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Abstract—RRAM crossbar consisting of memristor devices can natu-
rally carry out the matrix-vector multiplication; it thereby has gained
a great momentum as a highly energy-efficient accelerator for neuro-
morphic computing. The resistance variations and stuck-at faults in the
memristor devices, however, dramatically degrade not only the chip yield,
but also the classification accuracy of the neural-networks running on
the RRAM crossbar. Existing hardware-based solutions cause enormous
overhead and power consumption, while software-based solutions are less
efficient in tolerating stuck-at faults and large variations. In this paper,
we propose an accelerator-friendly neural-network training method, by
leveraging the inherent self-healing capability of the neural-network, to
prevent the large-weight synapses from being mapped to the abnormal
memristors based on the fault/variation distribution in the RRAM
crossbar. Experimental results show the proposed method can pull the
classification accuracy (10%-45% loss in previous works) up close to
ideal level with ≤ 1% loss.

I. INTRODUCTION
Neuromorphic computing using RRAM crossbar has gained a great

momentum to achieve enormous energy efficiency [1]. The RRAM
crossbar can take in the weighted combination of input signals (rep-
resenting a vector) and naturally output the voltage representing
the Dot-Product of a matrix-vector multiplication [2], [3]. Here, the
resistances of memristors in the RRAM crossbar represent the matrix.
For instance, a RRAM crossbar based neuromorphic design realizes a
BSB training algorithm showing great potential to deliver incredible
energy-efficiency with less hardware cost [4]. Xia et al. [5] design a
novel RRAM crossbar architecture to minimize the AD/DA overhead
and propose an optional ensemble method to boost the accuracy and
robustness of the neuromorphic computing. Approximated results
are normally allowed in these computation framework based the
on memristor technology; it can achieve more than 20× envergy-
efficiency with slightly degraded accuracy [1].

The memristor–a non-linear passive electrical component [6]–has
been considered as the best way to realize the synapse of the
neural-network thanks to its small size, non-volatility and low power
consumption; its resistance represents the weight of the synapse (we
simply use “weight” for clarity). Fig. 1 illustrates the structure of
the 1R RRAM crossbar, wherein a memristor links the word-line
and bit-line in the cross point. While 1T1R RRAM crossbar refers
to the structure contains an access transistor and a memristor in the
cross point. To deploy a neural-network on the RRAM crossbar, two
memristors are used to represent the positive and negative weights,
respectively. The memristor only stores the absolute value of the
weight. The crossbar structure can provide a highly integrated cost-
efficient solution for applications using neural-networks [4], [1], [5].
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Fig. 1: The structure of a 1R RRAM crossbar.

Despite of these tremendous advantages, memristor suffers from
various defects and variations, leading to dramatic yield degradation
and causing significant error in neuromorphic computing. The process
variations in the memristor device, on the one hand, cause deviation
of the actual resistance from its ideal resistance [7], [8], [9]. On
the other hand, the defects introduced in the fabrication process
make the memristor stick to high/low resistance level [10]. The
resulting RRAM crossbar may provide incorrect weights and finally
bring significant classification errors to the output of the neural-
network. The resistance variation in the memristor can be measured
by programing the memristor to a target resistance state; the sensing
circuit can then measure the actual resistance of all the memristors.
After the measurement, the distribution of the resistance variation in
a RRAM crossbar can be derived [11]. March-C algorithm [12], [13]
and squeeze-search algorithm [10] are proposed to test the stuck-at
faults in the memristor. To improve the test efficiency, Kannan et
al. [14] intentionally summon sneak-paths in the RRAM crossbar to
test multiple memristors at once. These test methods can pinpoint
the exact location of abnormal memristor with stuck-at faults and
resistance variations.

