
VLSI Legalization with Minimum Perturbation by
Iterative Augmentation

Ulrich Brenner
Research Institute for Discrete Mathematics

University of Bonn
Email: brenner@or.uni-bonn.de

Abstract—We present a new approach to VLSI placement
legalization. Based on a minimum-cost flow algorithm that
iteratively augments flows along paths, our algorithm ensures that
only augmentations are considered that can be realized exactly by
cell movements. Hence, the method avoids realization problems
which are inherent to previous flow-based legalization algorithms.
As a result, it combines the global perspective of minimum-cost
flow approaches with the efficiency of local search algorithms.
The tool is mainly designed to minimize total and maximum cell
movement but it is flexible enough to optimize the effect on timing
or netlength, too. We compare our approach to legalization tools
from industry and academia by experiments on dense recent real-
world designs and public benchmarks. The results show that we
are much faster and produce significantly better results in terms
of average (linear and quadratic) and maximum movement than
any other tool.

I. INTRODUCTION

Placement legalization is a crucial step in the physical
design of VLSI chips. It is applied both as a last step of
placement algorithms and after local timing optimization steps
that destroy legality of a placement, e.g., by gate-sizing and
repeater insertion. In both applications, we can assume that all
non-standard cells have already been fixed, so only standard
cells that have to be aligned to rows remain movable. In
addition, we can assume that the movable cells are spread over
the chip area and can be legalized by local moves (though there
can still be regions with an area utilization of nearly 100 %).
The main goal is to find a legal placement as close to the given
placement as possible, so we want to minimize the movement
of the cells. Since legalization has to be run several times in a
timing-driven design process, it must be performed very fast.

A. Previous approaches

Many legalization algorithms apply a greedy search and
move cells one after the other to free locations or un-congested
areas, e.g. TETRIS [9], (also applied in NTUPLACE3 [3] and in
[14]), ABACUS [18], MONGREL [11], FASTPLACE [21], and
DRAGON [20]. The greedy approaches are fast and flexible and
work well on instances with low global placement density, but
on dense designs they can produce large movements.

Other algorithms apply a global optimization to get a
guideline in which directions cells have to be moved. Mainly
minimum-cost flow formulations ([2], [4], [7]) or, similarly,
force-directed approaches [17] are applied. The advantage of
these algorithms is that they have a global view on the whole
instance instead of considering only small parts, so they may

978-3-9810801-8-6/DATE12/ c©2012 EDAA

have a better chance to avoid local optima. On the other hand,
the solution of the global optimization does not lead directly to
a legal placement and the final result may differ significantly
from the initial global solution. For example, diffusion-based
legalization improves the spreading of the cells but does not
remove all overlaps, hence a final legalization is still necessary.

Flow-based algorithms first decide in which directions cells
have to be moved from over-full areas to areas with free
capacity. Afterwards, the flow has to be realized, i.e. cells must
be chosen to be moved along the flow edges. Since it is often
not possible to find cells of appropriate size, this will in general
not directly yield a feasible assignment of the cells to the
different areas. In the case that flow seeps away in small slots
between blocked areas, the solution of the flow problem may
even be completely misleading. Several heuristics are applied
to cope with this problem, in particular by iterating the method
with different parameters as long as there are over-full areas
([2], [7]). Another issue of flow-based algorithms is that one
has to predefine in advance the cost for moving cells from one
area to another. As long as we do not know which cells can
be chosen, these edge costs are hard to estimate.

B. Our contribution

In the first part of our algorithm, we partition the chip area
into small bins and assign the cells to the bins. In order to
get rid of over-full bins, we balance the assignment by an
algorithm that computes a flow between the bins. Different
to previous flow-based approaches, our algorithm does not
first compute a flow and then try to find cells of appropriate
size to realize the flow. Instead, we modify a well-known
minimum-cost flow algorithm (the SUCCESSIVE SHORTEST
PATH ALGORITHM) such that whenever it touches an edge,
we always take care of the set of cells that can be used to
realize the flow along this edge. In this way, we make sure
that only flow augmentations are chosen that can be realized
exactly, and they are realized before the next augmentation.

