
Approximate Computing for Spiking Neural
Networks

Sanchari Sen, Swagath Venkataramani, Anand Raghunathan
School of Electrical and Computer Engineering, Purdue University

{sen9,venkata0,raghunathan}@purdue.edu

Abstract—Spiking Neural Networks (SNNs) are widely re-
garded as the third generation of artificial neural networks, and
are expected to drive new classes of recognition, data analytics
and computer vision applications. However, large-scale SNNs
(e.g., of the scale of the human visual cortex) are highly compute
and data intensive, requiring new approaches to improve their
efficiency. Complementary to prior efforts that focus on parallel
software and the design of specialized hardware, we propose
AxSNN, the first effort to apply approximate computing to
improve the computational efficiency of evaluating SNNs.

In SNNs, the inputs and outputs of neurons are encoded as
a time series of spikes. A spike at a neuron’s output triggers
updates to the potentials (internal states) of neurons to which it
is connected. AxSNN determines spike-triggered neuron updates
that can be skipped with little or no impact on output quality
and selectively skips them to improve both compute and memory
energy. Neurons that can be approximated are identified by
utilizing various static and dynamic parameters such as the
average spiking rates and current potentials of neurons, and
the weights of synaptic connections. Such a neuron is placed
into one of many approximation modes, wherein the neuron is
sensitive only to a subset of its inputs and sends spikes only
to a subset of its outputs. A controller periodically updates
the approximation modes of neurons in the network to achieve
energy savings with minimal loss in quality. We apply AxSNN to
both hardware and software implementations of SNNs. For
hardware evaluation, we designed SNNAP, a Spiking Neural
Network Approximate Processor that embodies the proposed
approximation strategy, and synthesized it to 45nm technology.
The software implementation of AxSNN was evaluated on a 2.7
GHz Intel Xeon server with 128 GB memory. Across a suite
of 6 image recognition benchmarks, AxSNN achieves 1.4-5.5×
reduction in scalar operations for network evaluation, which
translates to 1.2-3.62× and 1.26-3.9× improvement in hardware
and software energies respectively, for no loss in application
quality. Progressively higher energy savings are achieved with
modest reductions in output quality.

Index Terms—Approximate Computing, Spiking Neural Net-
works, Approximate Neural Networks

I. INTRODUCTION

The explosion in digital data, ushered in by the growth
in the number of connected and intelligent devices, has led
to the widespread use of machine learning algorithms to
analyze, organize and draw inferences from data. Among
the different algorithms developed over the years, Neural
Networks (NNs) have demonstrated superior performance on a
variety of image, video, audio and text analytics tasks [1], and
are deployed in many real-world products [2], [3]. We focus
on an emerging class of NNs, called Spiking Neural Networks
(SNNs), which are often referred to as the 3rd generation
NNs. Compared to prior generations of NNs, SNNs exhibit
higher biological fidelity i.e., they mimic the spiking behavior
of biological neurons. Therefore, SNNs have the potential to
achieve better algorithmic performance with lower network
complexity, especially in applications where temporal streams

Swagath Venkataramani is currently a research staff member at IBM T.J.
Watson Research Center, Yorktown Heights, NY

This work was supported in part by the National Science Foundation under
grant nos. 1423290 and 1320808 and in part by the Center for Computational
Brain Research at IIT Madras.

of data are processed [4]. SNNs are an active area of research,
and in the recent past, SNNs have demonstrated state-of-
the-art recognition performance on popular datasets such as
MNIST [5] and CIFAR [6].

Computational Challenges. SNNs are compute and data
intensive workloads. For example, spiking networks emulating
the functionality of the visual cortex may contain over a mil-
lion neurons and a billion synapses [7]. When used to process
an image of size 256×256, this translates to ∼2 giga scalar
operations per frame, and over 4 GB memory. With growth
in data and the need for higher accuracy, these requirements
are only expected to increase further in the future. Hence,
exploring avenues to improve the energy efficiency of SNNs
is fundamental to their adoption.

Realizing this need, prior approaches have explored three
key directions for efficient realization of SNNs. The first
is software parallelization on commercial platforms such as
multi-cores and GPUs [8]–[11]. The event driven nature
of SNNs makes software parallelization quite challenging.
In SNNs, work is generated dynamically as neurons spike,
which renders the control flow and memory access patterns
irregular. In contrast, commercial platforms, such as GPUs,
are optimized for regular memory access patterns and fine-
grained SIMD parallelism. The second direction is to build
hardware architectures specialized for SNNs. A range of
architectures, from low-power IP cores [12] to large-scale
systems [13], [14], have been proposed. The final set of efforts
investigate alternate device technologies, such as memristor
ans spintronics to realize SNNs [15]–[17].

