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Abstract—Circuit performance has been the key design constraint
for over a decade. Variable-latency design (VLD) paradigm was
proposed for optimizing the overall performance in terms of
throughput. In addition, process variations and aging effects
manifest themselves as gate delay shifts, and in turn cause
variability of circuit timing (timing variability). Required for
dealing with the impact of timing variability better, detailed
evaluation and analysis of circuit timing for VLD are actually not
straightforward. In this paper, we present a systematic
methodology for analyzing a VLD circuit, and identifying critical
1-cycle and 2-cycle paths/gates. Based on the criticality analysis, a
gate sizing framework using particle swarm optimization (PSO)
is proposed. Our objective is, in a less pessimistic fashion, making
constructed VLD circuits better (less vulnerable to timing
variability). The proposed framework is experimentally verified
to be runtime-efficient and able to provide promising results. On
average, an extra timing margin of 11% can be obtained without
lengthening the clock period, and only 4% area overhead is
introduced.

I.  INTRODUCTION

Circuit performance has been the key design constraint for over a
decade. Traditional performance enhancement techniques attempt to
minimize the longest path delay which determines the clock period.
However, the longest path in many designs may be a false path, or
may be activated infrequently. The strategy of minimizing such worst-
case scenario usually leads to unnecessary pessimism. More recently,
the variable-latency design (VLD) paradigm was presented [1]-[5].
The main idea of VLD is to explore timing speculation by allowing
two clock cycles for paths with longer delays, while allowing one
cycle for others (with shorter delays). Therefore, the clock period can
be smaller than the longest path delay, and as long as those paths with
delays greater than the clock period are not activated frequently, the
overall performance in terms of throughput can be significantly
enhanced.

On the other hand, the design and manufacturing of semiconductor
devices have experienced dramatic innovations, at the cost of
downgrading reliability of nanoscale integrated circuits (ICs) and
system-on-chips (SOCs). The 2013 ITRS [6] projects that the
reliability of sub-100nm technology nodes can reach a noteworthy
order of 10° FITs (failures in 10° hours). Some of the major challenges
driving reliability-aware IC/SOC design methodologies encompass
process variations [7][8] and aging effects [9][10]. These effects
manifest themselves as gate delay shifts, and in turn cause variability
of circuit timing (timing variability). To deal with the impact of timing
variability, an intuitive approach is incorporating extra timing margins
during the design stage, which is effective but may result in overly
pessimistic design.

Required for dealing with the impact better, detailed evaluation

and analysis of circuit timing for VLD are actually not straightforward.
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Fig. 1. Path delay distribution

In a VLD circuit, paths are classified into two categories: 1-cycle
paths (i.e., paths that are shorter and allowed/assigned 1 clock cycle
for computation), and 2-cycle paths (i.e., paths that are longer and
allowed/assigned 2 clock cycles). The topologically long paths, which
are most likely 2-cycle paths in VLD, are not the only candidates to
be optimized. The black line in Fig. 1 shows the path delay
distribution of a circuit. To synthesize the circuit into a VLD, the clock
period (7¢) is typically set to 60-80% of the longest path delay in order
for a preferable tradeoff between performance gain and area penalty
[5]. In this circumstance, 2-cycle paths are usually less critical than 1-
cycle paths due to larger timing margins (i.e., interval (1) with respect
to “2-cycle” time span, meaning that 1-cycle paths are the major
candidates for optimization. Also as the black line shown in Fig. 1, no
matter what clock period is used for VLD synthesis, there are usually
many 1-cycle paths with delays close to the clock period. Unlike 2-
cycle paths, these 1-cycle paths have very limited or even no timing
margins (i.e., interval @), actually none) with respect to “1-cycle” time
span, making the resulting VLD highly vulnerable to timing
variability.

Related work on VLD mainly focuses on, given a logic circuit,
constructing its area-efficient VLD for performance optimization.
Among various existing studies, [1]-[5] target general logics while
[11]-[13] target arithmetic logics. The authors of [14][15] proposed to
consider aging and variation, respectively, when constructing the
VLD of a circuit. All of these studies aim at optimizing circuit
performance, and the aforementioned issues (i.e., the criticality of 1-
cycle paths in a constructed VLD circuit and its vulnerability to timing
variability) are not ever addressed explicitly.