Due to the modification, we lose the property of finding an
optimum flow (with respect to some arbitrary predefined edge
cost function), and such a flow is not our goal, but we still
have a global view as we always consider the whole chip in
each augmentation.

The new approach has a number of advantages compared
to previous algorithms:
• Different to previous flow-based legalization methods,

there is no need for arbitrary decisions concerning edge

costs and capacities. Both edge costs and capacities
are computed on-line during the algorithm (and will be
modified several times).

• We allow to assign cells fractionally to neighbouring
bins of the same row, and hence we can work with
small regions without using complicated data structures
as proposed in [2].

• As we only apply augmentation steps that can be realized
exactly, there are no rounding effects that could force the
actual cell movement to deviate drastically from the flow
solution.

• Whenever we decide to ship cells from one area to
another, we always know which cells can be used for
that shipment. Hence, our algorithm is very flexible in
terms of the objective function provided that the effect of
a single cell movement to the function can be estimated
efficiently. E.g., we can optimize (quadratic, linear or
maximum) movement, (weighted) netlength, or length of
a timing-critical path.

• Moreover, we can handle several additional constraints.
For example, we can set upper bounds on single
netlengths or the movement of single cells.

• In practice, the approach finds efficiently legalizations
with very small maximum and average linear and squared
movement as the experimental results will show.

Our legalization algorithm is part of the placement tool
BONNPLACE where it replaced an older flow-based approach
(see [2] for an description of the old legalization and [19] for
an description of the corresponding global placement tool).

The remainder of the paper is organized as follows: In
Section II, we give a short overview of the legalization
problem and its optimization goals. In Section III, we sum-
marize known results on the minimum-cost flow problem.
Section IV is the core part of the paper and contains the
detailed description of our new approach. In Section V, we
present experimental results, and Section VI contains conclud-
ing remarks.

II. OBJECTIVE FUNCTIONS AND CONSTRAINTS

We may assume that the given illegal placement is opti-
mized (in particular in terms of timing and routability), so we
want find a legal placement as close to the input placement as
possible. Therefore, our goal is to minimize cell movement.
One may consider the total linear movement of all cells (or
equivalently the average linear movement), but this does not
reflect the fact that a small number of large movements may
be much worse, e.g., for the timing results, than moving many
cells only a little bit. Hence, the maximum movement and the
total squared movement (in which we sum up for all cells the
square of the distance between its given position and its output
position) may be more relevant objective functions.

Instead of just staying close to the input placement, one can
also try to optimize the overall placement objective functions
directly. There is no reason why cell movements that improve
the worst timing-slack or at least reduce netlength should be
rejected. Our approach is able to take care of such objective

functions, however, it should be noted that our method is not
designed for improving a legal placement as a postoptimization
but for finding a legal placement.

Constraints that have to be reflected in legalization are upper
bounds on the lengths of specific nets (in particular IO-nets)
and predefined areas in which certain cells must be placed
(so-called movebounds, see [19]). Our algorithm can avoid
violating these constraints as we can simply forbid to move
specified cells out of a given area.

III. MINIMUM-COST FLOW PROBLEMS

Minimum-cost flows are often used as guidelines in standard
cell legalization algorithms, and also our algorithm is moti-
vated by a minimum-cost flow algorithm. For an introduction
to the minimum-cost flow problem and standard algorithms we
refer to textbooks, e.g. [1]. One of the simplest minimum-cost
flow algorithms is the SUCCESSIVE SHORTEST PATH ALGO-
RITHM. It starts with a zero flow and then searches for shortest
paths in the residual graph from a supply node v to a demand
node w by Dijkstra’s algorithm ([6]). Once such a v–w–path
P is found, the flow is augmented along P and the supply
value of v and the demand value of w are decreased. This is
iterated until there are no supply nodes any more. It is well-
known that this algorithm finds a minimum-cost flow. There
are more efficient minimum-cost flow algorithms, in particular
Orlin’s algorithm [15], but since the SUCCESSIVE SHORTEST
PATH ALGORITHM works by successive augmentation, it is
appropriate for our application because we can modify it in
such a way that only augmentations are made that can be
realized exactly by cell movements.