Approximate SNNs. In this work, we explore a new direction
- approximate computing - to improve the efficiency of SNNs.
Due to their large-scale structure and the application context
in which they are deployed, NNs are highly resilient to
approximations in a significant fraction of their computations.
Approximate computing has been applied to prior generations
of (non-spiking) NNs [18]–[20]. However, due to the unique
characteristics of SNNs (described below), such methodolo-
gies are not directly applicable. We believe ours to be the first
effort to explore approximate computing for SNNs.

In SNNs, information is encoded and processed using trains
of spikes. Each neuron is associated with a membrane poten-
tial, and a spike is dynamically generated when the potential
goes above a specified threshold. When a neuron spikes, the
potentials of all its fanout neurons are incremented by the
weights of the respective connections. Thus spike-triggered
neuron updates are the fundamental compute kernel in SNNs.
To approximate SNNs, we develop a methodology, called
AxSNN, to identify the criticality of spike-triggered updates
and skip a subset of them to lower computational requirements
thereby energy. AxSNN associates an approximation level
with each neuron. The approximation level determines which
fraction of a neuron’s successors will be updated when it
spikes, as well as which fraction of its inputs it is sensitive

193978-3-9815370-8-6/17/$31.00 c©2017 IEEE

to. All update operations are carried out when a neuron
at the most accurate (or least approximate) level spikes.
Progressively fewer update operations are performed as the
approximation level of the neuron is increased. Spikes are
entirely skipped when the neuron is in its most approximate
state. To determine the approximation level of the neuron
at runtime, AxSNN estimates the probability of the neuron
spiking, and the significance of its spikes. For this purpose, it
utilizes static network-level characteristics such as the number
of fanout paths from the neuron to SNN outputs and their
average path weights, as well as dynamic local characteristics
such as spike rate and current membrane potential of the
neuron.

SNNs of any desired output quality can be realized using the
above approach. We develop a framework that automatically
tunes how aggressively neurons transition between approxima-
tion levels, thereby yielding an efficiency vs. quality trade-off.
It is worth noting that the proposed approach is intrinsically
input-adaptive i.e., the approximate SNN modulates its com-
putational effort across input samples, based on how often the
neurons spike and the significance of the spikes to the eventual
output.

In summary, the key contributions of this work are:

• We propose approximate computing as a new approach
to improve the efficiency of SNNs.

• We develop a systematic approach to identify the criti-
cality of spikes generated by each neuron at runtime. We
correspondingly skip some or all updates due to the spike,
thereby improving both compute and memory energy for
a minimal loss in quality.

• We evaluate our approach in both software and hardware.
For software, we utilize a C++ implementation of SNNs
on a commodity server. In the case of hardware, we
develop SNNAP, a Spiking Neural Network Approximate
Processor. We achieve 1.2×-3.9× improvement in energy
across a suite of 6 image recognition SNNs that contain
∼3K-14K neurons and ∼1.3M-48.8M connections.

The rest of the paper is organized as follows. Section II
presents related research efforts. Section III provides the nec-
essary background on SNNs. Sections IV describes the design
approach and methodology. Section V details the SNNAP
architecture. The experimental methodology is presented in
Section VI followed by the results in Section VII. Section VIII
concludes the paper.

II. RELATED WORK

Our work lies at the intersection of two active fields of
research, namely, efficient implementations of SNNs and ap-
proximate computing. In this section, we summarize previous
efforts in both the domains and highlight the unique aspects
of our work.

Efficient implementation of SNNs. Prior efforts that improve
the efficiency of SNNs can be categorized into three classes.
The first set of efforts explore methods to parallelize SNNs in
software on commercial multi-cores [10], [11] and GPUs [7]–
[9]. However the dynamic and event-driven nature of SNNs
makes parallelization challenging, as it leads to irregular and
unpredictable memory access patterns, and incurs significant
communication and synchronization overheads. The second
class of efforts design specialized hardware for SNNs to
derive efficiency. A spectrum of architectures ranging from
low power IP cores [12], reconfigurable fabrics [21], and

mixed-signal implementations [22] to large-scale systems [13],
[14] have been proposed. The third approach aims to realize
SNNs using post-CMOS technologies such as spintronics and
memristor crossbar arrays [15]–[17].