However, identifying critical 1-cycle paths is not as simple as
identifying critical 2-cycle paths. In this paper, we present a
systematic methodology for analyzing a VLD circuit, and identifying
critical 1-cycle and 2-cycle paths. Based on the criticality analysis, a
gate sizing framework using particle swarm optimization (PSO) is
proposed, where non-critical 2-cycle paths can be exploited (slowed
down) for optimizing (speeding up) critical 1-cycle paths. The red line
in Fig. 1 depicts the expected path delay distribution of our optimized
VLD. The distribution becomes bimodal: 1-cycle paths (forming the
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left peak) and 2-cycle paths (forming the right peak) both have
sufficient timing margins/slacks (i.e., intervals (3) and @), respectively)
to tolerate a certain degree of timing variability. Note that the
proposed framework differs from existing work on constructing good
VLD circuits. Instead our objective is making constructed VLD
circuits better (less vulnerable to timing variability), in a less
pessimistic fashion compared to simply lengthening clock period. The
contributions and advantages of our work are twofold:

® This is the first work dealing with the impact of timing variability
given a constructed VLD circuit. Prior work basically synthesizes
an original logic circuit (non-VLD, or fixed-latency design) to its
VLD counterpart for performance optimization, and the resulting
VLD may be extremely vulnerable to timing variability as
described earlier. We explicitly address the problem by accurately
identifying critical 1-cycle and 2-cycle paths and manipulating
them for robustness/tolerance to timing variability.

® The proposed optimization framework based on gate sizing is
formulated into a particle swarm optimization (PSO) problem. Our
PSO formulation is experimentally verified to be runtime-efficient
and able to provide promising results. On average, an extra timing
margin of 11% can be obtained without lengthening the clock
period, and only 4% area overhead is introduced.

II.  TIMING CRITICALITY ANALYSIS

Static Timing Analysis (STA) is a method of checking timing
requirements inside a design by calculating the propagation delay
along each path. It also identifies timing-critical paths and analyzes
the timing criticality of each gate. Unlike a fixed-latency circuit, the
critical paths in a VLD circuit may not only be those topologically
long paths in the circuit, but also those whose delays are smaller than
(and close to) the clock period. Thus, traditional STA may fail to
identify the correct set of critical paths in VLD and lead to failure
during optimization. We propose Timing Criticality Analysis (TCA)
for VLD, which aims to accurately analyze the timing of VLD and
find out all critical paths/gates in VLD. In the sequel, we briefly
introduce traditional STA, on which our critical analysis engine is
based.

A. Traditional Static Timing Analysis (STA)

STA calculates the propagation delay along each path. There are
two modes of timing: late mode and early mode. In the late mode, the
arrival time of a gate g (denoted by 47%(g)) indicates the /atest time a
signal can change at the output of g, determined by the /ongest path
from a primary input to g. The required time of a gate g (denoted by
RTi(g)) indicates the /atest time a signal is allowed to change at the
output of g, determined by the /ongest path from g to a primary output.
Arrival times propagate in a topological order from primary inputs to
primary outputs, while required times propagate from primary outputs
to primary inputs.

Slack,(g) = RT,(g) - AT,(g) (M

The late-mode slack of a gate g (denoted by Slacki(g)) is the
difference between its required time and arrival time. It quantifies the
amount by which a signal can be delayed at g and not increase the
length of the longest path through the network. Typically, a negative
Slack(g) indicates that g is a critical gate.

In the early mode, the arrival time of a gate g (denoted by ATx(g))
indicates the earliest time a signal can change at the output of g,
determined by the shortest path from a primary input to g. The
required time of a gate g (denoted by R7k(g)) indicates the earliest
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AT,/ RT, /Slack;
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1/4/-3  2/5/- 5/3/2 6/4/2  6/5/1

(d) Result: marked circuit netlist (union of (a) and (c))

Fig. 2. Example of Timing Criticality Analysis for VLD

time a signal is allowed to change at the output of g, determined by
the shortest path from g to a primary output.

