Scalable Variational Quantum Circuits for Autoencoder-based Drug Discovery

Junde Lia and Swaroop Ghoshb
Department of Computer Science and Engineering The Pennsylvania State University
ajul1512@psu.edu
bszg212@psu.edu

ABSTRACT


The de novo design of drug molecules is recognized as a time-consuming and costly process, and computational approaches have been applied in each stage of the drug discovery pipeline. Variational autoencoder is one of the computer-aided design methods which explores the chemical space based on an existing molecular dataset. Quantum machine learning has emerged as an atypical learning method that may speed up some classical learning tasks because of its strong expressive power. However, near-term quantum computers suffer from limited number of qubits which hinders the representation learning in high dimensional spaces. We present a scalable quantum generative autoencoder (SQ-VAE) for simultaneously reconstructing and sampling drug molecules, and a corresponding vanilla variant (SQ-AE) for better reconstruction. The architectural strategies in hybrid quantum classical networks such as, adjustable quantum layer depth, heterogeneous learning rates, and patched quantum circuits are proposed to learn high dimensional dataset such as, ligand-targeted drugs. Extensive experimental results are reported for different dimensions including 8x8 and 32x32 after choosing suitable architectural strategies. The performance of quantum generative autoencoder is compared with the corresponding classical counterpart throughout all experiments. The results show that quantum computing advantages can be achieved for normalized low-dimension molecules, and that high-dimension molecules generated from quantum generative autoencoders have better drug properties within the same learning period.

Keywords: Quantum Machine Learning, Variational Autoencoder, Drug Discovery.



Full Text (PDF)