Our work is complementary to the above efforts, as we
explore a new approach, approximate computing, to address
the computational challenges imposed by SNNs.

Approximate computing. Applications from several impor-
tant domains, including recognition, data mining, analytics,
vision, search etc., have the intrinsic ability to produce outputs
of acceptable quality even when some of their computa-
tions are performed in an approximate or imprecise manner.
Approximate computing leverages this forgiving nature to
improve the efficiency of computing systems. A range of
approximate design techniques, spanning circuits, architecture
and software [23], have been proposed in recent years.

In the context of NNs, approximate computing has been
previously applied to non-spiking networks in [18]–[20].
These approaches utilize backpropagation, one of the key steps
involved in training non-spiking NNs, to characterize the crit-
icality of neurons in the network, and correspondingly subject
them to varying levels of approximation. Such approaches
cannot be directly applied to SNNs, as their computational
characteristics are quite different. For example, work is dy-
namically generated in SNNs as neurons spike. Therefore,
it is difficult to statically determine an approximation level
for a neuron and evaluate its impact on energy and output
quality. Also, training mechanisms such as backpropagation
are not applicable in the context of SNNs. Our work applies
approximate computing to SNNs, and demonstrates significant
energy benefits in both software and hardware.

III. SPIKING NEURAL NETWORKS: PRELIMINARIES

SNNs are interconnected networks of primitive compute units,
called neurons, that are organized in layers, with neurons in
each layer connected to those in the layer succeeding it. The
junction between connected neurons is called a synapse, which
is associated with a parameter, the weight, that signifies the
strength of the connection. The synaptic weights are learnt
during the training process. In SNNs, as shown in Figure 1,
information is represented and processed using spikes, which
take a binary value 0 or 1. Inputs are presented to the
neurons in the first layer as a time series of spikes. The spike
trains propagate through the network until the output layer is
reached. Each neuron in the output layer is associated with a
class label, and the input is assigned the class corresponding
to the output neuron that spiked the largest number of times.
The number of time steps for which the SNN is evaluated is
a key network parameter, and is determined during training.

4

5

6
I3

I2

I1

Time

Input spike trains Membrane potential

Output spike trains

Neuron

Weighted
synapse

Reset
Threshold

7

8

Input

Time

Time

Output
Class

Time

Fig. 1. Spiking neural network preliminaries

Several spiking neuron models, with varying levels of
biological fidelity, have been proposed [24]. In this work,
we consider the most commonly used model, called Leaky-
Integrate-and-Fire (LIF); however, our approximation method
is independent of the neuron model used in the SNN. The LIF

194 2017 Design, Automation and Test in Europe (DATE)

neuron has 3 key parameters viz., the membrane, threshold
and reset potentials. At the start of evaluation, the membrane
potential is initialized to the reset value. Whenever a spike is
observed at an input, the membrane potential is updated by the
weight of the connection. In addition, in each time step, the
membrane potential leaks (is decremented) by a fixed value.
Mathematically, the LIF neuron is represented by Equation 1.

Vi(t) = Vi(t− 1)− Vleak +
∑

j

wjiAj(t) (1)

where Vi(t) is the membrane potential of neuron i at time t,
Vleak is the leakage potential, wji is the weight of the synapse
connecting neuron i and its input j, and Aj is a binary variable
indicating whether input j spiked at time t. The LIF neuron
produces an output spike whenever its membrane potential
exceeds the threshold, following which the potential is re-
initialized to the reset value.

The key compute primitive in SNNs is the set of updates
triggered by a neuron spike. In this case, the potentials of all
of its fanouts are updated by the respective synaptic weights.
These updates may in turn cause new spikes to be generated
and subsequently processed.

In summary, SNNs are event-driven workloads, wherein
work is dynamically generated as neurons spike in the net-
work. The set of updates triggered by each spike is the basic
unit of work.

IV. AXSNN: DESIGN APPROACH AND METHODOLOGY

To address the computational challenges imposed by SNNs,
we propose AxSNN, a new design approach that leverages
approximate computing to improve their efficiency. In this
section, we present the key concepts behind AxSNN and
describe the design methodology in detail.