Slack ,(g) = AT,(g) - RT;(g) @

The early-mode slack of a gate g (denoted by Slacke(g)) is the
difference between its arrival time and required time. It quantifies the
amount by which a signal can be sped up at g and not decrease the
length of the shortest path in the network.

B. Timing Criticality Analysis (TCA) for VLD

Definition 1 (I-cycle critical paths/gates): A path is defined as a 1-
cycle path if and only if its delay is smaller or equal to clock period,
Te; in other words, it requires no more than one clock cycle to
complete an operation. We define those gates on a 1-cycle path as 1-
cycle gates. Further, a 1-cycle path is called critical if its delay falls
within the closed interval [7.x(1-Bound), T.] where Bound is the range
of delay for defining critical paths. We define those gates on a 1-cycle
critical path as 1-cycle critical gates.

Definition 2 (2-cycle critical paths/gates): A path is defined as a 2-
cycle path if and only if its delay is larger than 7¢; in other words, it
requires more than one clock cycle to complete an operation. We
define those gates on a 2-cycle path as 2-cycle gates. Further, a 2-cycle
path is called critical if its delay falls within the interval [27:x(1-
Bound), 2Tc]. We define those gates on a 2-cycle critical path as 2-
cycle critical gates.
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Traditional STA is able to find out all critical gates in a fixed-
latency circuit. However, when considering VLD, it may fail because
traditional STA only recognizes the critical gates on topologically long
paths, which are 2-cycle critical gates, while missing 1-cycle critical
gates. In the sequel, we propose to extend the concept of traditional
STA, such that both 1-cycle critical gates and 2-cycle critical gates can
be identified. More specifically, the slack of a gate characterizes the
gate in terms of timing criticality. The criticality of a gate is related to
the magnitude of its slack: the smaller slack a gate has, the more
critical the gate is. Our method of timing criticality analysis for VLD
consists of two steps: the first step identifies 2-cycle critical
paths/gates, while the second step identifies 1-cycle critical
paths/gates.

Step 1 (late-mode static timing analysis): Step 1 marks all 2-cycle
critical gates by using late-mode STA. Let the required times of
primary outputs be 27¢. Then, if Slacki(g) = 1, it means that gate g can
be delayed by 1 without increasing the delay of the longest path
through the network and thus having to make 27¢ larger. On the other
hand, if Slacki(g) = -1, it means that gate g needs to be sped up by 1
so as to ensure no timing violation without making 27, larger.

To realize Step 1, we set an appropriate required times for primary
outputs. The delay of a 2-cycle critical path is within [27.x(1-Bound),
2T¢]. Thus, the required times of primary outputs is set to 27cx(1-
Bound). See Fig. 2(a) as an example. Consider it as a VLD circuit and
all gate delays are assumed to be 1. Let 7c =5 and 27, = 10, Bound =
0.1. Therefore, the paths with delays > 27cx(1-Bound) =9 are 2-cycle
critical paths. We set the required times of primary outputs to 9, then
perform late-mode STA, and finally, check Slacki(g) of each gate. For
each gate with Slacki(g) <0, mark it as a 2-cycle critical gate, and in
Fig. 2(a) a set of gates {a, b, ¢, d, e, f, g, h, 1, j, m} are marked.

Step 2.1 (early-mode static timing analysis): Step 2.1 aims to mark
all 1-cycle gates, no matter whether it is critical or not. Let the required
times of primary outputs be 7. Then, if Slackr(g) = 1, it means that
gate g can be sped by 1 without decreasing the delay of the shortest
path in the network. That is, the shortest path passing through gate g
has a delay of 7.+1. On the other hand, if Slacke(g) = -1, it means the
shortest path passing through gate g has a delay of 7,-1. That is, there
exists (at least) a 1-cycle path with a delay of 7.-1 passing through this
specific gate.