IV. OUR APPROACH

A. Notation

Let a zone be a maximal part of a cell row that is either
completely blocked or completely free. Our algorithm first
subdivides each zone into bins. The core part of our algorithm
consists of finding an assignment of the cells to the bins such
that no bin contains more cells than fit into it. In our approach,
cells are allowed to be fractionally assigned to free bins of
the same zone. Hence, the objects that we move are fractional
cells γ = (cγ , ργ) which consist of a cell cγ and a number
ργ ∈ [0, 1].

For a cell, a zone or a bin x, let width(x) denote its
width. Given a (preliminary) assignment of the fractional cells
to the bins and a bin v, let Γ(v) be the set of fractional
cells that are assigned to it. For a set Γ of fractional cells
let widthρ(Γ) denote the total width of the fractions, so
widthρ(Γ) =

∑
γ∈Γ width(cγ)ργ . Let width(Γ) denote the

total width of the cells, so width(Γ) :=
∑
γ∈Γ width(cγ).

B. Preprocessing

We start by partitioning all rows by a set of equidistant
vertical cutlines (we assume w.l.o.g. that cell rows are hori-
zontal). This yields also a partitioning of the zones into bins.
Afterwards we unify neighbouring bins in the same zone if
their total width is smaller than twice the distance between

two vertical cutlines. So, if there are no blockages, our bins
induce a regular grid while, in general, the widths of the bins
will vary. Now each cell is assigned completely to the bin
that contains its global placement location. We call a bin that
contains more cells than fit into it a supply bin and a bin with
remaining free capacity a demand bin.

In order to reduce the total supply, we then run a greedy
fractional reassignment in which parts of cells from a supply
bin can be assigned to a neighbouring demand bin v in the
same zone if their global placement location was close enough
to v. This leads to a first fractional assignment but there will
still be supply bins, and now our goal is to remove the supply.
To this end, we connect neighbouring bins (in the same row
or in neighbouring rows) by pairs of reverse edges and will
ship cells along these edges.

C. Augmentation algorithm

Similar to the SUCCESSIVE SHORTEST PATH ALGORITHM
we iteratively compute shortest paths from supply bins to
demand bins by Dijkstra’s algorithm [6]. Dijkstra’s algorithm
can be summarized as follows: Given a digraph G with edge
weights c : E(G)→ R≥0 and two nodes s, t ∈ V (G), it first
initializes a set U by U := V (G), and labels s with l(s) := 0
and all other nodes v with l(v) := ∞. Then, the algorithm
iteratively chooses an element v ∈ U with minimum label
l(v), removes v from U and sets l(w) := min{l(w), l(v) +
c((v, w))} for all nodes w ∈ U with (v, w) ∈ E(G). This is
iterated until t is removed from the set U .

At the end, for each node v ∈ V (G) \ U , the number l(v)
is the length of a shortest s-v-path (and, of course, one can
easily keep track of the paths themselves).

In our variant of Dijkstra’s algorithm we make use of the
fact that we don’t have to know the cost c((v, w)) of an edge
(v, w) before v has been removed from U . Hence, c((v, w))
is only of interest when we have already found a shortest s–
v–path. This enables us to make the cost of an edge (v, w)
dependent on the set of cells that can be shipped from v to w.
Therefore, we store on each edge e = (v, w) that is used to
reduce l(w) to the smaller value l(v)+c((v, w)) a set C(v, w)
of candidate cells.