To tolerate the defects and variations, previous works have pro-
posed various hardware-based solutions [15], [16], [8]. These so-
lutions, however, brings inevitable hardware cost and power con-
sumption. For 1T1R RRAM crossbar, we can remove the abnormal
memristor by switching off the associated access transistor. However,
it requires large routing overhead to control the individual access
transistor; not to mention that the additional CMOS-based transistors
bring significant hardware overhead and power consumption. Thus,
the 1R RRAM crossbar is preferred [1], [5]. In this paper, we focus on
tolerating the variation on the 1R RRAM crossbar. A software-based
solution is proposed in [2] to mitigate the variation on memristor
device. However, this method provides a general good solution for
any RRAM crossbar, rather than an optimized solution for each
specific RRAM crossbar based on the fault/variation distribution.
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Therefore, in this paper, we propose a novel cross-layer solu-
tion leveraging the inherent self-healing capability of the neural
networks. We first find an optimal mapping between weights and
memristors (denoted as weight-memristor) based on a weighted
bipartite-matching algorithm. Given the weight-memristor mapping,
we propose to train the neural-network according to the distribution
of the stuck-at faults (SAFs) and resistance variation in the RRAM
crossbar, so that the weights with high influences will not be mapped
to abnormal memristors. Compared to previous works, e.g., 10%-
45% loss of accuracy is observed in [2], the proposed method can
guarantee ≤ 1% loss of accuracy; it can pull the accuracy from 6%
to 70% even when significant variations occur.

The reminder of the paper is organized as follows: Section II
introduces the related works and motivates this paper. Section III
and IV describe the proposed matching algorithm and training
method, respectively. Experiments are shown in section V. Section VI
concludes this paper.

II. PRIOR WORKS AND MOTIVATION

In this section, we introduce the models and countermeasures of
variations and faults in 1R RRAM crossbar and motivate this paper.

A. Variation Models and Fault Models in 1R RRAM crossbar

Memristors suffer from a wide range of variations which mainly
fall into two categories: parametric variation and switching variation.
The device-to-device parametric variation is caused by the imperfect
fabrication, such as the line-edge roughness, the oxide thickness
fluctuations and the random discrete dopants [17]. Consequently, the
memristor has variable thickness and cross-section area, resulting
in normalized accumulative resistance deviation [7]. The switching
variation is a cycle-to-cycle variation caused by driving circuit. Any
tiny fluctuations in the magnitude or pulse-width of the programmed
current/voltage can lead to a large variation in the resistance of
memristors (denoted as resistance variation) [9].

Other types of variations are well addressed in previous works,
such as those that caused by the IR drops along the resistance network
composed of metal wires and memristors [15] and the existence of
sneak paths (unselected elements in the array form parallel paths
across the device) [16].

The SAFs have been observed in a real RRAM crossbar chip [10];
they will cause low manufacturing yield of the RRAM crossbar chip.
The stuck-at-zero (SA0) fault, on the one hand, is caused by over-
forming defects, reset failure and short defects, which can affect
1.75% of the on-chip memristors [10]. A memristor device containing
SA0 fault is always in the low resistance state (LRS). On the other
hand, the broken word-line and the permanent open-switch defects
force the 9.04% of the memristors to exhibit high resistance (HRS),
denoted as the stuck-at-one (SA1) fault. A memristor in the LRS and
HRS has 10k omh and 1M omh resistances, respectively. SA0 (SA1)
faults can be clustered in a whole column (row) of the RRAM
crossbar; they both can also be randomly distributed across the
RRAM crossbar [10].

B. Variation Tolerance Methods

Hardware-based solutions are proposed to tolerate the above vari-
ations and SAFs. To eliminate the stochastic programming properties
of memristors, in [8], constant reset pulses are repeatedly applied
to a memristor until its resistance-level reaches the target range.
System reduction schemes and IR-drop compensation techniques are
proposed in [15] to resolve the physical limitation and the reliability
issue induced by IR-drop. Two alternative crossbar architectures are

proposed in [16] which can successfully eliminate the sneak-paths
and provide better noise margin. Switching variation can be largely
mitigated by adding additional reset pulses [8].

The drawback of the hardware-based solutions is the large hard-
ware overhead and the high power consumption. Therefore, software-
based methods are proposed to reduce the process variation on the
RRAM crossbar. A general conversion algorithm is proposed [2] to
map an arbitrary weight matrix of a neural-network to the conduc-
tance matrix of a RRAM crossbar. However, it pays no attention
to the memristor variations and defects. Liu et al. [11] show a
pre-calculation algorithm (denoted as VAT) that adjusts the training
goal according to the impact of the variations; an adaptive mapping
strategy is proposed to map the large weights to the memristors with
low resistance variation. VAT is an off-device training method. It adds
a scalar parameter γ in the training phase of the neural network to
estimate the resistance variation of the RRAM crossbar. Repeatedly
self-tuning of γ can derive new weight matrices. By testing the
neural-networks defined by these derived weigh matrices, they find
the optimal γ that obtains the maximum test rate. In a word, VAT
tries to pre-calculate a set of weight matrices according to the priori
significance of the variation; it then applies the best pre-trained weight
matrix to a RRAM crossbar. Although VAT can find a generally good
weight matrix for any RRAM crossbar, it is difficult to find the best
weight matrix for a RRAM crossbar with specific fault distribution
owning to the use of a global parameter γ. The test rate achieved
by VAT can be low when the defect rate is or the significance of
variation is high.