To realize Step 2.1, we set an appropriate required times for
primary outputs. The delay of every 1-cycle path must be smaller than
or equal to 7¢. Thus, the required times of primary outputs is set to 7e.
Consider the same example in Fig. 2(b). The paths with delay < 7. =
5 are 1-cycle paths. We set the required times of primary outputs to 5,
then perform early-mode STA, and finally, check Slacke(g) of each
gate. For each gate with Slacke(g) < 0, mark it as a 1-cycle gate, and
in Fig. 2(b) a set of gates {a, b, ¢, d, h, 1, j, 1, m, n, o} are marked. All
of these gates lie on one (or more) 1-cycle path.

Step 2.2 (path reporting): To mark 1-cycle “critical” gates, we
employ path reporting. This method uses a min-heap to store partial
paths; each element in the heap records the current partial path, its
length, and its slack (i.e., the slack of the last gate on the path). The
key of this heap is the slack: the smaller slack the current partial path
has, the more critical it is. Initially, push partial paths with only
primary inputs into the heap. After that, iteratively pop the top partial
path (with minimum slack) out of the heap until the heap becomes
empty or the top partial path meets the termination condition. If the
popped path is an incomplete path (i.e., its last gate not a primary
output), we generate new partial path(s) by extending the path from

its last gate by one level downstream, and then push the extended
path(s) into the heap. Otherwise, if the popped path ends with a
primary output and its length falls within [7ex(1-Bound), Tc], it will
be reported and all gates on the reported path will be marked as 1-
cycle “critical” gates. If the popped path is a complete path but its
length is less than 7:x(1-Bound), it means that there does not exist
unreported critical path. Hence, the procedure of path reporting
finishes.

A gate is a 1-cycle critical gate only ifitis a 1-cycle gate. As shown
in Fig. 2(b), we have extracted all of the 1-cycle gates. Therefore, path
reporting only needs to be applied on the sub-network(s) consisting of
1-cycle gates, which significantly reduces the search space and makes
our path reporting runtime-efficient. It is possible that a 2-cycle path
is included in the sub-network of 1-cycle gates. To further prune the
search space during path reporting, we can discard a partial path
whose length exceeds 7, because it is no longer a 1-cycle path, nor 1-
cycle critical path to be reported. The result of applying path reporting
on the reduced, sub-network(s) of 1-cycle gates is shown in Fig. 2(c).
A 1-cycle path with delay > Tex(1-Bound) = 4.5 is reported as a 1-
cycle critical path, and a set of gates {a, b, ¢, d, o} on the path are
marked as 1-cycle critical gates. As shown in Fig. 2(d), which
indicates whether a gate is a 1-cycle critical gate (i.e., {0}), or a 2-
cycle critical gate (i.e., {e, f, g, h, i, j, m}), or both (i.e., {a, b, ¢, d}),
or neither (i.e., {k, 1, n, p, g, r}). This piece of information is the key
guideline for optimizing a VLD circuit in terms of
robustness/tolerance to timing variability. The proposed optimization
methodology is presented in the following section.

III. PROPOSED METHODOLOGY BASED ON
PARTICLE SWARM OPTIMIZATION

The goal of our methodology is to achieve a higher degree of
tolerance to timing variability, by reducing the delay of a VLD circuit
based on the criticality analysis described in Section II. With delay
reduced, larger timing margins can be obtained and the lifetime of the
VLD circuit is thus improved. Toward this end, the proposed
optimization framework based on gate sizing is formulated into a
particle swarm optimization (PSO) problem. We first review the
concepts of gate sizing and PSO, and then our proposed methodology
will be presented.

A. Gate Sizing

1) Gate Sizing Cases

As mentioned above, sizing a gate not only changes its own delay
but also changes the delay of its input gates. Thus, we propose “gate
sizing cases” based on the effort of Timing Criticality Analysis for
VLD, which determines whether a gate should be upsized or not.

Case 1: If a gate is marked as critical gate, it means slowing down this
gate will cause timing violation. Though downsizing this gate slows
down itself, its input gates get sped up and might speedup the entire
path in the end. As a result, gates in Case 1 can be downsized or
upsized.

