IoT2 - the Internet of Tiny Things: Realizing mm-Scale Sensors through 3D Die Stacking

Sechang Oh, Minchang Cho, Xiao Wu, Yejoong Kim, Li-Xuan Chuo, Wootaek Lim, Pat Pannuto, Suyoung Bang, Kaiyuan Yang, Hun-Seok Kim, Dennis Sylvester and David Blaauw
University of Michigan, Ann Arbor, MI, USA

ABSTRACT


The Internet of Things (IoT) is a rapidly evolving application space. One of the fascinating new fields in IoT research is mm-scale sensors, which make up the Internet of Tiny Things (IoT2). With their miniature size, these systems are poised to open up a myriad of new application domains. Enabled by the unique characteristics of cyber-physical systems and recent advances in low-power design and bare-die 3D chip stacking, mm-scale sensors are rapidly becoming a reality. In this paper, we will survey the challenges and solutions to 3D-stacked mm-scale design, highlighting low-power circuit issues ranging from low-power SRAM and miniature neural network accelerators to radio communication protocols and analog interfaces. We will discuss system-level challenges and illustrate several complete systems and their merging application spaces.



Full Text (PDF)