
An Interactive Dependability Driven
Design Space Exploration
Stefan Scharoba, Jacob Lorenz and Heinrich T. Vierhaus

Brandenburg University of Technology
Cottbus, Germany

Email: scharst1@b-tu.de

I. INTRODUCTION

Due to the downscaling of transistor feature sizes, today’s
integrated circuits are much more likely to be affected by
transient or permanent faults during their operational life-
time. In order to still meet certain dependability require-
ments, many different fault tolerance techniques have been
developed, which can handle these faults in the field. Natu-
rally, each of these techniques has a different effect on the
system’s dependability and is at the same time associated
with distinct costs in terms of hardware overhead, additional
power dissipation and performance degradation. As a con-
sequence, deciding which techniques are used and to which
parts of the system they are applied represents a crucial step
in the overall design process. It must be accompanied by
a careful exploration of different design choices including
an estimation of their costs and benefits in order to find
an implementation that meets the actual dependability re-
quirements at acceptable costs. Performing these analyses
manually can be very time-consuming and error-prone.

In this demonstration we present a prototype of IDDD,
a tool that enables an interactive dependability driven de-
sign space exploration. Its main purpose is the automatic
estimation of costs and benefits for selected fault tolerance
techniques. Moreover these techniques can be automatically
applied to a given VHDL model.

II. INTERACTIVE DEPENDABILITY DRIVEN DSE
Figure 1 shows how IDDD can be used during the design

process. The starting point is a preliminary VHDL model of
the system whose dependability needs to be improved. The
VHDL description is parsed by the tool and the needed infor-
mation, mainly concerning the system’s structure, is stored
in an internal data structure. This model serves as a first
design candidate for the following design space exploration.
With the help of the tool’s graphical user interface, the circuit
designer can apply different fault tolerance techniques that
can handle transient and permanent faults by means of hard-
ware redundancy. When selecting the techniques to apply, the
designer has to make several decisions, e.g. which parts of
the system are protected, how many spare components are
added, and which online fault handling mechanism is used.
The internal model is automatically modified according to
these choices, resulting in a set of different design candidates.

In order to identify the most suitable implementation, the
individual candidates have to be evaluated regarding costs

Fig. 1. The work flow of IDDD

and benefits of the applied fault tolerance methods. These
analyses are performed automatically by the tool. Costs
can be determined by generating the corresponding VHDL
model of a design candidate and synthesizing it with the
help of an external EDA tool. For this purpose, generic
VHDL models and script templates for available EDA tools
have to be provided. As a synthesis of a large number of
design candidates can be very time-consuming, it is also
possible to perform fast but less accurate estimations based
on experience values. The benefit of a certain fault tolerance
scheme is evaluated by computing different dependability
measures like the reliability, the mean time to failure and
the mission time as well as the corresponding improvement
factors. These computations are based on the assumption of
certain failure rates for the individual components, which
have to be specified in advance. The system’s behavior in
case of component failures is modeled by Markov chains,
which are automatically constructed and solved during the
dependability evaluation.

Based on the results of the aforementioned evaluations, the
designer can decide which implementation meets the actual
requirements best or whether another iteration of modifying
and evaluating the existing design candidates is necessary.
Once the preferred implementation is found, the correspond-
ing VHDL description can be generated by the tool to be
processed in the following steps of the design flow.

ACKNOWLEDGMENT

This work was supported by the German Research Foun-
dation (DFG) under the grant VI 185/16-1.