Case 2: If a gate is a non-critical gate and there exists critical gate in
its inputs, then upsizing this gate slows down its input gate, leading to
violate the timing constraint. Therefore, gates in Case 2 can only be
downsized.

Case 3: If a gate is a non-critical gate and there does not exist any
critical gate in its inputs, then upsizing or downsizing this gate both
may have a better result. As a result, gates in Case 3 can be downsized
or upsized.
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Fig. 3. PSO-based gate sizing implementation

2) Gate Sizing Model & Fitness

When we employ gate sizing to a circuit, each gate in the circuit
has an independent size. Therefore, the size of gates in the circuit can
be represented as a n-dimension vector:

GS:<GS,,...,GS, >

we define such vector as size vector, GS, where n is the number of
gate in the circuit. Size vector strongly influences the delay and area
of a circuit. The delay of circuit can be calculated easily with logical
effort model and the area is the sum of the size of gates.

To determine the quality of a circuit, we evaluate a fitness value,
Fitness. For a fixed latency circuit, the Fitness is:

- Area(opt)j N (1 3 Delay(opt)] 3)

Fit ) =a
iness(opt) [ Area(ori) Delay(ori)

in this formulation, ori is the original circuit, opt is optimized circuit.
Delay indicates the longest path delay of a design. a and f are the
weight for area and delay. However, when considering VLD, we must
ensure 1-cycle critical paths and 2-cycle critical paths are both
optimized. Therefore, the Fitness of a VLD is:

Area(opt)]

Fitness(opt)=a 1—
(op1) [ Area(ori)

“4)

Max(Delay,_,,, (opt),Delay, ., (opt)/2)
+p|1-
Delay,_,,.(ori)

where Delayi-¢ycie is the longest delay of 1-cycle paths in VLD, Delay:-
erele 18 the longest delay of 2-cycle paths. Delayi-cycre(ori) indicates the
clock period of original VLD circuit, 7c. For the optimized VLD, we
take the bigger value between Delay-cycie(opt) and (Delayz-cycie(opt))/2
as the new 7. to ensure no timing violation for both 1-cycle paths and
2-cycle paths.

B. Particle Swarm Optimization (PSO)

PSO is a global optimum search algorithm that developed from the
simulation of bird flocking behavior [17]. In PSO, each single solution
is a particle in the search space, the group of particles is called swarm.
Every particle has a velocity which determines the direction for
searching optimal solution. Velocity of a particle will be updated

during the process of optimization, according to the best solution it
has achieved so far and the best solution among all particles. In short,
PSO iteratively searches solution by moving particles in the search
space. Once a better solution is discovered, it will guide the movement
of particles and lead the swarm to optimal solution eventually. A
particle i holds the following information:

Xi: particle position, a d-dimension vector < X;, ..., Xia>.

Vi: particle velocity, a d-dimension vector <Vi, ..., Via>.

pBesti: the best position that particle i achieved so far.

gBest: the global best position, shared by the entire swarm.

Fitnessi: a fitness value that determines the quality of Xi.
with the information above, PSO updates the velocity and position to
achieve the movement of a particle by following equations:

V.=wxV, +cr(pBest,— X,)+c,r,(gBest — X,) )
X, =X, +V,

where o is inertia weight factor. ¢i is cognition learning factor,
controls the influence of pBest:. c2 is social learning factor, controls
the influence of gBest. r1 and r2 are two uniformly distributed random
numbers that generated independently. The movement of a particle is
influenced by the inertia of particle itself, the best position it achieved
so far and the global best position that the entire swarm achieved so
far. This make PSO won’t easily trap into local optimum and converge
to the best solution in a short time.

C. Proposed Methodology

Take an observation on the characters of gate sizing model and
particle, we can see there are many similarities. For example, gate
sized circuit has a size vector, where particle has a position vector.
Another similarity is gate sizing model and particle both hold a Fitness
that determines their quality. As a result, it is reasonable and efficient
to solve gate sizing problem by PSO. [18] proposed a method which
used PSO to find the gate widths of two adders. Instead, our proposed
method is valid for general circuits. Moreover, we present a precise
PSO formulation that solves the gate sizing problem, which has never
been proposed.