A. Approximating Spike-triggered Updates

As described in Section III,spike triggered neuron updates
form the key compute primitive in SNNs. In our benchmark
suite comprising of 6 image recognition SNNs, spike-triggered
updates accounted for ∼97% of the overall operations, and
consumed ∼93% of the total software execution time on
a commodity Intel Xeon server. Therefore, we target these
operations for approximation.

We associate an approximation level (α) with each neuron
in the SNN. The approximation level (α) takes a value be-
tween 0 and 1, and is modulated dynamically during network
evaluation. Based on α, we approximate the update operations
associated with the neuron, as shown in Figure 2. An α of 1
indicates that the neuron is at its highest accuracy level, in
which case all its fan-in and fan-out connections are active.
As α is reduced, the neuron is progressively made more
approximate by only enabling a fraction α of its fan-in and
fan-out connections to be active. In this case, when the neuron
spikes, only its active fan-out connections are updated, while
the rest are skipped. Similarly, its membrane potential is
updated only when one of its active fan-in connections spike.
By dynamically deactivating input and output connections of
a neuron, we reduce computation and save energy.

An important aspect of our approach is that we eliminate
connections in a significance-aware manner, i.e., based on
synaptic weights. Once the SNN is trained, we pre-sort input
and output connections to each neuron in increasing order
of weight magnitude and deactivate the ones with lower
magnitude first. For ease of implementation, we restrict the
number of number of approximation levels to 5 viz. 1, 0.5,

5

6

7

8

2

3

4

1

N

5

6

7

8

2

3

4

1

N

Decreasing order of synaptic weight
|W1N|> |W3N| > |W2N |> |W4N | and |WN5|> |WN8| > |WN7 |> |WN6 |

αN =0.5

W1N

W2N

W3N

W4N

W1N

W2N

W3N

W4N

WN5

WN6

WN7

WN8

WN5

WN6

WN7

WN8

All connections active 50% of fan-in and fan-out
connections active

αN = 1

Fig. 2. Neuron approximation mechanism

0.25, 0.125 and 0. Note that α of 0 indicates that the neuron
is completely removed from the network as none of its fan-in
and fan-out connections are active.

B. AxSNN: Overview

With the aforementioned approximation mechanism in
place, we now present the overall approximation strategy
adopted in AxSNN, as illustrated in Figure 3. The proposed
strategy is dynamic, i.e., the approximation levels of different
neurons are determined at runtime in the course of evaluating
an input. As shown in Figure 3, at the start of evaluation (t =
0), all neurons are set to their most accurate level (α = 1). We
augment the SNN with an AxSNN controller, which is invoked
periodically after every λ time steps. The AxSNN controller
loops through each neuron in the network and determines the
approximation level with which it should be executed for the
next λ time steps. To make this decision, the AxSNN controller
considers several key factors as described below.

1) Determining Approximation Levels: In order to deter-
mine the approximation level of a neuron, the AxSNN con-
troller estimates the potential impact of approximations on
the overall output quality using two key factors: (i) Spike
probability, which captures the probability of the neuron
spiking in the next λ time steps, and (ii) Spike significance,
which denotes the relative importance of the neuron’s spike to
the overall network. Since the AxSNN controller is invoked
periodically during execution, the above factors need to be
estimated with very low overhead, as they directly offsets the
benefits derived from approximate computing.

The AxSNN controller utilizes a mix of static and dynamic
parameters to determine the spike probability (SpikeProb)
and significance (SpikeSig) of each neuron. For a neuron
to spike, its membrane potential should exceed its threshold
value. Therefore, to estimate the SpikeProb at runtime, as
shown in Equation 2, we first identify how far the neuron’s
current potential is from its threshold, normalized to the reset
value. We then divide the rate at which the neuron spiked
in the past by the normalized potential difference to compute
SpikeProb.