To alleviate the above problem, the same paper proposes an
adaptive strategy to map the weight matrix to the resistance matrix
of the RRAM crossbar. Rows in the weight matrix are exchanged to
prevent the large weight from being mapped to the memristor with
large variation. However, only rows are possible to be exchanged,
which dramatically restrain the solution space. Our experiments show
that the above techniques suffer from sharp reduction of the test rate
when the memristor has severer resistance variation, or when the
affected memristors spread along the row of the crossbar, which can
be commonly observed as introduced in section II-A.

C. Motivation

Previous work [11] shows that an on-device solution is preferred
owning to the hardware cost reduction. The timing cost of the neural-
network training is ignorable as it is an one-time effort for each
application. However, the test rate provided by existing solutions can
still be significantly enhanced. Moreover, no software-based solution
is provided to tolerate the SAFs.

An opportunity—ignored by all the existing solutions—for further
improvement of the test rate is to explore the self-healing capability of
the neural-network. In fact, the weight matrix of a neural network is
always sparse, and the neural-network still works well with acceptable
loss of information. Han et al. [18] propose to prune the near-
zero weights and retrain the neural-network. This neural-network
compression technique can dramatically reduce the storage of the
weight matrix. They show that the neural-network can still work well
after 80% of its weight are pruned. Inspired by the above work, it is
a natural thought to reduce the weights mapped to the memristors
with high resistance variations or SAFs; While after the training
process, the neural-network itself can recover from the error induced
by the changes of the weights. Therefore, in this work, we propose a
novel neural-network training method which explores the self-healing
capability of neural-network to tolerate the resistance variations and
the SAFs in the RRAM crossbar.

20 2017 Design, Automation and Test in Europe (DATE)



III. A BASIC WEIGHT-MEMRISTOR MAPPING METHOD

In this section, we describe a bipartite-matching based method to
derive a weight-memristor mapping for variation and defect tolerance,
which serves as the first step of the proposed accelerator-friendly
neural-network training method described in the next section.

A. Bipartite-matching method

Considering a n×n-column RRAM crossbar, its resistance matrix
T and the corresponding weight matrix of the neural-network also has
n columns. We first calculate the impact of the memristor variations
by mapping the pth row of the W to the qth row of the T . The
metric used in [6], i.e., “summed weighted variations (SWV )”, is to
measure the impact of variation in the weight-memristor mapping.
We extend this metric to measure the impact of SAFs as follows:

SWVpq =

⎧
⎪⎨

⎪⎩

∑n
j=1 |wpj − tqj | for resistance variation

∑n
j=1 |wpj − wmax| for SA0 fault

∑n
j=1 |wpj − wmin| for SA1 fault

(1)

wherein wpj refers to the weight between neuron p and j in W ,
tqj refers to the actual weight represented by the resistance of two
memristors (connecting q to j) in T . Thus, |wpj − tqj | shows the
difference between the ideal weight and the actual weight. Our goal
is to minimize the sum of SWVpq for every row in the W .

In the greedy mapping algorithm [6], each row in W is iteratively
mapped to one row in T to derive the smallest SWV . The chosen
row in T is then removed from the candidate list to be further
mapped. Depending on the scanning order of the row in W , this
algorithm leads to a local optimal solution that cannot guarantee an
overall minimized SWV . For example, Fig. 2(a) shows the mapping
procedure of the greedy based method. According to the scanning
order, the greedy mapping algorithm maps the first row in W—full
of small weights—to the first row in T , which happens to contain all
small variations. As the greedy algorithm continues, two more rows
are mapped as shown in the figure. Unfortunately, the last row in T
contains three memristors with high resistance variation, but it has
to be mapped to the last row in W . In this case, large weights are
assigned to the memristors with large resistance variations, resulting
in a large SWV that may cause significant output error.