Algorithm 1 summarizes a single augmentation starting at
a supply node s. The algorithm stores for each bin v a set
A(v) of fractional cells that can be used to be shipped to
neighbouring bins. These have either been assigned to v before
or are the candidates to be shipped into v. At the beginning,
only A(s) is defined. The number b(v) denotes the supply (if
b(v) > 0) or demand value (if b(v) < 0) of bin v. As we want
to reduce only the supply of node s, we initialize all other b-
values by at most 0 (line 2), so we see free capacities but we
ignore supply values of bins different to s. However, if we send
flow to a bin v, we increase its b-value accordingly (line 7),
and if the b-value remains negative we can stop the path
computation (line 10) because we have found an appropriate
sink t. The mapping P which is set in line 20 is used to store
the edges of the path along which the cells are shipped in
lines 24 to 28.

Algorithm 1 Augmentation path algorithm
Input: A graph G whose nodes are the bins and whose edge

set connects neighbouring bins. An assignment of the
cells to the bins. A supply node s.

Output: A reassignment of the cells to the bins such that s
is no supply node any more.

1: Set A(s) := Γ(s) and b(s) := widthρ(Γ(s))− width(s).
2: Set b(v) := min{0,widthρ(Γ(v)) − width(v)} for v ∈
V (G) \ s.

3: Set U = V (G).
4: while U 6= ∅ do
5: Let v by an element of U with minimum l(v).
6: if v 6= s then
7: b(v) := b(v) + widthρ(C(P (v), v)).
8: A(v) := Γ(v) ∪ C(P (v), v).
9: end if

10: if b(v) ≤ 0 then
11: Set t := v.
12: BREAK.
13: end if
14: Set U := U \ {v}.
15: for w ∈ V (G) with (v, w) ∈ E(G) do
16: Based on A(v) choose a set C(v, w) of fractional

cells of size at least b(v) with smallest movement
cost to w.

17: Let c(v, w) be the cost for moving the set C(v, w)
from v to w.

18: if l(w) < l(v) + c(v, w) then
19: l(w) := l(v) + c(v, w).
20: P (w) := v.
21: end if
22: end for
23: end while
24: Let v1, . . . , vk be a sequence of bins with v1 = s, vk = t

and P (vi) = vi−1 for i = 2, . . . , k.
25: for i = 1, . . . , k − 1 do
26: Move cells C(vi, vi+1) from vi to vi+1.
27: end for

In line 1, we initialize b(s) by the total size of cells that
have to be removed from s. Cells of this size will be shipped
along a single path during the following augmentation. If b(s)
is large, it might be better to ship the supply of s in more
than one iteration in order to distribute it to several demand
bins. For this purpose, one can start with a number b(s) that is
smaller than widthρ(Γ(s))−width(s). However, if the global
placement tool did a good job, this will not be necessary, and
in particular we made all experiments presented later without
splitting the supply value of s.

A step that has to be described in detail is the choice of
the set C(v, w) of fractional cells to be shipped from v to
w in line 16. If v and w are in the same zone, these are in
fact fractional cells, so we can insert elements γ into C(v, w)
with ργ < 1. Therefore, we may simply choose the cheapest
elements from A(v) (e.g. the leftmost cells if w is to the left of
v) and reduce their ρ-value, if necessary. In particular, we can

always find sets of cells whose fractional size widthρ(C(v, w))
is exactly b(v).

On the other hand, if v and w belong to different zones,
we can only ship cells completely because no cell can be
distributed to bins of different zones. Hence, in that case
C(v, w) consists only of elements γ with ργ = 1, so
widthρ(C(v, w)) = width(C(v, w)). Of course, C(v, w) can
only contain elements γ for which there is a γ′ ∈ A(v) with
cγ = cγ′ , but ργ′ < ργ is possible if cγ′ has not been assigned
completely to v. Then, shipping γ from v to w means to
remove it from all bins (which must be in the same zone as
v) and assign it completely to w. Note that in these cases we
may have to choose cells such that widthρ(C(v, w)) > b(v).
We compute the sets C(v, w) by enumerating subsets of cells
in A(v).

