
CCF: A CGRA Compilation Framework
Shail Dave, Aviral Shrivastava

Compiler Microarchitecture Lab, Arizona State University, Tempe, AZ
Email: {shail.dave, aviral.shrivastava}@asu.edu

I. INTRODUCTION

Coarse-grained reconfigurable array (CGRA) can effi-
ciently accelerate even non-parallel loops [1]. Although scores
of techniques have been developed in the past decade to map
loops on CGRA PEs, several challenges in enabling accel-
eration of general-purpose applications on CGRAs remained
unresolved, in particular, the automatic code generation for the
CGRA accelerator coupled with modern processor cores.

In this demonstration, we showcase CCF – CGRA compiler
framework. We show that given performance-critical loops
annotated in embedded applications, how CCF extracts the
loop, constructs the data dependency graph (DDG), maps
it onto CGRA architecture, off-loads necessary configuration
instructions for CGRA PEs, and automatically communicates
data between the CPU and CGRA.

II. CGRA COMPILER FRAMEWORK

The compute-intensive applications can be profiled to de-
termine the top non-vectorizable performance-critical loops.
These loops are annotated with a pragma directive and are
extracted later by our clang based CGRA front-end. CCF
collects all the source files and it emits an optimized interme-
diate representation (IR), which is obtained through LLVM
just before SelectionDAG phase. CCF is implemented in
LLVM 4.0 [2] and includes a set of transformation and analysis
passes. One such important pass performs the liveness analysis
on the IR for the loop variables, based on the use-definition
chain. It ensures the automatic communication of live-in/live-
out variables of the loop, between the CPU and CGRA.

Data Dependency Graph (DDG)

Modified IR for
execution on
Multi-Cores

Annotate Hot Loop
based on App.
Characteristics

Optimized IR/Bit-Code

SelectionDAG

Parse Valid, Optimized IR

app.o

Loop IR/bit-code

Liveness Analysis and Compiler
Transformations enabling

Automatic Communication

Clang-based CGRA
Compiler Front-end

Communication
Library for CGRA

Optimized Instr Selection, Support for Live-in/
Live-out variables + Access Complex Aggregates

Transformations for control- flow and for
loops with statically unknown trip-counts

Profiler

Instruction
Selection

Iterative Modulo Scheduling and
CGRA Mapping Technique

Scheduling & Formation + SSA-
based Machine Code Opt

Optimized Machine Code
Generation

Register Allocation and Late
Machine Code Optimizations

MachineInstr

Emit Combined Code

Application Source
Files (C/C++)

Validate Functionality + Accelerated Execution at System/RTL-
level with CGRA-coupled Modern Processor Core

Fig. 1. A High-Level Overview of CCF

These live variables are communicated as shared data between
the CPU and the CGRA, or alternatively, can be transferred
to/from the CGRA memory via memcpy-style functions.

CGRAs typically handle the branch divergence through
partial predication; loop operations from both the if- and else-
path executes and then correct output is selected. Therefore,
in the presence of the (complex) control flow, CCF ensures
that a store and/or an update to the live-out variable occurs
correctly. It parses the IR for each loop and generates a
DDG, as shown in Fig. 1. DDG is a directed graph; nodes
represent the operations to be executed by PEs and edges
represent data dependencies among the operations. We also
ensure that a valid DDG is generated in case of loops accessing
sub-words/pointers. Then, an iterative modulo schedule is
generated for DDG and operations are mapped on PEs in
a software pipelined manner. Once the mapping is achieved,
the machine instructions for CGRA PEs are generated based
on the CGRA microarchitecture. If CGRA PEs manage the
live operands into CGRA registers, the machine instructions
to preload them and/or write-back are also generated.

Finally, the part of the IR corresponding to the loop body is
purged along with an insertion of a function call corresponding
to the loop execution on the CGRA. This modified IR is then
taken to the machine code generation for the CPU.

In compiling the applications, we use optimization level 3
and also consider complex loops including intertwined loops
and loops with dynamic trip-counts. The generated binary is
evaluated on the popular cycle-accurate simulator gem5 [3] in
system emulation mode; we modeled CGRA as a separate core
coupled to ARM Cortex-like processor core with ARMv7a
profile. In this presentation, we demonstrate the capabilities
and the execution flow of our framework. Further details can
be accessed at http://aviral.lab.asu.edu/cgra/.

ACKNOWLEDGMENT
This work was partially supported by funding from the

NSF grants CCF 1723476, 1055094 (CAREER), and CNS
1525855. We gratefully acknowledge the contributions of
Mahdi Hamzeh, Mahesh Balasubramanian, Dipal Saluja and
Shrihari Rajendran Radhika.

REFERENCES

[1] T. Vander Aa, P. Raghavan, S. Mahlke, B. De Sutter, A. Shrivastava,
and F. Hannig, “Embedded tutorialcompilation techniques for cgras:
Exploring all parallelization approaches,” in CODES+ ISSS, 2010.

[2] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in CGO, 2004, pp. 75–86.

[3] N. Binkert et al., “The gem5 simulator,” 2011.

