UB10 Session 10

Printer-friendly version PDF version

Date: Thursday 12 March 2020
Time: 12:00 - 14:30
Location / Room: Booth 11, Exhibition Area

LabelPresentation Title
Authors
UB10.1TAPASCO: THE OPEN-SOURCE TASK-PARALLEL SYSTEM COMPOSER FRAMEWORK
Authors:
Carsten Heinz, Lukas Sommer, Lukas Weber, Jaco Hofmann and Andreas Koch, TU Darmstadt, DE
Abstract
Field-programmable gate arrays (FPGA) are an established platform for highly specialized accelerators, but in a heterogeneous setup, the accelerator still needs to be integrated into the overall system. The open-source TaPaSCo (Task-Parallel System Composer) framework was created to serve this purpose: The fast integration of FPGA-based accelerators into compute platforms or systems-on-chip (SoC) and their connection to relevant components on the FPGA board. TaPaSCo can support developers in all steps of the development process: from cores resulting from High-Level Synthesis or cores written in an HDL, a complete FPGA-design can be created. TaPaSCo will automatically connect all processing elements to the memory- and host-interface and generate a complete bitstream. The TaPaSCo Runtime API allows to interface with accelerators from software and supports operations such as transferring data to the FPGA memory, passing values and controlling the execution of the accelerators.

More information ...
UB10.2RESCUED: A RESCUE DEMONSTRATOR FOR INTERDEPENDENT ASPECTS OF RELIABILITY, SECURITY AND QUALITY TOWARDS A COMPLETE EDA FLOW
Authors:
Nevin George1, Guilherme Cardoso Medeiros2, Junchao Chen3, Josie Esteban Rodriguez Condia4, Thomas Lange5, Aleksa Damljanovic4, Raphael Segabinazzi Ferreira1, Aneesh Balakrishnan5, Xinhui Lai6, Shayesteh Masoumian7, Dmytro Petryk3, Troya Cagil Koylu2, Felipe Augusto da Silva8, Ahmet Cagri Bagbaba8, Cemil Cem Gürsoy6, Said Hamdioui2, Mottaqiallah Taouil2, Milos Krstic3, Peter Langendoerfer3, Zoya Dyka3, Marcelo Brandalero1, Michael Hübner1, Jörg Nolte1, Heinrich Theodor Vierhaus1, Matteo Sonza Reorda4, Giovanni Squillero4, Luca Sterpone4, Jaan Raik6, Dan Alexandrescu5, Maximilien Glorieux5, Georgios Selimis7, Geert-Jan Schrijen7, Anton Klotz8, Christian Sauer8 and Maksim Jenihhin6
1Brandenburg University of Technology Cottbus-Senftenberg, DE; 2TU Delft, NL; 3Leibniz-Institut für innovative Mikroelektronik, DE; 4Politecnico di Torino, IT; 5IROC Technologies, FR; 6Tallinn University of Technology, EE; 7Intrinsic ID, NL; 8Cadence Design Systems GmbH, DE
Abstract
The demonstrator highlights the various interdependent aspects of Reliability, Security and Quality in nanoelectronics system design within an EDA toolset and a processor architecture setup. The compelling need of attention towards these three aspects of nanoelectronic systems have been ever more pronounced over extreme miniaturization of technologies. Further, such systems have exploded in numbers with IoT devices, heavy and analogous interaction with the external physical world, complex safety-critical applications, and Artificial intelligence applications. RESCUE targets such aspects in the form, Reliability (functional safety, ageing, soft errors), Security (tamper-resistance, PUF technology, intelligent security) and Quality (novel fault models, functional test, FMEA/FMECA, verification/debug) spanning the entire hardware software system stack. The demonstrator is brought together by a group of PhD students under the banner of H2020-MSCA-ITN RESCUE European Union project.