The choice of the sets C(v, w) is also the place where one
may introduce other objective functions or constraints to cell
positions. We know the recent positions for all other cells when
we choose the sets C(v, w), so we can, e.g., simply forbid
to choose cells such that their movement would increase the
length of a specific net over a critical value, or we can at least
increase the cost for such choices.

D. Further steps

When we have found a fractional assignment of the cells to
the bins, we have found as well an assignment to the zones.
Hence, we can legalize all cells within their zones. For this
purpose, we sort the cells in each zone according to their
global placement locations and then apply the well-known
clumping algorithm (see [8] and [13]) that finds a legalization
with minimum total movement (with fixed ordering). Here,
we minimize quadratic movement which enables us to run the
clumping algorithm even in linear time. As a very final step,
we allow cells to move to neighbouring bins in neighbouring
rows if this decreases total quadratic movement. This step is
performed in a greedy way by simply looking for some free
space in the neighbouring bins.

E. Overall algorithm

Algorithm 2 gives an overview of the overall procedure. In
the main loop (lines 5 to 9) we consider all supply bins in
non-ascending order of their supply value since it seems to be
reasonable first to get rid of the most congested bins.

V. EXPERIMENTAL RESULTS

We compared our legalization algorithm both to industrial
and to academic tools. All experiments were performed on an
Intel Xeon machine with 3.33 GHz with a Linux operating
system.

In a first set of experiments, we ran tests on industrial
designs from IBM microelectronics. Table I shows the chips
that we used for these experiments. For each instance, we
report the number of movable standard cells, the number of
preplaced cells, which are fixed at their location, and the area
utilization of the movable cell, i.e. the size of the movable
cells divided by the total free area.

Algorithm 2 Standard Cell Legalization

1: Subdivide chip area into bins.
2: Compute a fractional assignment of the cells to the bins.
3: Connect neighbouring bins by edges in a graph G
4: Insert all supply bins into a heap H (with the supply value

as key).
5: while H is not empty do
6: Let s be an element of H with largest key.
7: Call AUGMENTATION PATH ALGORITHM on G and s.
8: Update keys in H
9: end while

10: for free zone z do
11: Legalize placement of cells assigned to z by the clump-

ing algorithm.
12: end for
13: Allow cells to move to neighbouring bins.

TABLE I
TESTBED 1: INDUSTRIAL ASICS

Movable # Fixed SpaceChip
Cells Cells Utilization

Chip1 323 311 80 267 56 %
Chip2 445 828 19 828 53 %
Chip3 565 620 54 208 51 %
Chip4 1 052 709 85 54 %
Chip5 3 942 782 41 533 49 %
Chip6 5 707 459 41 027 52 %
Chip7 5 780 500 83 699 53 %

On these chips, we compared us to two other approaches:
the old legalization algorithm in BONNPLACE (see [2]) that
is based on a minimum-cost flow formulation and contains a
special postoptimization heuristic to reduce the largest move-
ments, and the diffusion-based approach proposed in [17].
Both tools are used in industry.

For each chip, we produced two global placements with a
maximum area utilization of 70 % and 95 %, respectively. The
placements have been computed by the global placement part
of BONNPLACE (see [19]) which observes density constraints
very accurately.

The Tables II and III summarize our results.
In Table II we report the average quadratic (computed by the

square of the Euclidean distances) movement and the running
times. All running times reported in this paper are either in the
format “mm:ss” or “h:mm:ss”. Table III shows the maximum
and average linear movement. In order to get technology-
independent numbers, all movements are divided by the height
of a cell row (or the square of the height of a cell row, for the
squared movement).

