MuxLink: Circumventing Learning-Resilient MUX-Locking Using Graph Neural Network-based Link Prediction

Lilas Alrahis1,a, Satwik Patnaik2, Muhammad Shafique1,b and Ozgur Sinanoglu1,c
1Division of Engineering, New York University Abu Dhabi, UAE
satwik.patnaik@tamu.edu
2Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
alma387@nyu.edu
bmuhammad.shafique@nyu.edu
cozgursin@nyu.edu

ABSTRACT


Logic locking has received considerable interest as a prominent technique for protecting the design intellectual property from untrusted entities, especially the foundry. Recently, machine learning (ML)-based attacks have questioned the security guarantees of logic locking, and have demonstrated considerable success in deciphering the secret key without relying on an oracle, hence, proving to be very useful for an adversary in the fab. Such MLbased attacks have triggered the development of learning-resilient locking techniques. The most advanced state-of-the-art deceptive MUX-based locking (D-MUX) and the symmetric MUX-based locking techniques have recently demonstrated resilience against existing ML-based attacks. Both defense techniques obfuscate the design by inserting key-controlled MUX logic, ensuring that all the secret inputs to the MUXes are equiprobable.

In this work, we show that these techniques primarily introduce local and limited changes to the circuit without altering the global structure of the design. By leveraging this observation, we propose a novel graph neural network (GNN)-based link prediction attack, MuxLink, that successfully breaks both the D-MUX and symmetric MUX-locking techniques, relying only on the underlying structure of the locked design, i.e., in an oracle-less setting. Our trained GNN model learns the structure of the given circuit and the composition of gates around the non-obfuscated wires, thereby generating meaningful link embeddings that help decipher the secret inputs to the MUXes. The proposed MuxLink achieves key prediction accuracy and precision up to 100% on D-MUX and symmetric MUX-locked ISCAS-85 and ITC-99 benchmarks, fully unlocking the designs. We open-source MuxLink [1].

Keywords: Deceptive Logic Locking, Graph Neural Networks, Machine Learning, Link Prediction, Oracle-less Attack.



Full Text (PDF)