

Energy-Efficient Monocular Depth Estimation on ARM-based Embedded Platforms

Valentino Peluso, Antonio Cipolletta, Andrea Calimera, Matteo Poggi, Fabio Tosi and Stefano Mattoccia

Monocular depth estimation is an appealing technique to estimate dense depth maps leveraging unconstrained imaging sensors. State-of-the-art technique [1] deploys energy-hungry deep networks.

[1] vs. [2] @ FP32

[2] H

[1] H

[2] E

[1] E

H: Half resolution

E: Eighth resolution

[2] **Q**

[1] **Q**

CONV 3x3. stride 2

DECONV 2x2, stride 2 SIGMOID

CONV 3x3

CONCAT

EQ-Scalable PyD-Net PyD-Net Architecture

Whereas state-of-the-art models [1] count millions of parameters, have large memory footprints and are far from real-time computation on low powered devices, PyD-Net [2] is compact (1.9M vs more than 30M params) and runs at around 1 FPS on Raspberry Pi 3 with comparable accuracy. Moreover, PyDNet is an energy-scalable architecture with better performance than more complex models like [1].

 \bigcirc

Resolution

FP32 INT16 INT8

Precision

Energy-Quality Knobs

<u>Coarse-Gain:</u> PyD-Net infers disparity maps at different resolutions (H,Q,E) due to a reconfigurable architecture. <u>Fine-Grain:</u> a quantization engine can shift the PyD-Net from 32-bit Floating-Point to 16-/8-bit INTeger.

[1] F

F: Full resolution

Q: Quarter resolution

A <u>sensing technology</u> with such ability to implement accuracy-energy scaling represents a practical option for adaptive embedded systems [3]: contexts or applications which tolerate lower accuracy might pursue higher energy efficiency by tuning resolution and precision.

Godard et al., "Unsupervised Monocular Depth Estimation with Left-Right Consistency", CVPR 2017
Poggi et al., "Towards real-time unsupervised monocular depth estimation on CPU", IROS 2018
Peluso et al., "Energy-Efficient Monocular Depth Estimation on ARM-based Embedded Platforms", DATE 2019