The last two lines of the tables contain the average results
for the other tools relative to our results (compared by the
geometric mean of the ratios on the single instances), and the
total running time.

On the sparse placements, the results for our tool are,
in terms of average movement, only slightly better than the
results of the diffusion-based tool, and both perform better
than the flow-based method. However, for the maximal move-

TABLE II
ASIC TESTBED: QUADRATIC MOVEMENT AND RUNNING TIME

Ours Flow-based [2] Diffusion-Based [17]
Chip Density Average Average Average

Quadratic
Time

Quadratic
Time

Quadratic
Time

70 2.25 0:19 3.02 0:29 2.21 1:21Chip1
95 4.79 0:38 5.41 1:26 6.57 1:26
70 2.74 0:21 3.98 0:50 2.63 1:35Chip2
95 5.64 1:03 6.87 2:06 6.48 2:07
70 1.24 0:05 1.26 0:08 1.37 0:51Chip3
95 2.20 0:07 2.29 0:14 2.81 0:59
70 1.71 0:35 2.46 0:57 1.77 4:15Chip4
95 2.90 0:43 3.74 1:16 195.06 14:45
70 2.87 2:49 3.79 4:08 2.98 19:54Chip5
95 5.31 4:01 6.51 9:41 4.39 18:05
70 1.97 3:55 2.07 4:54 2.04 30:00Chip6
95 3.92 4:54 4.14 5:35 5.45 34:51
70 1.99 4:28 2.07 5:20 2.24 36:46Chip7
95 4.10 3:52 4.34 5:27 5.90 45:12
70 1.00 12:32 1.22 16:46 1.04 1:34:42Overall
95 1.00 15:18 1.14 25:45 2.17 1:57:25

TABLE III
ASIC TESTBED: LINEAR MOVEMENT

Ours Flow-based [2] Diffusion-Based [17]Chip Density
Max Avg Max Avg Max Avg

70 102.13 1.52 112.24 1.72 102.13 1.52Chip1
95 32.78 2.20 103.27 2.31 153.53 2.53
70 35.91 1.69 56.08 1.96 80.76 1.65Chip2
95 33.70 2.40 162.33 2.58 40.04 2.67
70 11.25 1.17 9.64 1.19 7.75 1.24Chip3
95 8.40 1.58 18.16 1.61 13.79 1.83
70 9.50 1.35 10.54 1.54 8.77 1.36Chip4
95 10.47 1.77 11.72 1.94 242.10 5.62
70 42.68 1.66 64.01 1.86 60.48 1.66Chip5
95 120.50 2.16 125.75 2.37 122.42 1.92
70 30.36 1.45 32.36 1.49 27.49 1.49Chip6
95 31.71 2.02 41.27 2.06 37.40 2.50
70 63.38 1.46 55.64 1.48 93.42 1.53Chip7
95 63.63 2.04 79.51 2.08 127.52 2.41
70 1.00 1.00 1.12 1.09 1.15 1.02Overall
95 1.00 1.00 1.80 1.05 2.43 1.30

ments, there is, even on the sparse instances, a larger quality
gap between the result of our algorithm and the two other
legalizers.

On average over the dense instances, the maximum dis-
placement for the flow-based approach in [2] is by 80 % and
for the diffusion-based approach [17] by 143 % larger than in
our results. Even if we skip the dense version of Chip4, for
which the diffusion-based approach produces extraordinarily
bad results, the movement of the diffusion-based algorithm is
larger by 22 % (average quadratic), 67 % (maximum linear),
and 12 % (average linear), respectively. Moreover, the total
running time of the flow-based legalizer is more than 30 %
larger than the running of our algorithm, and the diffusion-
based legalizer is by a factor of more than 7.5 slower than our
legalizer.