We discover that the weight-memristor mapping problem can
actually have a weighed bipartite matching formulation: the rows
in W and T are a set of vertices Lw and Rt, respectively. An edge
e ∈ E between a vertex vl in Lw and another vertex vr in Rt

indicates the row vl is mapped to the row vr in the weight-memristor
mapping between W and T . The weight on the edge is the SWVvlvr

value when mapping vl to vr . The problem of finding a weight-
memristor mapping with the minimal SWV is now transformed
to the problem of finding the minimal-weight perfect-matching in
a bipartite-graph G(L,R,E). We adopt the “Kuhn-Munkres” (KM)
algorithm [19] to derive the optimal solution in a polynomial time.
The proposed bipartite-matching based method can also apply to
the RRAM crossbar with redundant memristor rows [6]. Given R
redundant rows in T , in stead of finding a minimum-weight perfect
matching, the KM algorithm derives a minimum-weight maximum
matching, which forms a mapping between the n rows of W and the
n rows of T . The remaining R rows without matched are switched
off and will not be used in the run time.

B. Analysis of bipartite-matching based method

Without any doubt, the bipartite-matching based algorithm can
obtain a better weight-memristor mapping than the greedy-based

Large variation memristor
Small variation memristor

Large weight Synapse

Small weight synapse

row1
row2
row3

row4
(a)

row1
row2
row3

row4
(b)

row1
row2
row3

row4
(c) 

WT WT

Fig. 2: Weight-memristor mapping examples that (a) the greedy-based
method derives; (b) the bipartite-matching method derives; (c) the
bipartite-matching method can hardly resolve.

method on a RRAM crossbar with small memristor resistance vari-
ation. However, the resistance variation may fluctuate sharply from
one memristor to another; the memristors with high variations may
cluster into a row/column. Similarly, the neural-network has sparse
weight matrix, which in turn indicates the large weights can also be
clustered. Fig. 2(c) shows such an example. In the second row of T ,
all the memristors have large resistance variations, while the third
column in W is composed of large weights. However we change the
mapping, a large weight is always mapped to a memristor with large
resistance variation, which causes a large SWV and consequently
decreases the test rate of the neural network .

The above example shown in Fig. 2(c) is supported by two facts:
i) as mentioned in section II-A, SA0 and SA1 faults can spread over
an entire row or column in the RRAM crossbar. ii) the biases[20] of
a neural-network always contain important information; they occupy
a whole column in the weight matrix; thereby, it is highly possible
that a weight matrix can always have a column full of large weights.
Therefore, we need a better solution to tolerate severer resistance
variations and SAFs, as described in the next section.

IV. ACCELERATOR-FRIENDLY NEURAL-NETWORK TRAINING

All the mapping based solutions have a common weakness: the
limited flexibility of the row-based matching narrows the solution
space of finding the most fault/variation tolerable weight-memristor
mapping. Based on the proposed bipartite-mapping algorithm, in this
section, we explore the self-healing capability of the neural-network
to enlarge the solution space of finding the fault tolerable weight-
memristor mappings. The self-healing capability can be explained as
follows: If several weights (synaptic connections) are removed from
a neural-network, resulting in a loss of classification accuracy, the
training process will make the surrounding weights compensate the
above change, so that the whole neural-network bounces back to
the original classification accuracy. This capability can be used to
minimize the value of the weight mapped to a memristor with high
variability or fault.

A. Overflow

The aim of the accelerator-friendly neural-network training is
to minimize the SWV , by adjusting the weight matrix of the
neural-network based on the distribution of faults and variations
in the RRAM crossbar. Formally, given the weight matrix Wm×n

derived from the bipartite-matching based method and the memristor
resistance matrix Tm×n, the proposed training method generates a
new weight matrix W

′
m×n.
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Algorithm 1: The Algorithm for Accelerator-friendly Training.

input : Weight Matrix Wm×n,Xbar variation Tm×n

output: New Weight Matrix W ′
m×n

1 while Convergence �= TRUE || Test rate is promoted do
2 Update SWV: SWVm×n ← abs(Tm×n ·Wm×n)
3 Max variation ← Find Max(SWV )
4 if SWVij = Max variation then
5 Reduce the weight (section IV-C): Wij ← Wij · t−1

6 Revise the Fix matrix (section IV-B): Fij ← 0
7 end
8 //Retrain and test NN (section IV-B)
9 Retrain NN:Train(Wm×n, Fm×n, T raining sets);

10 Derive the Test rate: Test rate← Test(Wm×n, T est sets)
11 Convergence ← validate(Wm×n,Tm×n,test sets);
12 end
13 return Wm×n;

