
DATE’16 UNIVERSITY BOOTH

Putting Queens in Carry Chains, No
¯ 27

Thomas B. Preußer

Insititute of Computer Engineering, TU Dresden, Germany

thomas.preusser@tu-dresden.de

Abstract—The N -Queens Puzzle is a fascinating combinatorial
problem. Up to now, the number of distinct valid placements of N
non-attacking queens on a generalized N×N chessboard cannot
be computed by a formula. This is surprising as the set of these
placements is equivalent to an interesting subset of the possible
permutations of a vector of N distinct elements. Specifically, it is
exactly those permutations that alter the relative distance of any
two vector elements and, hence, perform an especially thorough
shuffle.

While a backtracking search within the space of all N !
possible permuations is very expensive, it also yields a perfect,
very scalable computational benchmark for parallel platforms.
Only massively parallel distributed computations are capable to
to compute solutions counts for N ≥ 24. This demo presents the
open-source infrastructure that is backing a currently ongoing
effort to compute the next yet unknown solution count Q(27).

I. OVERVIEW

The N -Queens Puzzle is a 150-year-old mathematical
riddle whose comprehensive history is very well described by
Bell and Stevens along with interesting generalizations and
practical applications [1].

The chess rules allow a queen to move an arbitrary distance
in a horizontal, vertical or diagonal direction. This implies that
each of the N columns and each of the N rows of a completed
solution must contain exactly one of the N placed queens. Any
one of the 2N−1 diagonals in both the upward and downward
directions may be occupied by at most one queen. The total
number of valid solutions is trivially bounded by N !. This is
the number of possible placements of N non-attacking rooks,
which lack the constraining ability to move along a diagonal.

Mathematically, an N -Queens solution can be viewed as a
permutation matrix that contains its one (1) entries exactly at
the coordinates of the validly placed queens. The permutation
matrices that correspond to an N -Queens solution shuffle an
input vector especially well:











0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0











·











1

2

3

4

5











=











5

3

1

4

2











As no two queens can reside on the same diagonal, the induced
permutation does not allow any two elements to maintain their
relative postion after the shuffle.

Most interestingly, it is this last constraint that complicates
the counting of valid solutions so that the only known approach
is the backtracking search. Unfolding the initial levels of
the search tree induces a partitioning of the solution space.

Its granularity can be easily tuned by the choice of the
unfolded depth so that even the huge solution spaces of larger
problem sizes can be chopped into independent pieces of a
manageable size. This way, the N -Queens Puzzle turns into
a computational challenge that lends itself as a great show-
off case for massively parallel, high-performance computing.
It is, indeed, used as such for grid computations [2], Internet
computations [3], supercomputers [4], FPGA [5] and for GPU
[6] platforms.

II. Q27 PROJECT

The Q27 Project aims at computing the next, yet un-
known solution count for the problem size of N = 27.
The overall problem was chopped into 2 024 110 796 in-
dependent subtasks that are processed individually in a
massively parallel, distributed computation. These subtasks
have been derived exploiting the elementary eight symme-
tries of a chess board to cut the search space accordingly:

The computation effort is backed by a distributed infras-
tructure that has been disclosed as open source1 to encourage
others to join into the effort. We hope to attract both those who
just want to see the result and those who want to demonstrate
the power of their systems. Currently, it is FPGAs tackling one
subtask after the other. A GPU port is currently in the process
of optimization.

REFERENCES

[1] J. Bell and B. Stevens, “A survey of known results and research areas
for n-queens,” Discrete Mathematics, vol. 309, no. 1, pp. 1 – 31,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0012365X07010394

[2] “nQueens: n=25,” INRIA, France, Website: http://www-sop.inria.fr/oasis/
ProActive2/apps/nqueens25.html.

[3] “NQueens@Home (beendet),” Rechenkraft.net e.V., Website: http://www.
rechenkraft.net/wiki/NQueens@Home \%28beendet\\%29.

[4] “MC#,” Website: http://www.mcsharp.net/.

[5] “Queens@TUD,” TU Dresden, Germany, Website: http://queens.inf.
tu-dresden.de/.

[6] T. Zhang, W. Shu, and M.-Y. Wu, “Optimization of n-queens solvers
on graphics processors,” in Advanced Parallel Processing Technologies.
Springer, 2011, pp. 142–156.

1https://github.com/preusser/q27