In a second set of experiments, we compared our algorithm
to academic legalization tools that are publicly available,
namely the algorithm proposed by Ho and Liu in [10],
NTUPLACE3 [3], FASTPLACE 3.0 [21], and XDP [5]. Un-
fortunately, we did not have access to the legalization tools

TETRIS [9] and ABACUS [18], but the experiments published
in [10] clearly show that they produced bigger movements
than the new approach by Ho and Liu to which we compare
ourselves. We also tried to compare to the history-based
algorithm described in [4] but it did not run correctly as it
ended with small overlaps (that could easily be removed),
extremely large movements and running times of up to several
hours on single instances.

For the comparison to the academic tools, we used the
benchmarks chips from the ISPD 2006 placement contest [12]
Table IV summarize the most important properties of these
benchmarks. The maximal allowed area utilization in global
placement was 90 %, and the global placement was computed
again by the global placement algorithm in BONNPLACE.

TABLE IV
TESTBED 2: ISPD 2006 CHIPS

Movable # Fixed SpaceChip
Cells Cells Utilization

Newblue1 330 474 401 66 %
Newblue2 441 516 5 000 61 %
Newblue3 494 011 11 178 26 %
Newblue4 646 139 3 422 46 %
Newblue5 1 233 058 4 881 49 %
Newblue6 1 255 039 6 889 39 %
Newblue7 2 507 954 26 582 49 %

Tables V and VI summarize the results of the experiments
on the ISPD benchmarks. As in the Tables II and III, we
report average quadratic movement, running time, maximum
displacement and average linear displacement. In the last row,
we again show the average results (relative to our results) and
the total running time, respectively.

For NTUPLACE and FASTPLACE we started two runs:
in the first one, we disabled the detailed placement and
stopped when the placement has been legalized (columns
“Leg only”). In the second run, we enabled the detailed
placement algorithms as postoptimization routine. Since these
detailed placement parts of NTUPLACE and FASTPLACE try
to optimize netlength while our goal is to minimize movement,
we connected each cell by an artificial net to its location after
global placement. All other nets were ignored. The results of
these runs are contained in the columns “Leg + Detailed”.

In XDP, legalization and netlength minimization are incor-
porated, hence we only have one run (with the artificial nets
pulling cells to their initial locations).

For the legalization algorithm of Ho and Liu [10] that may
consider netlength and movement simultaneously, we ignored
all nets and only minimized movement.

On Newblue1, FASTPLACE ran into a segmentation fault
both without and with detailed placement.

The results of the experiments on the ISPD 2006 bench-
marks can be summarized as follows:
• Our algorithm is the fastest one and produces both in

terms of linear, quadratic and maximum movement the
best results.

• For average linear movement, the approach presented by

TABLE V
ISPD 2006 TESTBED: QUADRATIC MOVEMENT AND RUNNING TIME

Ours Ho and Liu [10] NTUPLACE [3] FASTPLACE [21] XDP [5]
Leg only Leg only Leg + Detailed Leg only Leg + Detailed Leg + DetailedChip

Average Average Average Average Average Average Average
Quadratic

Time
Quadratic

Time
Quadratic

Time
Quadratic

Time
Quadratic

Time
Quadratic

Time
Quadratic

Time

Newblue1 2.47 0:09 6.18 1:34 114.78 0:34 13.59 2:58 crashed crashed 42.34 6:48
Newblue2 20.78 0:35 53.13 5:01 64.33 0:33 38.45 3:32 190.84 0:54 59.66 1:26 134.85 12:34
Newblue3 6.44 0:28 5.74 3:49 33.90 0:27 11.71 5:20 25.66 0:14 17.54 0:31 22.71 19:25
Newblue4 4.12 0:24 5.57 7:06 36.09 0:40 14.29 6:35 40.24 0:23 9.95 1:04 22.48 13:07
Newblue5 2.04 0:45 3.54 14:41 17.24 1:33 18.25 16:55 56.18 0:59 39.36 1:39 18.25 26:01
Newblue6 2.79 0:45 3.03 15:07 14.55 1:07 14.12 16:53 15.59 0:43 4.07 1:05 14.12 29:20
Newblue7 3.01 1:40 3.96 44:38 46.37 6:23 45.99 1:04:44 16.56 2:19 5.97 3:08 45.99 1:02:22