In our proposed methodology, we regard every particle as a gate
sizing circuit. Therefore, given a circuit with » gates, we create a n-
dimension position vector for particle 7, i.e. Xi: <Xis, ..., Xi»>. And
the j component in position vector, X i, corresponds to the j*
component in gate size vector, GS; (which indicates the size of the ;"
gate in circuit). Take Fig. 3 as an example, there are total 6 gates in
circuit C17, so position vector X; should have dimension d =6 .

For simplicity and without loss of generality, we assume there are
five different possible sizes for every gate in our gate sizing
implementation. Due to the discrete size value used in gate sizing
problem, we rescaled the position in PSO with discrete value. With
GSjand X;; both hold a discrete value, every Xi; can correspond to a
GS; and the position vector can easily transform to a size vector. The
domain and transformation of GS; and Xi; are defined as follows:

The j" component in GS: GSj € {%, %, 1,2, 4}, 1 <j<n
The j™ component in Xi: Xij €{-2,-1,0, 1,2}, 1 <j<n

GS, =2"" (6)

Now we present the procedure of particle initialization. After Xi is
created, we assign JX;; with a uniformly distributed random value,
indicates that particles are uniformly distributed inside the search
space. To initialize pBest; and gBest for particles, Fitness of particles
must be evaluated. Therefore, we need to transform particles back to
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Table 1. Results of timing, area & runtime

Longest Proposed Methodology
Circuit Gate # path Tc(ns) | Optimized | Improvement in Area Runtime
delay (ns) T (ns) timing margin | overhead (sec)
$832 269 | 0.6809 0.4086 03736 8.56% 4.06% 16
938 333 | 07220 04332 0.3930 9.28% 3.38% 26
51423 559 19799 1.1879 1.0018 15.67% 3.17% 696
51488 599 10266 0.6160 0.5649 8.29% 2.28% 33
51494 604 | 10409 0.6245 0.5826 6.71% 5.25% 38
53330 1023 | 09837 0.5902 0.5367 9.06% 3.89% 186
53384 1403 | 2.1209 1.2725 1.0908 14.28% 3.08% 526
$35932 11878 | 2.7493 1.6496 12613 13.36% 2.01% 698
38584 12237 | 46158 27695 23700 14.42% 5.22% 1119
432 210 | 09744 0.5846 0.5451 6.76% 3.15% 761
880 334 | 06724 0.4034 0.3842 4.75% 3.11% 124
7552 2330 | 2.0351 12211 1.0740 12.04% 10.63% 1732
apex3 1891 1.0625 0.6375 05752 9.77% 4.09% 122
too_large 529 | 08105 04863 0.4399 9.54% 3.51% 57
vda 609 | 08264 04959 0.4561 8.03% 2.93% 67
x3 772 [ 0.6396 03838 03236 15.67% 4.74% 48
x4 362 | 06015 03609 0.2860 20.77% 6.00% 22
x6dn 408 [ 05930 03558 03158 11.23% 3.36% 27
X7dn 425 [ 05831 03499 03197 8.63% 1.83% 29
Avg 10.89% 3.98%

circuit, that is, X; back to GS, and calculate circuit fitness with the
circuit of gate sizing implementation using GS. For transformation
from X; to GS, each component GS; is calculated by (6) with the
corresponding JX;;. After that, calculate the delay and area of GS and
evaluated the new Fitness by (4). The new Fitness will then be
compared with the Fitness of pBest; and gBest. If the new Fitness is
greater than the Fitness of pBesti/gBest, update pBesti/gBest with
current particle position. Take the lower half of Fig. 3 as an example,
if X7 is initialized as </, -2, 0, 2, -1, 1>, then it will be transformed to
aGS=<21,22 2022 21 21>=<2 Y, 1,4, %, 2>. This GS indicates
the gate sizing implementation that Particle I currently holds, which
Fitness evaluation is descripted in the right half side of Fig. 3.