SpikeProb =
SpikeRate

(Thresh.− Potential)/(Thresh.−Reset)
(2)

Intuitively, from Equation 2, the spike probability of a neuron
is higher if it has spiked frequently in the past, or if its
potential is close to the threshold value. SpikeSig, as shown
in Equation 3, is computed as the product of the number of

2017 Design, Automation and Test in Europe (DATE) 195

1

2

3

4

6

5

1

2

3

4

6

5

1

2

3

4

6

5

8

7

8

7

8

7

All neurons start
execution at most

accurate level

λ

Approximation levels of
some neurons are
relaxed at runtime

Early network termination:
Only a single active neuron

remains in output layer

Single active
neuron: Assign
class as output

Inactive
neuron: Class

eliminated

Time Step

��������

��������

Decreasing �

��������

AxSNN controller invoked every �
time steps: Assigns new �

� = 1
Accurate
Neuron

� = 0
Inactive
Neuron

2λ kλ

A
xS

N
N

 C
on

tr
ol

le
r

A
xS

N
N

 C
on

tr
ol

le
r

A
xS

N
N

 C
on

tr
ol

le
r

��������

Compute Neuron FOM

AxSNN Controller

������	
�����������

����new
�

Assign

Static Characteristics
� Num. paths to outputs
� Mean path weight

Potential

Spike Rate

Dynamic Characteristics
�����

Fig. 3. Overview of approximation strategy in AxSNN

paths connecting the neuron to the network outputs and the
mean of all path weights.

SpikeSig = NumPathsToOutputs ∗MeanPathWeight
(3)

We note that, since the number of paths and the mean path
weight remain constant across all time steps, we can pre-
calculate SpikeSig for each neuron once the SNN is trained.
SpikeProb and SpikeSig are combined into a single Figure-
Of-Merit (FOM), as shown in Equation 4.

FOM = SpikeProb ∗ SpikeSig (4)

The AxSNN controller contains a set of pre-defined FOM
ranges for each approximation level. Based on the range in
which the FOM of a neuron falls, the AxSNN controller
assigns it the corresponding approximation level. Given an
output quality requirement, the methodology used to obtain
the FOM ranges is described in Section IV-C.

2) Early Network Termination: Another key aspect of the
proposed approximation strategy is that it enables the SNN to
classify an input even before all the time steps are complete.
We note that, in the most approximate level, the neuron is
completely disconnected from the network and no further
spike activity can occur at its output. Therefore, when all but
one neuron in the output layer reach an α of 0, the execution
is terminated and the input is assigned the class of the neuron
that is active.

C. AxSNN: Design Methodology

We now describe how the FOM range for each approx-
imation level is obtained. The FOM ranges determine how
aggressively neurons transition across approximation levels,
leading to different points in the efficiency vs. quality space. At
the finest granularity, the FOM ranges can be defined individ-
ually for each neuron in the network. However, this leads to a
prohibitively large design space, and further incurs significant
overhead to store the FOM ranges in the AxSNN controller.
We address this challenge by leveraging the fact that neurons
in a layer are computationally similar, and constrain them to
utilize the same FOM ranges. In other words, the FOM
range for each approximation level is defined layer-wise.

We constrain the search space further by imposing a con-
straint that the FOM range endpoints for the different approx-
imation levels are spaced in the proportion to the value of α.
For example, the threshold to transition from α : 0.5 → 0.25

is constrained to be half of the threshold to transition from
α : 1 → 0.5 and so on. This simplifies the search to finding
one parameter per layer, which represents the threshold to
transition from the most accurate level to the first approximate
level (FOMα:1→a1).

Algorithm 1 presents the pseudocode to find FOMα:1→a1

for each layer. A trained SNN, the training dataset and the
output quality constraint are provided as inputs. We first
identify the maximum FOM for each layer, by setting its
SpikeProb to 1 (Line 2), and initialize its FOMα:1→a1

to this value (Line 3). We then iteratively search the space
of FOMα:1→a1 as follows (Lines 4-9). For each layer, the
corresponding FOMLi

α:1→a1 is decreased by a small constant
Δ, and the energy (ELi) and quality (QLi) of the resultant
AxSNN is computed by evaluating it on the training dataset
(Lines 5-6). Amongst these, we commit to the change in
FOMLi

α:1→a1 for the layer with the minimum ELi/QLi ratio
(Line 8). This process is repeated until QLi for none of the
layers meet the specified quality constraint (Line 7).

Algorithm 1 Identifying FOM transition thresholds

Input: SNN : Trained spiking network, TrData: Training
dataset, Q: Quality constraint

Output: FOMLi
α:1→a1: Threshold to transition from most

accurate to first approximate level for each layer
1: For each Layer Li:
2: Compute Max. FOM FOMLi

max
3: Initialize FOMLi

α:1→a1 = FOMLi
max

4: while (1) do
5: For each Layer Li:
6: Set FOMLi

α:1→a1 -= Δ and compute ELi, QLi

7: if (QLi < Q ∀ Li) break
8: Commit FOMLi

α:1→a1 in layer with min. (ELi/QLi)
and QLi > Q

9: end while

In summary, by selectively skipping updates triggered by
spikes, AxSNN achieves significant improvements in the im-
plementation efficiency of SNNs.