As shown in Algorithm 1, the main procedure of the retraining
method is to iteratively reduce the weight with the maximal SWV ,
and fix it in the follow-up training process (see line1-12). In each
iteration, we first update the SWV according to the new weight
matrix Wm×n and the resistance-variation matrix Tm×n (line 2)
using equation 1. We then find one weight-memristor mapping with
the largest SWV (line 3 and 4), e.g., SWVij . Next, we try to
reduce the weight (Wij) of the above mapping (line 5). It should
be noted that we reduce the weight—using an exponential factor
t—to Wij · t−1 rather than to zero; the reason will be explained
in section IV-C. However, the reduction of a weight in the neural-
network leads to inaccurate calculation and results in the degradation
of the classification accuracy. Thus, the neural-network should be
trained again (the following steps are detailed in section IV-B). In
short, we need to fix the updated weight Wij using a Fix matrix
Fm×n, in which the coefficient (Fij) corresponding to Wij is set as
zero (line 6). Afterwards, we train the neural-network again with
a small learning rate (line 9); the small learning rate can result
in a fine-grain self-healing rather than a disruptive change to the
unfixed weights in Wm×n. Consequently, the training algorithm can
change the weights surrounding the fixed one in order to recover
the classification accuracy of the neural-network. We validate the
training process by testing the derived neural-network (line 10) and
by checking the convergence of the training process (line 11). The
iterative procedure goes on as long as the training process is not
convergent or the test rate can still be promoted (line 1). Otherwise,
the algorithm terminates and returns the new weight matrix (line 13).

B. Fixing the weight in the training process

We adopt the back-propagation method that utilizes the gradient
descent technique to tune the weights. To show the training process,
we use a two-layer fully-connected neural-network as an example.
For a neuron j of output layer, its value yj is calculated by:

yj = f(
∑

m

Wji · xi(n)) (2)

wherein n refers to the input vector consisting of a serial training
samples, xi(n) refers to the input value of the neuron i in the input
layer, Wji refers to the weight connecting neuron i to j, m refers to
the total number of neurons in the input layer associated with j, and
f is the activation function.
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Fig. 3: Weight changing in the neural-network retraining method:
(a) pre-trained weight; (b) fixing the weight connection; (c) after
retraining; (d) in the next iteration.

In the training phase, the update of a weight Wji can be derived
as:

Wji = Wji − α · δj(n) · xi(n) · Fji (3)

wherein α refers to the learning rate, δj(n) is the local gradient value
of neuron j, Fji is the coefficient representing whether Wji is fixed.
The fix matrix F is used like this: if one weight Wjk is supposed to
be fixed, we enforce Fjk = 0, and the result of α · δj(n) · xk(n) is
ignored. Consequently, Wji is not changed in the training process.
Otherwise, for another input value Wji · xi(n) of neuron j(i �= k),
the weight Wji updates continuously until the convergence of the
training process, using equation 3.

We now explain how the weights surrounding the fixed weight
change in the training phase. In the back-propagation process, the sig-
nificance of the gradient descent—how much the weight changes—
associated with a neuron (e.g., j) is determined by input values from
multiple neurons. When we reduce a weight (Wij) connecting an
input neuron i to j, an error occurs between the expected output
of j and its real output; this error is induced by the miscalculation
of i and Wij . Fortunately, if other input neurons (e.g., i − 1,i + 1)
are correlated with i, this error can be compensated by i − 1 and
i+ 1 in the back-propagation process: as the reduced weight Wij is
fixed in the back-propagation process, the gradient descent algorithm
will instead change the weights connecting j to i − 1 and i + 1 to
minimize the error. Generally, the values of the input samples, for
a common neural-network based application, are highly correlated.
For example, in a visual recognition application, the input data of the
neural-networks are continuous because the image pixel at a nearby
region have similar values.

Fig. 3 demonstrates the the above process. As shown in Fig. 3(a), a
group of neighboring input neurons Pi, Pi−1 and Pi+1 have similar
values. With the gradient descent algorithm, the associated weights
also have similar values. When this pre-trained neural-network is
mapped to a RRAM crossbar, the weight WPiO produces the largest
SVW; thus, we reduce the weight by half and fix it, as shown in
Fig. 3(b), which causes an increased error in the value of the output
neuron. When this neural-network is trained again, the local gradient
value of WPiO , due to the fixed WPiO , has to be embodied in
WPi−1O and WPi+1O instead, so that the value of the output neuron
bounces back to the original one, as shown in Fig. 3(c). This process
continues, as shown in Fig. 3(d), until WPiO is too small to produce
a countable SWV .

