
Contract-based automated integration for complex
component-based systems

(Demo)

Johannes Schlatow and Rolf Ernst
Institute of Computer and Network Engineering, TU Braunschweig

{schlatow,ernst}@ida.ing.tu-bs.de

Marcus Nolte and Markus Maurer
Institute of Control Engineering, TU Braunschweig

{nolte,maurer}@ifr.ing.tu-bs.de

Abstract—In the scope of the research unit Controlling Con-
current Change, we developed a contract-based middleware to
autonomously manage and ensure the safety, availability and
security properties of a component-based run-time environment.
It guarantees that any change to the system is formally analysed
beforehand and only applied if it does not violate any of the
contracts, thereby enabling in-field updateability of complex
critical systems. For this purpose, a Multi-Change Controller
(MCC) aggregates component contracts and invokes viewpoint-
specific analysis engines to evaluate change requests and find
feasible system configurations. The MCC is specifically designed
for extensibility so that analysis engines can be added and
combined dependent on the application domain. We present a
demonstrator that showcases and illustrates this contract-based
process for an automated integration of an automotive system.
Our demonstrator is built upon the Genode OS Framework and
Xilinx Zynq-7000 SoCs.

I. INTRODUCTION

We enable the in-field updateability of critical component-
based systems by using a contract-based approach. A compo-
nent’s contract formally specifies provided guarantees and as-
sumptions that must be satisfied. Based on this, the viewpoint-
specific analysis engines check configuration candidates and
verify their feasibility before a configuration can be applied.

For this purpose, the software architecture is separated
into an execution domain and a model domain. While the
former executes the actual (critical) applications, the latter
implements the on-demand contract-based integration process.
A change request, such as a software update, triggers the
Multi-Change Controller (MCC) to search a new configuration
that is feasible w.r.t. all regarded viewpoints. A viewpoint
is represented by its analysis engine, which evaluates the
relevant parts of the contracts e.g. by applying existing models
and established analyses. The MCC conducts a design space
exploration assisted by a constraint solver (SAT or SMT) for
which it iteratively invokes the analysis engines [1]. The MCC
comprises different analysis engines, which implement the
viewpoints relevant for the particular application domain.

II. DEMONSTRATOR

Our prototyping hardware platform is based on the Xilinx
Zynq-7000 SoC, which comprises a processing system (ARM
Cortex-A9) and an FPGA. This platform is particularly suited
for computing-intensive environmental perception for which a
growing interest can be observed in the automotive domain.

Our run-time environment is based on the Genode OS
Framework [2], in which the application components are
restricted to use service-oriented communication interfaces.
This framework also acts as an abstraction layer to the
underlying (micro-)kernel, which can therefore be exchanged
during compile time in order to suit the requirements imposed
by the application domain.

In the scope of this demo, we mainly focus on the view-
points that solve the functional dependencies between the
components as well as the mapping constraints that arise in a
distributed system scenario. Hence, the MCC is obliged to find
valid compositions of components and communication chan-
nels w.r.t. the service requirements and mapping constraints.

For this demo, we expose the state of the MCC to a host
computer that allows us to inspect and visualise the compo-
nent contracts, the viewpoint-specific models as well as the
resulting configurations. This allows for an easy experimental
evaluation of how this system reacts to incremental changes.

We illustrate the contract-based integration process by
demonstrating two automotive showcases that have been devel-
oped for this purpose in the scope of the CCC project [3]. On
the one hand, a cruise control showcase demonstrates how the
functionality of an existing application can be incrementally
extended depending on the available peripherals and software
components. On the other hand, a park assistant showcase
reveals the aspects that are additionally covered when different
concurrent applications shall be integrated into the same
platform.

ACKNOWLEDGEMENTS

This work was supported by the DFG Research Unit
Controlling Concurrent Change (CCC), funding number FOR
1800. We thank the members of CCC for their support.

REFERENCES

[1] J. Schlatow, M. Moestl, and R. Ernst, “An extensible autonomous recon-
figuration framework for complex component-based embedded systems,”
in 12th International Conference on Autonomic Computing (ICAC 2015),
Grenoble, France, July 2015, pp. 239–242.

[2] Genode OS Framework. [Online]. Available: http://genode.org/
[3] A. Reschka, M. Nolte, T. Stolte, J. Schlatow, R. Ernst, and M. Mau-

rer, “Specifying a middleware for distributed embedded vehicle control
systems,” in Proceedings of the 2014 IEEE International Conference on
Vehicular Electronics and Safety (ICVES), Hyderabad, India, December
2014, pp. 117–122.

http://genode.org/

	Introduction
	Demonstrator
	References