Another modification on PSO is restricting the particle movement
with sizing cases that gain from Timing Criticality Analysis for VLD.
We update Vi and X; by (5) as original PSO does. When the position
update is finished, we check whether X;; matches the sizing cases. For
example, assume the original design has a position vector Xori. Then,
if the gate that corresponds to X;; can only be downsized, then Xi; must
be smaller or equal to Xori;. If a movement violates the sizing cases,
then set Xi; to Xor; and set Vi; to 0. This modification strongly
influences the convergence of PSO. If we do not restrict particles’
movement by sizing cases, the swarm may take a long time to find a
solution. Even worse, the swarm may not find a good enough solution
in a limited time.

IV. EXPERIMENTAL RESULTS
In this section, we demonstrate the experimental results of our
proposed methodology for analysis and optimization of VLD. We use
the benchmark circuits in ISCAS’85, ISCAS’89, LGSynth’91
(including MCNC), and IWLS’05. We synthesized circuits using
Berkeley ABC with a TSMC 65nm library.

For the circuits we synthesized, each gate in a circuit is with its
nominal size. Such sizing implementation is obviously unrealistic.
Therefore, we generated a baseline for each circuit, which has a
reasonable gate sizing implementation. More precisely, we first
consider every circuit as a fixed-latency design and perform a pre-
optimization by PSO with the fitness function of (3). After the
baseline circuits are generated, we now consider them as VLDs. To
distinguish between one-cycle and two-cycle computations, an
additional circuitry called “hold logic” is constructed. The hold logic
generates a hold signal that is asserted when a computation requires

more than one clock cycle. This is determined by checking whether
the computation involves a logic path with delay greater than one
clock period, i.e., whether the computation activates such a path.
Because our objective is to optimize constructed VLDs, we make the
following two assumptions. First, we assume that the hold logic of
VLD is already constructed. The hold logic construction was proposed
in [2][5]. It can be seen that the delay of hold logic is much lower than
the clock period of VLD in most cases. Therefore, we assume the
constructed hold logic already have enough timing margin to tolerate
timing variability. Then, the clock period of VLD, T¢, needs to be
determined. For simplicity and without loss of generality, we set 7. to
(0.6xLongest Path Delay), and 2T. therefore becomes (1.2xLongest
Path Delay). There are three reasons for choosing (0.6xLongest Path
Delay) but not (0.5%Longest Path Delay) as the clock period. First, a
small clock period may lead to large area overhead to construct hold
logic. Second, if the clock period is too small, a large number of paths
will be identified as 2-cycle paths, lending to a poor throughput
enhancement. Third, if 7. is larger than (0.5%Longest Path Delay), and
27Tc is larger than (1.0xLongest Path Delay), the criticality of 2-cycle
paths will be lower. Hence, it is possible to slow down non-critical 2-
cycle paths for speeding up 1-cycle critical paths.

A. Results of Timing, Area and Runtime

Table 1 shows the comparison of improvement in timing margin,
and area overhead of the baseline and optimized circuits. Column one
and two shows the circuit name and the number of gate in the circuit.
Column three represents the longest path delay of the baseline circuit,
without VLD consideration. Column four shows the clock period of
the baseline with VLD consideration, which is 7c = (0.6xLongest Path
Delay). Column five is the optimized 7, and columns six and seven
show the percentages of improvement in timing margin and area
overhead, respectively. The area overhead accounts for the additional
area resulting from gate sizing. We assume that the baseline has the
same hold logic as the optimized circuit. Column eight is the runtime
of the entire methodology, with 1000 iterations of PSO. On average,
our methodology has 10.89% improvement in timing margin with
only 3.98% area overhead, which implies that an extra timing margin
of 10.89% can be obtained without lengthening the clock period. This
makes the optimized VLD circuits much less vulnerable to timing
variability due to aging, which usually accounts for 10-15% increase
in circuit delay.