It should be noted that, we choose a small learning rate α to ensure
the fine-grain tuning of the weight. Thus, the weights update and
fluctuate with a narrow range in each iteration of the back-propagation
process. It can avoid the disruptive change in a weight, e.g., a small
weight mapped to a memristor with high variation suddenly changes
to a larger one, which may lead to new pair of weight-memristor
mapping with large SVW.
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C. Reducing the weight

The way to reduce a single weight plays a critical role in proposed
training process. It may cause a series of problems if we directly
apply the weight-prune method used in Deep Compression [18].
Specifically, their method prunes the minimal weights in the weight
matrix by setting the values of these weights as zero. Because of the
sparse weight matrix, the neural-network has little loss of accuracy
even when the majority of the weight are pruned. When applying the
above method to the weight-memristor mapping—directly reducing
the weight to zero—the test rate of the neural-network decreases
sharply. Because the weight-prune method only needs to reduce a
small weight; while we instead have to change a large weight, leading
to a significant information loss. Even with the self-healing capability,
the test rate can hardly bounce back to the same level of the original
neural-network (running on a perfect RRAM crossbar). For instance,
when a large weight is reduced to zero, its surrounding weights,
probably also with small values, are updated to a large value for error
compensation. It has a large likelihood that some of these surrounding
weights are also mapped to memristors with large variation, resulting
in large SVW. Consequently, they are chosen as the candidate for
weight reduction in the next (or later) iterations in our training
process. The resulting training process can hardly be convergent. Not
to mention the fact that the surrounding weights of a large weight are
likely to have large values. Moreover, if all the weights at a nearby
region have been reduced to 0, some input values of the neural-
network are mistakenly ignored, causing a danger of information
loss. In some special cases, a single weight is more critical to the
output than other weights. According to our experiments, if zero
is assigned to a bias mapped to a memristor with large variation,
the output calculated with this zero bias is too far away from the
expected one; the resulting error can hardly be healed by the proposed
training method. Therefore, in this work, we reduce the weight by
an exponential coefficient t as follow:

Wij ← Wij · t−1; (t > 0) (4)
We set the default value of t as 2 based on the experience from the
experiments. Noted that a single weight can be reduced repeatedly,
but the repetitions has an upper bound to prevent the loss of
information. The upper bound can be different among different neural
networks.

The remaining issue is the time consuming training processes to
reduce many weights. Thus, we try to reduce multiple weights and
fix them in a single training process. Specifically, we simultaneously
reduce multiple “independent” weights which are far from each
other. This strategy can prevent multiple correlated weights in a
neighboring region from being reduced and fixed at once; otherwise,
no surrounding weights can compensate the error. Meanwhile this
strategy can reduce the number of training processes. Suppose in
each iteration we reduce and fix N weights with the top N largest
SWV at the same time. Table I shows a significant speedup—huge
reduction of training iterations—of the proposed training method,
with an ignorable drop of the test rate .

TABLE I: Reduce multiple weights in each iteration.

N Number of iteration Test rate
1 2000 89.7%
5 634 90.5%

10 378 90.3%
20 205 89.3%

V. EXPERIMENTS

A. Experimental setup

To evaluate the efficiency of the proposed accelerator-friendly
neural-network training method, we deploy a two-layer neural-
network on a RRAM crossbar as the platform for digit recognition
appellation. The inputs of the neural-network are the pixel values
of the benchmark images; while the output signal is one of the ten
Arabic numerals from 0 to 9. The RRAM crossbar contains two
crossbar circuits; the differential result of two corresponding signals
output from these two crossbars can represent either a positive or a
negative value. The scale of each crossbar circuit is 784 × 10. The
remaining set of parameters are the same as what are set in [11]. The
experiments are tested with Monte-Carlo simulation method.

The initial classification accuracy of the neural-network for the
MNIST data is about 90%, serving as the upper bound of all the
variation/defects tolerant methods. Then, we set SAFs and resistance
variations of memristors in the RRAM crossbar circuit. As the
memristors with resistance variation will have abnormal resistances,
they represent incorrect weights. The change of weight, from wpj to
w

′
qj , is shown as follows:

w
′
qj ← wpj · eθqj ; θ ∼ N(0, σ2) (5)

wherein θqj represents the memristor resistance variation, which
follows the lognormal distribution [8]. We use σ to present the
significance of the variation in the experimental result. For stuck-at-
zero (SA0) fault, the memristor is always at the LRS that represents a
maximum weight; while for stuck-at-one (SA1) fault, the memristor
gets stuck at HRS that represents a minimum weight. When we
test the neural-network running on such RRAM crossbar circuit, we
derive inaccurate classification results. We apply the proposed method
and the one in [11] to the RRAM crossbar circuit and the derived
classification accuracies are normalized to the reference accuracy (the
upper bound) for comparison.

