of AUTOSAR Components
The second case study is to minimize the memory usage

of AUTOSAR components [24], where a set of runnables (the
AUTOSAR term for function blocks) communicates through
shared buffers that shall be appropriately protected to ensure
data integrity. We assume that each runnable is implemented
in a dedicated task, and use the terms runnable and task
interchangeably. We consider the problem for the optimal
selection of (a) the priority assignment to runnables; (b) the
selection of the appropriate mechanism for protecting shared
buffers among a set of possible choices, including ensuring
absence of preemption, lock-based method (priority ceiling
semaphore lock), and wait-free method [24]. These mech-
anisms have different timing constraints and memory cost.
Ensuring absence of preemption has no memory or timing
cost, but it requires the two communicating tasks satisfy that
the lower priority task always finish before the next activation
of the higher priority task. Wait-free method imposes no extra
timing constraints but incurs a memory cost equal to the size
of share buffer. Lock-based method introduces blocking delay
to higher priority tasks but reduces the memory overhead to
minimal (only one-bit for implementing semaphore locks).
This problem has been demonstrated to be NP-hard [25].

The objective is to minimize the total memory usage while
ensuring system schedulability. In addition to the variables of
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priority assignment, for each shared memory buffer v between
two tasks τi and τj , we introduce a set of binary variables
defined as follows:
⎧
⎨

⎩

lv = 1 ⇔ Using semaphore lock to protect v

wv = 1 ⇔ Using wait-free method to protect v

lv = 0 ∧ wv = 0 ⇔ Absence of preemption between τi and τj

Since it is sufficient to protect each shared buffer with one of
the mechanisms, the following constraints are added

lv + wv ≤ 1, ∀v
We compare our technique (denoted as UC) with request

bound function based ILP formulation [14] (denoted as ILP)
on randomly generated synthetic task systems. We omit BnB as
it is demonstrated to be less scalable than ILP. Task utilization
and period are generated in the same way as Section V-A.
Each task communicates with 0 to 5 other tasks. The size of
the share buffer is randomly selected between 1 to 512 bytes.
The WCET of the critical section for each task τi on each
share buffer is randomly generated from (0, 0.1 · Ci].

Fig. 3 plots the runtime versus system sizes for the case
study. As in the figure, UC always takes significantly smaller
runtime than ILP while giving the same optimal results,
and the difference becomes larger with larger systems. For
example, for systems with 25 runnables, UC runs about 200
times faster than ILP. This demonstrates that the carefully
crafted algorithm UC can achieve much better scalability than
the other exact algorithms while maintaining optimality.

VI. CONCLUSIONS

In this work, we presented the concept of unschedulability
core, a compact representation of schedulability conditions
for use in design optimization of priority assignment in real-
time systems. We developed efficient algorithms for calculating
unschedulability cores and optimizing priority assignment.
Experiments show that our unschedulability core guided op-
timization framework can provide optimal solutions while
scaling much better than exact approaches.
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