More information ...
UB10.3RETINE: A PROGRAMMABLE 3D STACKED VISION CHIP ENABLING LOW LATENCY IMAGE ANALYSIS
Authors:
Stéphane Chevobbe1, Maria Lepecq1 and Laurent Millet2
1CEA LIST, FR; 2CEA-Leti, FR
Abstract
We have developed and fabricated a 3D stacked imager called RETINE composed with 2 layers based on the replication of a programmable 3D tile in a matrix manner providing a highly parallel programmable architecture. This tile is composed by a 16x16 BSI binned pixels array with associated readout and 16 column ADC on the first layer coupled to an efficient SIMD processor of 16 PE on the second layer. The prototype of RETINE achieves high video rates, from 5500 fps in binned mode to 340 fps in full resolution mode. It operates at 80 MHz with 720 mW power consumption leading to 85 GOPS/W power efficiency. To highlight the capabilities of the RETINE chip we have developed a demonstration platform with an electronic board embedding a RETINE chip that films rotating disks. Three scenarii are available: high speed image capture, slow motion and composed image capture with parallel processing during acquisition.

More information ...
UB10.4DL PUF ENAU: DEEP LEARNING BASED PHYSICALLY UNCLONABLE FUNCTION ENROLLMENT AND AUTHENNTICATION
Authors:
Amir Alipour1, David Hely2, Vincent Beroulle2 and Giorgio Di Natale3
1Grenoble INP / LCIS, FR; 2Grenoble INP, FR; 3CNRS / Grenoble INP / TIMA, FR
Abstract
Physically Unclonable Functions (PUFs) have been addressed nowadays as a potential solution to improve the security in authentication and encryption process in Cyber Physical Systems. The research on PUF is actively growing due to its potential of being secure, easily implementable and expandable, using considerably less energy. To use PUF in common, the low level device Hardware Variation is captured per unit for device enrollment into a format called Challenge-Response Pair (CRP), and recaptured after device is deployed, and compared with the original for authentication. These enrollment + comparison functions can vary and be more data demanding for applications that demand robustness, and resilience to noise. In this demonstration, our aim is to show the potential of using Deep Learning for enrollment and authentication of PUF CRPs. Most importantly, during this demonstration, we will show how this method can save time and storage compared to other classical methods.

More information ...
UB10.5LAGARTO: FIRST SILICON RISC-V ACADEMIC PROCESSOR DEVELOPED IN SPAIN
Authors:
Guillem Cabo Pitarch1, Cristobal Ramirez Lazo1, Julian Pavon Rivera1, Vatistas Kostalabros1, Carlos Rojas Morales1, Miquel Moreto1, Jaume Abella1, Francisco J. Cazorla1, Adrian Cristal1, Roger Figueras1, Alberto Gonzalez1, Carles Hernandez1, Cesar Hernandez2, Neiel Leyva2, Joan Marimon1, Ricardo Martinez3, Jonnatan Mendoza1, Francesc Moll4, Marco Antonio Ramirez2, Carlos Rojas1, Antonio Rubio4, Abraham Ruiz1, Nehir Sonmez1, Lluis Teres3, Osman Unsal5, Mateo Valero1, Ivan Vargas1 and Luis Villa2
1BSC / UPC, ES; 2CIC-IPN, MX; 3IMB-CNM (CSIC), ES; 4UPC, ES; 5BSC, ES
Abstract
Open hardware is a possibility that has emerged in recent years and has the potential to be as disruptive as Linux was once, an open source software paradigm. If Linux managed to lessen the dependence of users in large companies providing software and software applications, it is envisioned that hardware based on ISAs open source can do the same in their own field. In the Lagarto tapeout four research institutions were involved: Centro de Investigación en Computación of the Mexican IPN, Centro Nacional de Microelectrónica of the CSIC, Universitat Politècnica de Catalunya (UPC) and Barcelona Supercomputing Center (BSC). As a result, many bachelor, master and PhD students had the chance to achieve real-world experience with ASIC design and achieve a functional SoC. In the booth, you will find a live demo of the first ASIC and prototypes running on FPGA of the next versions of the SoC and core.

More information ...
UB10.6SRSN: SECURE RECONFIGURABLE TEST NETWORK
Authors:
Vincent Reynaud1, Emanuele Valea2, Paolo Maistri1, Regis Leveugle1, Marie-Lise Flottes2, Sophie Dupuis2, Bruno Rouzeyre2 and Giorgio Di Natale1
1TIMA Laboratory, FR; 2LIRMM, FR
Abstract
The critical importance of testability for electronic devices led to the development of IEEE test standards. These methods, if not protected, offer a security backdoor to attackers. This demonstrator illustrates a state-of-the-art solution that prevents unauthorized usage of the test infrastructure based on the IEEE 1687 standard and implemented on an FPGA target.