B. Results and analysis

Fig. 4(a) illustrates the test rate of various techniques only con-
sidering the resistance variation in RRAM crossbar. “Ideal” is the
upper-bound; “before-map” is the one without any variation/fault
tolerant techniques; “Vortex” is the hybrid solution in [11]; “bi-
match” represents the proposed bipartite-matching based mapping
method and “bi-retrain” represents the proposed accelerator-friendly
training method on the basis of bipartite-matching method. The test
rate decreases as the resistance variation becomes severer. It should be
noted that the hybrid solution in Vortex is only applicable to a smaller
range of the resistance variation as shown in the figure. Obviously,
the hybrid solution dramatically outperforms the “before-map”. The
two proposed methods further outperform the “Vortex”, especially
when the resistance variation is large. The “bi-retrain” method can
raise the test rate from 61.8% (only “bi-match”) to 86.0% even under
the significant variation σ = 2. Interestingly, the “bi-retrain” method
is extremely close to the “ideal” test rate when no resistance variation
and SAFs are injected in the RRAM crossbar.

Fig. 4(b) shows the test rate considering both resistance variations
and SAFs. Solely applying the “bi-match” method only achieve
55.87% test rate in average; while the test rate of “bi-retrain” can
reach as high as 89.27% and 71.02% when the resistance variation
is small (σ = 0.5) and large (σ = 2), respectively. Compared to the
ideal test rate, the “bi-retrain” method only has less than 5% loss of
test rate in the “largest” variation set in [11], while the hybrid method
in Vortex suffers 45% loss of test rate.
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Fig. 4: Experiment Results on (a) test rate only considering the resistance variation by varying σ; (b) test rate considering the resistance
variation and the SAFs by varying σ; (c) test rate for “bi-match” method by varying the redundancy amount; (d) test rate for “bi-retrain”
method by varying the redundancy amount.

Fig. 4(c) shows the test rates derived by the proposed “bi-match”
method after deploying various numbers of redundant rows in the
RRAM crossbar. The test rates derived in different σ are shown
in different color. The upper and lower figures show the test rate
without and with SAFs, respectively. From both figures, we observe
that the test rate hardly increases with more redundant rows when the
resistance variation is small (σ = 0.6 − 1.0). In contrast, when the
variation gets larger, the redundancy plays a more important role in
improving the test rate. This observation also applies to the RRAM
crossbar injected with SAFs. We find that the redundancy is very
helpful to tolerate the SAFs when only “bi-match” method is adopted.

Fig. 4(d) show the test rate derived by “bi-retrain” method with
redundant rows wherein both resistance variation and SAFs are
considered. The results only show the test rate under large resistance
variation. The “bi-retrain” method can keep the test rate above 85%
with 20 redundant rows. Put it another way, the propose “bi-retrain”
method can dramatically save the redundant cost to achieve the same
test rate. When the number of the redundant rows is larger than
40, adding redundancy cannot improve the test rate anymore. Note
that a weak fluctuation on test rate can be observed. This fluctuation
naturally exists in the classification model of the neural-network .

VI. CONCLUSION

RRAM crossbar built on the basis of memristors has enormous
energy-efficiency and thus is a promising platform for neuromor-
phic computing. However, the memristor devices suffer various
process variations and defects, resulting in dramatic drop of the
classification accuracy of neural-network based applications. Previous
software-based methods can only tolerate small resistance variation
and their efficiency degrades largely when the variation becomes
significant. This paper proposes a novel off-device neural-network
training method by judiciously explore the self-healing capability
of neural-networks, which makes the neural-network more friendly
to the RRAM crossbar based accelerators. The experiments show
significant improvements of the proposed method in a large-scale
RRAM crossbar with high resistance variations and clustered SAFs.
It can achieve a near-ideal test rate with the maximum resistance vari-
ation considered in previous work. Future work will investigate the
potential of the proposed training method in deep nerual-networks.
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