
WORKCRAFT: framework for interpreted graphs

µSystems Group, School of Electrical and Electronic Engineering, Newcastle University, UK

A large number of models that are employed in the field

of concurrent systems design, such as Petri nets, gate-level

circuits, dataflow structures, etc. - all have an underlying

static graph structure. Their semantics, however, is defined

using additional entities, e.g. tokens to denote the overall

state of the system. We jointly refer to such formalisms as

interpreted graph models. The similarities in notation allow

for links between different models to be created, such as

interfaces between different formalisms or conversion from

one model type into another, which greatly extends the range

of applicable analysis techniques.

Figure 1. WORKCRAFT interface

WORKCRAFT is designed to provide a flexible common

framework for development of interpreted graph models,

including visual editing, (co-)simulation and analysis. The

framework provides a graphical frontend for convenient ma-

nipulating the interpreted graph models (see Figure 1) and

relies on a number of established backend tools for model

checking, synthesis, and verification tasks (PETRIFY, PUNF,

MPSAT, etc). The simulation and analysis of the models can

be carried out either directly or by mapping a model into a

behaviourally equivalent model of a different type (usually a

Petri net). Hence the user can design a system using the most

appropriate formalism, or even different formalisms for the

subsystems, while still utilising the power of Petri net analysis

techniques.

The framework is platform-independent, highly customis-

able by means of plugins, and is freely available for academic

use at http://workcraft.org/. Currently the following interpreted

graph models are supported by Workcraft plugins (see Figure 2

for model taxonomy and available conversion mechanisms):

Figure 2. Supported graph models

• Directed Graph – a basic graph model that serves a basis

for other interpreted graph models.

• Finite State Machine – a model for explicitly representing

the state space of concurrent systems.

• Petri Net – a model for capturing causality and concur-

rency relations between asynchronous events.

• Policy Net – an extension of Petri nets with step execution

semantics, convenient for modelling GALS systems [1].

• Structured Occurrence Net – a model for capturing and

analysing families of system execution traces [2].

• Finite State Transducer – a Finite State Machine whose

arcs have semantics of digital signal events.

• Signal Transition Graph – a labelled Petri net whose

transitions are associated with signal events [3].

• Conditional Partial Order Graph – a formalism for spec-

ifying a collection of behavioural scenarios in a compact

graph representation using optimal encodings [4].

• Digital Circuit – a gate-level model and verification

infrastructure for asynchronous control circuits [5].

• Dataflow Structure – an asynchronous pipeline model that

supports counterflow and spread token semantics [6].

• xMAS Circuit – a high-level microarchitectural model of

communication fabrics extended to GALS systems [7].

REFERENCES

[1] J. Fernandes, et al: “Persistent and nonviolent steps and the design of GALS

systems”, Fundamenta Inf., 2015.

[2] M. Koutny, B. Randell: ”Structured occurrence nets: a formalism for aiding system

failure prevention and analysis techniques”, Fundamenta Inf., 2009.

[3] A. Yakovlev, et al: “A unified signal transition graph model for asynchronous control

circuit synthesis”, Formal Methods in System Design, 1996.

[4] A. Mokhov, A. Yakovlev: “Conditional partial order graphs: model, synthesis and

application”, IEEE Trans. Computers, 2010.

[5] I. Poliakov, et al: “Automated verification of asynchronous circuits using circuit

Petri nets”, ASYNC, 2008.

[6] D.Sokolov, et al: “Analysis of static data flow structures”, Fundamenta Inf., 2008.

[7] F. Burns, et al: “GALS synthesis and verification for xMAS models”, DATE, 2015.