V. SNNAP: ARCHITECTURE

In this work, we evaluate AxSNN, using both hardware and
software SNN implementations. To demonstrate the benefits in
hardware, we propose Spiking Neural Network Approximate
Processor (SNNAP), a new hardware architecture for SNNs,

196 2017 Design, Automation and Test in Europe (DATE)

enhanced to support the proposed approximation mechanism.
Figure 4 shows the block diagram of SNNAP. It consists of
two types of processing units: (i) a scalar Leak-and-Spike
(LnS) unit, and (ii) a 1D array of Spiking Neuron Processing
Elements (SNPEs). The architecture also contains two memory
banks, the State Memory (SM) and the Weight Memory (WM),
which store the neuron potentials and the weights respectively.
A global controller orchestrates the overall execution.

We now describe how SNNs are realized in SNNAP. The
LnS unit loops over all neurons in all time steps, leaks its
membrane potential and checks if the potential is above its
threshold. If not, the execution moves on to the next neuron.
In the case the neuron spiked, the SNPE array is activated,
which reads the SM and WM banks and updates the potentials
of the fan-out neurons. The network state and weights are
statically partitioned across the SM and WM banks, such that
the compute load to each SNPE is roughly balanced.

��

��

���� ���� ���� ����
���������
�����������

�����

��

��

��

��

��

��

��

��

��� ��� ��� ��� ���

��

��

����
�

��������!
����

	"#�$"&

�����
'

(

�
	&

��������)�
�	

*����+��,������

��������)�
�	

*����+��,������

����	�
�	
���
�����
����

�	�����
�	
���
�����
����

�����
����

!�.�!�
����#�!!�#

�/��������#�!!�#

��	� ����
����	 α

9
��+�&�
�
�

α-New

����	�
�	�����
��� !�
��	
	��

Fig. 4. Block diagram of SNNAP

To support approximate operation, SNNAP is enhanced with
an AxSNN controller that is periodically invoked by the global
controller. We also add 3 bits to the neuron states in the SM
banks to store their approximation levels. Further, the weights
in WM are sorted in accordance to their magnitude, such that
updates can be skipped with no overhead when neurons tran-
sition approximation levels. Overall, SNNAP incurs ∼3.5%
area overhead to support approximate operation.

VI. EXPERIMENTAL METHODOLOGY

In this section, we describe the methodology used in our
experiments to evaluate AxSNN.

Runtime and Energy Evaluation. We evaluate AxSNN in
both hardware and software. The software was implemented
in C++ and run on a 2.7GHz Intel Xeon server with 128GB
memory. In the case of hardware, the SNNAP architecture
was implemented at the Register Transfer Level (RTL) using
Verilog HDL and synthesized to IBM 45nm technology us-
ing Synopsys Design Compiler. The micro-architectural and
circuit level parameters of the implementation are shown in
Figure 5a. We measured performance through cycle-accurate
simulations using ModelSim, and the switching activity traces
were fed to Synopsys Power Compiler to estimate (static and
dynamic) logic power at the gate-level. Energy was computed
as the product of power and execution time. CACTI was used
to model the memory structures. The memory energy was

computed by profiling the number of memory reads and writes
and multiplying them with the corresponding energy values
obtained from CACTI.

Dataset Type Layers Neurons Connections

MNIST
F.C 4 3194 2392800

Conv. 6 13594 6527300

NORB
F.C 4 3053 1276500

Conv. 6 89806 4012960

SVHN F.C. 5 7582 11149000

CIFAR-10 F.C. 4 14082 48854400

Metric Value

Feature Size 45nm

Area 0.34 mm2

Power 175.74 mW

Gate Count 193723

Frequency 1 GHz

No. of SNPE lanes 64

(b)(a)

Fig. 5. SNNAP parameters and application benchmarks

Application Benchmarks. Our benchmark suite, listed in
Figure 5b, comprises of 6 image recognition SNNs, of
which two are convolutional networks and the rest are fully-
connected networks. Figure 5b also lists the number of layers,
neurons and connections in each benchmark. The networks
were trained using the methods described in [6] and [5]. We
utilized classification accuracy, i.e., fraction of inputs classified
correctly, as our metric to evaluate application quality.