More information ...
UB10.7DEEPSENSE-FPGA: FPGA ACCELERATION OF A MULTIMODAL NEURAL NETWORK
Authors:
Mehdi Trabelsi Ajili and Yuko Hara-Azumi, Tokyo Institute of Technology, JP
Abstract
Currently, Internet of Things and Deep Learning (DL) are merging into one domain and creating outstanding technologies for various classification tasks. Such technologies require complex DL networks that are mainly targeting powerful platforms with rich computing resources like servers. Therefore, for resource-constrained embedded systems, new challenges of size, performance and power consumption have to be considered, particularly when edge devices handle multimodal data, i.e., different types of real-time sensing data (voice, video, text, etc.). Our ongoing project is focused on DeepSense, a multimodal DL framework combining Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to process time-series data, such as accelerometer and gyroscope to detect human activity. We aim at accelerating DeepSense by FPGA (Xilinx Zynq) in a hardware-software co-design manner. Our demo will show the latest achievements through latency and power consumption evaluations.

More information ...
UB10.8GENERATING ASYNCHRONOUS CIRCUITS FROM CATAPULT
Authors:
Yoan Decoudu1, Jean Simatic2, Katell Morin-Allory3 and Laurent Fesquet3
1University Grenoble Alpes, FR; 2HawAI.Tech, FR; 3Université Grenoble Alpes, FR
Abstract
In order to spread asynchronous circuit design to a large community of designers, High-Level Synthesis (HLS) is probably a good choice because it requires limited design technical skills. HLS usually provides an RTL description, which includes a data-path and a control-path. The desynchronization process is only applied to the control-path, which is a Finite State Machine (FSM). This method is sufficient to make asynchronous the circuit. Indeed, data are processed step by step in the pipeline stages, thanks to the desynchronized FSM. Thus, the data-path computation time is no longer related to the clock period but rather to the average time for processing data into the pipeline. This tends to improve speed when the pipeline stages are not well-balanced. Moreover, our approach helps to quickly designing data-driven circuits while maintaining a reasonable cost, a similar area and a short time-to-market.

More information ...
UB10.9PA-HLS: HIGH-LEVEL ANNOTATION OF ROUTING CONGESTION FOR XILINX VIVADO HLS DESIGNS
Authors:
Osama Bin Tariq1, Junnan Shan1, Luciano Lavagno1, Georgios Floros2, Mihai Teodor Lazarescu1, Christos Sotiriou2 and Mario Roberto Casu1
1Politecnico di Torino, IT; 2University of Thessaly, GR
Abstract
We will demo a novel high-level backannotation flow that reports routing congestion issues at the C++ source level by analyzing reports from FPGA physical design (Xilinx Vivado) and internal debugging files of the Vivado HLS tool. The flow annotates the C++ source code, identifying likely causes of congestion, e.g., on-chip memories or the DSP units. These shared resources often cause routing problems on FPGAs because they cannot be duplicated by physical design. We demonstrate on realistic large designs how the information provided by our flow can be used to both identify congestion issues at the C++ source level and solve them using HLS directives. The main demo steps are: 1-Extraction of the source-level debugging information from the Vivado HLS database 2-Generation of a list of net names involved in congestion areas and of their relative significance from the Vivado post global-routing database 3-Visualization of the C++ code lines that contribute most to congestion

More information ...
UB10.10ATECES: AUTOMATED TESTING THE ENERGY CONSUMPTION OF EMBEDDED SYSTEMS
Author:
Eduard Enoiu, Mälardalen University, SE
Abstract
The demostrator will focus on automatically generating test suites by selecting test cases using random test generation and mutation testing is a solution for improving the efficiency and effectiveness of testing. Specifically, we generate and select test cases based on the concept of energy-aware mutants, small syntactic modifications in the system architecture, intended to mimic real energy faults. Test cases that can distinguish a certain behavior from its mutations are sensitive to changes, and hence considered to be good at detecting faults. We applied this method on a brake by wire system and our results suggest that an approach that selects test cases showing diverse energy consumption can increase the fault detection ability. This kind of results should motivate both academia and industry to investigate the use of automatic test generation for energy consumption.

More information ...
14:30End of session