Selecting the Optimal Energy Point in Near-Threshold Computing

Sami Salamina, Hussam Amrouchb and Jörg Henkelc
Karlsruhe Institute of Technology, Chair for Embedded Systems (CES), Karlsruhe, Germany
asami.salamin@kit.edu
bamrouch@kit.edu
chenkel@kit.edu

ABSTRACT


Near-Threshold Computing (NTC) has recently emerged as an attractive paradigm as it allows devices to operate close to their optimal energy point (OEP). This work demonstrates, for the first time, that determining where the OEP of a processor exists is challenging because standard cells, forming the processor’s netlist, unevenly profit w.r.t power and also unevenly degrade w.r.t delay when the voltage approaches the near-threshold region. To precisely explore, at design time, where OEP is, we create voltage-aware cell libraries that enable designers to seamlessly employ the standard tool flows, even they were not designed for that purpose, to perform voltageaware timing and power analysis. Besides determining where the OEP is, we also demonstrate how providing logic synthesis tool flows with voltage-aware cell libraries results in a 35% higher performance at NTC. In addition, we investigate how the performance loss at NTC can be compensated through parallelized computing demonstrating, for the first time, that the OEP moves far from NTC as the number of cores increases. Our proposed methodology enables designers to select the maximum number of cores along with the optimal operating voltage jointly in which a specific power budget is fulfilled. Finally, we show how voltage-aware design for parallelized NTC provides [40%-50%] performance increase compared to traditional (i.e., voltageunaware design) parallelized NTC.



Full Text (PDF)