VII. RESULTS

This section presents the results of our experiments that
demonstrate the benefits of AxSNN in both HW and SW.

A. Energy Benefits at Iso-Accuracy

Figure 6 shows the normalized benefits using AxSNN with
no loss in accuracy across all benchmarks. The improvements
are quantified using three metrics: (i) number of spike update
operations, (ii) hardware energy, and (iii) software energy.
We achieve 1.4×-5.5× reduction in spike update operations
across the benchmarks, which translates to 1.2×-3.62× and
1.26×-3.9× improvement in hardware and software energies
respectively, at iso-accuracy. The benefits largely depend on
the difficulty of classifying the inputs in each dataset. For
example, in the case of MNIST where we observe the most
improvements, almost 99% of the inputs can be terminated
early. In contrast, only 63% and 52% of inputs are amenable
to early termination in CIFAR and SVHN respectively. The
hardware and software energies include the energy spent in
performing other control and compute operations involved in
SNN evaluation in addition to the spike update operations. Fur-
ther, they also reflect the overheads associated with realizing
the approximation methodology. Due to the above reasons, the
reduction in the spike update operations don’t translate entirely
into the hardware and software benefits.

0

0.2

0.4

0.6

0.8

1

1.2

MNIST Norb SVHN Cifar MNIST
Conv.

Norb
Conv.

geoMean

N
or

m
. b

en
ef

its
�

HW Energy SW energy/ Time Spike Update Ops
Baseline

Fig. 6. Normalized OPS and energy benefits for different applications

B. Energy vs. Accuracy Tradeoff

By modulating how aggressively the neurons transition to
higher approximation levels, different application-level quali-
ties can be achieved in AxSNN with corresponding benefits
in energy. Figure 7 shows the energy vs. quality trade-off

2017 Design, Automation and Test in Europe (DATE) 197

��������	
�������

�

���

���

� � �

�����
��������
�
������

�

���

�

� � �

��	�� ���

��������
�
������

�

���

�

� � �

���	

��������
�
�������

�
�
���

��
��
���

��

Fig. 7. Normalized energy vs. accuracy trade-off for 3 SNN benchmarks

curves thus achieved for 3 benchmarks. On an average, we
obtain 1.86×, 2.51× and 3.37× energy improvement for a
quality loss of 1%, 2% and 5% respectively. Since modulating
application quality only requires a change in the FOM ranges
set in the AxSNN controller, the same implementation can
easily support multiple application quality levels and can
switch between them at runtime.

C. Input Adaptive Approximations: Easy vs. Hard Inputs

An important aspect of AxSNN is that the approximations
are intrinsically input adaptive. Inputs that are easy-to-classify
are approximated more than the harder inputs, thereby scaling
computational effort in proportion to input difficulty. We
illustrate this in Figure 8, using 2 examples from the MNIST
handwritten digit recognition dataset. Figure 8 plots the ap-
proximation level of each neuron in the SNN at each time step.
Red denotes the most accurate level, while white indicates
the neuron is inactive. The AxSNN controller is invoked after
every 5 time steps, and the neurons may switch approximation
levels after this interval. For ease of understanding, we plot the
approximation level for the output neurons separately (graph
on the right for both inputs).

�
�������	��

���������� �������������������

������� ��������

�����������������������������������
�����������

�
�������	��

������
�����������

������
�����������

�����������

����������

��� ������

���

����

����

����

����

����

� �!� �!�� �!��� �"

���

����

����

����

����

����
�����������������������������������

�
�
�
�
#
�
$
%
&
'

�
�
�
�
#
�
$
%
&
'

����
����
�������
������

(��������
��������
������

Fig. 8. Approximation levels of neurons at each time step

We observe that all neurons start execution (t=0) in their
most accurate state. However, after the AxSNN controller
is first invoked (t=5), a substantial fraction of the neurons
change approximation levels. Specifically, we observe that
several output neurons have been rendered inactive, effectively
eliminating the respective class labels from consideration. For
example, in the case of the easy input, except for the class
‘1’, neurons corresponding to all other classes are inactive.
Therefore, the execution is terminated and the input is classi-
fied. For the hard input, 5 classes are in contention, albeit with
their neurons at different approximation levels. This reduces to

2 class labels (‘4’ and ‘8’) at t=10, and the input is classified
after 35 time steps. We still achieve significant benefits in
the case of the hard input, as neurons in other layers are
progressively approximated.

