
LoopInvader: A Compiler for
Tightly Coupled Processor Arrays

Alexandru Tanase, Michael Witterauf, Éricles Sousa, Vahid Lari, Frank Hannig, and Jürgen Teich
Hardware/Software Co-Design, Department of Computer Science

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Continuous technology miniaturization allows to build mas-
sively parallel embedded computer architectures within a single
silicon chip. Programming that leverages the abundant paral-
lelism in such architectures, however, is very difficult, tedious,
and error-prone. Thus, compiler support is paramount. We
therefore present LoopInvader, a loop compiler for a particular
class of massively parallel processor arrays: Tightly coupled
processor arrays (TCPAs) [2].

TCPAs consist of a two-dimensional array of VLIW pro-
cessing elements (PEs) and several peripheral components that
enable zero-overhead loops. In particular, a global controller
(GC) generates synchronized control signals that govern the
control flow of the PEs, removing control overhead from the
loops; address generators (AG) produce the necessary addresses
for feeding the PEs with data from reconfigurable buffers,
removing addressing overhead. Moreover, the PEs are connected
to their neighbors via a circuit-switched interconnection network
that is reconfigurable at runtime to optimally accommodate the
running application.

Figure 1 depicts an overview of our high-level programming
methodology. We describe programs in a domain-specific
functional language called PAULA that is based on dynamic
piecewise linear/regular algorithms (DPLA) [3], a mathematical
representation of loop programs. For the parallelization and
mapping of such algorithms onto TCPAs we use symbolic
partitioning techniques [5] in the polyhedral model: Instead
of using fixed tile sizes, our symbolic partitioning technique
is able to keep the size of the input data and the number
of PEs symbolic until runtime. This provides applications
more flexibility and is important in resource-aware computing
paradigms such as invasive computing [4]. Other approaches are
both time-consuming (e. g., dynamic recompilation) and costly
(e. g., pre-compiling multiple variants) on embedded systems.

After mapping, the compiler generates a configuration stream
comprising assembly code for the PEs, interconnect configu-
ration, address generator configuration and global controller
configuration 1. Because the PEs offer only small instruction
memories, we developed an approach to generate code that is
independent of the problem size [1]. This is achieved by finding
processors and program blocks within processors that share the
same code and appropriately combining it into loops.

As the PEs are interconnected by a circuit-switched intercon-
nect, the compiler also generates all necessary configuration
information. For preserving a given schedule of instructions,
code for the GC is generated such that the repetitive execution
of each unique program block does not cause any extra cycles.

1Because the compiler is a work in progress, only static code generation is
demonstrated.

Simulation

Algorithm (DSL PAULA)

High-Level Transformations

Localization Loop Perfectization

Output Normal Form Loop Unrolling

Symbolic Partitioning Expression Splitting

Affine Transformations ...

Code Generation

 VLIW Code for each PE

 Configuration of Interconnect

 Code of Controller

TCPA Configuration Simulation

Architecture

Model

TCPA

Space-Time Mapping

Allocation Scheduling Resource Binding

Fig. 1. Overview of LoopInvader, a compiler framework for TCPAs [2].

This orchestration enables the execution of nested loop programs
with zero-overhead loop, not only for innermost loops but also
for all static conditions in arbitrary multi-dimensional data flow.

Finally, the generated configuration stream can be loaded
either onto an actual TCPA synthesized on an FPGA or into a
cycle-accurate simulator that we developed in tandem with the
architecture and compiler for testing and verification.

ACKNOWLEDGMENT

This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research
Center “Invasive Computing” (SFB/TR 89).

REFERENCES

[1] S. Boppu, F. Hannig, and J. Teich. Loop program mapping and compact
code generation for programmable hardware accelerators. In Proceedings
of the 24th IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 10–17. IEEE.

[2] F. Hannig, V. Lari, S. Boppu, A. Tanase, and O. Reiche. Invasive tightly-
coupled processor arrays: A domain-specific architecture/compiler co-
design approach. ACM Transactions on Embedded Computing Systems
(TECS), 13(4s):133:1–133:29, Apr. 2014.

[3] F. Hannig and J. Teich. Dynamic piecewise linear/regular algorithms.
In Parallel Computing in Electrical Engineering, 2004. PARELEC 2004.
International Conference on, pages 79–84. IEEE, 2004.

[4] J. Teich. Invasive algorithms and architectures. it - Information Technology,
50(5):300–310, 2008.

[5] J. Teich, A. Tanase, and F. Hannig. Symbolic parallelization of loop
programs for massively parallel processor arrays. In Proceedings of
the 24th IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 1–9. IEEE, 2013.