B. Tolerance to Timing Variability

With VLD being optimized, we obtain extra timing margins and
the lifetime is thus improved. Fig. 4 shows the various aging behaviors
of circuits 57488 and apex3 over time. For both circuits, we set their
Te to (0.6xLongest Path Delay). The two black lines reveal the aging
behaviors of the original VLD, where the upper line indicates 2-cycle
critical path delay and the lower line indicates 1-cycle critical path
delay. The two red lines reveal the behaviors of the optimized VLD,
which considers both 1-cycle and 2-cycle critical paths during
optimization. The two blue lines reveal the behaviors of the VLD
optimized by our approach which considers only 2-cycle critical paths
but not 1-cycle critical paths.

It can be clearly seen that, when considering both 1-cycle and 2-
cycle critical paths, 2-cycle paths (less critical) may even be slowed
down while 1-cycle paths (more critical) is always sped up. Based on
the aging model proposed in [19][20], if 10-year aging is considered,
1-cycle critical path delay degrades to 1.077c while 2-cycle critical
path delay degrades to 2.147.. That is to say, 7. needs to be lengthened
to 1.077. (i.e., by 7%) and thus 27, = 2.147T. so as to ensure no timing
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violation for 10 years. For the original (non-optimized) VLD, T, needs
to be lengthened to 1.177¢ (i.e., by 17%) to ensure no timing violation
for 10 years. Although it seems that the 2-cycle critical path delay
degrades to 2.14 T¢ in our optimization, those paths still can finish
computation within 2 clock cycles, which won’t affect the correctness
of VLD. More precisely, it indicates we sufficiently make use of those
non-critical 2-cycle paths to reduce the delay of critical 1-cycle paths.
If our optimization methodology is performed with the criticality of
1-cycle paths ignored, 1-cycle critical paths will be slowed down even
though 2-cycle paths can be sped up much more significantly.
However, this is useless since the clock period should be determined
by not only 2-cycle critical paths, but also 1-cycle critical paths. In
this case, to ensure no timing violation for 10 years, 7. will need to be
lengthened by 23%.

The results of this experiment demonstrate that the VLD circuits
being optimized by our framework are more tolerant to timing
variability, than the case of the original VLDs or the VLDs being
optimized without considering 1-cycle critical paths. This points out
the importance of considering criticality of both 1-cycle and 2-cycle
paths. Failing to consider 1-cycle critical paths will mislead the
optimization process and will finally result in even worse
vulnerability to timing variability.

Now take an observation on Fig. 4(a), for the original design (black
line), the 1-cycle paths will about to violate timing constraint after 1
year. With performance optimized considering both 1-cycle and 2-
cycle critical paths (red line), 1-cycle and 2-cycle path will not easily
violate timing constraint, lengthening the lifetime of VLD. Also, it can
be seen that the 2-cycle critical path has a greater delay than the
longest path delay. This proved that we could slow down non-critical
2-cycle paths for speeding up 1-cycle critical paths. For the
optimization without considering 1-cycle critical paths (blue line), we
can see that the delay of 2-cycle critical path has extremely reduced.
However, the delay of 1-cycle critical path increases and is larger than
the 1-cycle critical path delay of original design. This makes the
design more easily violate timing constraint, which decreases the
lifetime of design. However, unlike Fig. 4(a), the 2-cycle critical path
delay of Fig. 4(b) is lower than the longest path delay. This indicates
it is possible that the optimization decreases the delay of both 1-cycle
critical path and 2-cycle critical path instead of increasing the delay
of 2-cycle critical path. Such event happens when large amount of 1-
cycle critical gates are passed through by 2-cycle paths.

V. CONCLUSION

In this paper, we propose to analyze and optimize a VLD circuit.
The criticality of 1-cycle and 2-cycle paths/gates in the VLD and its
vulnerability to timing variability are explicitly addressed.
Experimental results show that the proposed methodology changes the
path delay distribution such that sufficient timing margins can be
obtained, which implies a higher degree of tolerance to timing
variability. On average, 11% extra timing margin can be obtained with
only 4% area overhead. If a lifetime of 10 years is targeted, another 6-
7% increases in clock period are needed, which is much less than those
by applying pessimistic, naive optimization.
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