VIII. CONCLUSION

Spiking neural networks (SNNs) are an emerging class of
neural networks that have demonstrated significant promise in
realizing several recognition, data analytics and computer vi-
sion applications. To improve the implementation efficiency of
SNNs, we utilize approximate computing, a design paradigm
in which selected computations are performed in an approx-
imate manner, saving energy with minimal loss in quality.
We identified updates triggered by a neuron spike as the key
compute primitive in SNNs. We target our approximations at
this primitive by skipping some or all updates caused by a
spike. We develop a methodology, AxSNN, to identify the
spike triggered neuron updates that can be skipped while
meeting the specified output quality requirement. Across a
suite of 6 image recognition SNN benchmarks, we demonstrate
significant benefits in energy for both hardware and software
implementations.

REFERENCES

[1] J. Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61, 2015.

[2] Y. Taigman et al. Deepface: Closing the gap to human-level performance
in face verification. In Proc. CVPR, June 2014.

[3] How google translate squeezes deep learning onto a phone
research.googleblog.com/2015/07/how-google-translate-squeezes-
deep.html.

[4] J. Vreeken. Spiking neural networks, an introduction. Technical report,
2003.

[5] P. Diehl et al. Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing. In Proc. IJCNN, 2015.

[6] Y. Cao et al. Spiking deep convolutional neural networks for energy-
efficient object recognition. Int. J. Comput. Vision, 113(1), May 2015.

[7] J. L. Krichmar et al. Large-scale spiking neural networks using
neuromorphic hardware compatible models. JETC, 11(4), April 2015.

[8] J. M. Nageswaran et al. Efficient simulation of large-scale spiking neural
networks using cuda graphics processors. In Proc. IJCNN, 2009.

[9] A. Fidjeland et al. Accelerated simulation of spiking neural networks
using gpus. In IJCNN, 2010.

[10] A. Morrison et al. Advancing the boundaries of high-connectivity
network simulation with distributed computing. Neural Comput., 17(8),
2005.

[11] R. Ananthanarayanan et al. Anatomy of a cortical simulator. In Proc.
Supercomputing, SC ’07, 2007.

[12] T. Schoenauer et al. Neuropipe-chip: A digital neuro-processor for
spiking neural networks. Trans. Neur. Netw., 13(1).

[13] S. B. Furber et al. Overview of the spinnaker system architecture. IEEE
Trans. Comput., 62(12), December 2013.

[14] P. et al. Merolla. A million spiking-neuron integrated circuit with a
scalable communication network and interface. Science, 345(6197),
2014.

[15] D. Kuzum et al. Synaptic electronics: materials, devices and applica-
tions. Nanotechnology, 24(38), 2013.

[16] X. Liu et al. Harmonica: A framework of heterogeneous computing
systems with memristor-based neuromorphic computing accelerators.
IEEE Trans. on CAS, 63(5):617–628, May 2016.

[17] A. Sengupta et al. Magnetic tunnel junction mimics stochastic cortical
spiking neurons. Scientific Reports, 6, July 2016.

[18] S. Venkataramani et al. Axnn: Energy-efficient neuromorphic systems
using approximate computing. In Proc. ISLPED, 2014.

[19] Q. Zhang et al. Approxann: An approximate computing framework for
artificial neural network. In Proc. DATE, 2015.

[20] Z. Du et al. Leveraging the error resilience of neural networks for
designing highly energy efficient accelerators. IEEE TCAD, Aug 2015.

[21] A. S. Cassidy et al. Design of silicon brains in the nano-cmos era:
Spiking neurons, learning synapses and neural architecture optimization.
Neural Netw., 45, September 2013.

[22] B. V. Benjamin et al. Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations. Proc. IEEE, 102(5), May
2014.

[23] S. Venkataramani et al. Approximate computing and the quest for
computing efficiency. In Proc. DAC, 2015.

[24] E. M. Izhikevich. Which model to use for cortical spiking neurons?
Neural Networks, IEEE Trans. on, 15(5), September 2004.

198 2017 Design, Automation and Test in Europe (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