Overall 1.00 4:46 1.52 1:31:56 8.92 11:17 4.61 1:56:57 6.06 5:32 2.70 8:53 7.61 2:49:37

TABLE VI
ISPD 2006 TESTBED: LINEAR MOVEMENT

Ours Ho and Liu [10] NTUPLACE [3] FASTPLACE [21] XDP [5]
Chip Leg only Leg only Leg + Detailed Leg only Leg + Detailed Leg + Detailed

Max Average Max Average Max Average Max Average Max Average Max Average Max Average
Newblue1 75.3 1.30 83.8 1.46 1176.8 8.52 121.4 1.92 crashed crashed 267.0 1.96
Newblue2 66.8 3.77 429.8 3.99 2198.1 7.16 1716.5 4.24 683.3 8.67 553.3 4.04 285.6 5.76
Newblue3 21.3 2.11 58.8 1.95 246.9 3.68 162.8 2.38 233.8 3.87 155.1 2.62 221.7 2.64
Newblue4 72.5 1.70 90.0 1.72 88.6 5.28 99.6 2.12 760.3 3.69 255.0 1.71 100.2 2.35
Newblue5 44.6 1.30 154.8 1.34 154.1 2.50 154.5 1.81 788.2 2.76 752.0 1.41 154.5 1.81
Newblue6 46.6 1.49 64.3 1.49 74.4 2.71 70.8 1.90 500.9 3.00 536.3 1.51 70.8 1.90
Newblue7 233.6 1.28 207.8 1.32 291.0 2.52 293.9 1.84 564.8 2.68 422.1 1.32 293.9 1.84

Overall 1.00 1.00 1.94 1.02 2.43 2.40 3.12 1.29 9.03 2.08 6.49 1.07 2.83 1.39

Ho and Liu and FASTPLACE (with detailed placement)
yield comparable results; on average over the seven
chips their movement is 2 % or 7 % larger than ours,
respectively.

• For quadratic and maximum movement the algorithm in
[10] is second-best with a deviation of 52 % and 94 %
respectively. All other tools produce even much larger
quadratic and maximum movements.

• Compared to the second-best tool [10], our algorithm is
faster by more than a factor of 19. The legalization part
of FASTPLACE is almost as fast as our tool but even
its average linear movement is more than twice of our
movement.

• The versions of FASTPLACE and NTUPLACE with de-
tailed placement produce better results than the pure
legalization, even in terms of quadratic movement.

VI. CONCLUSIONS

We proposed a placement legalization algorithm that com-
bines the global view of flow-based algorithms with the
efficiency and flexibility of local search algorithms. Based
on iterative augmentations, it produces in particular on dense
instances legal placements with a very small perturbation and
is significantly faster than previous approaches.

REFERENCES

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin: Network Flows: Theory,
Algorithms, and Applications. Prentice Hall (1993).

[2] U. Brenner and J. Vygen: Legalizing a placement with mimimum total
movement. TCAD (2004), 23, 12, 1597–1613.

[3] T.-C. Chen, Z.-W- Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang:
NTUplace3: An analytical placer for large-scale mixed-size designs with
preplaced blocks and density constraints. TCAD (2008), 27, 7, 1228–
1240.

[4] M. Cho, H. Ren, H. Xiang, and R. Puri: History-based VLSI legalization
using network flow. DAC (2010), 286–291.

[5] J. Cong and M. Xie: A robust mixed-size legalization and detailed
placement algorithm. TCAD (2008), 27, 8, 1349–1362.

[6] E.W. Dijkstra: A note on two problems in connexion with graphs.
Numerische Mathematik (1959), 1, 269–271.

[7] K. Doll, F.M. Johannes, and K.J. Antreich: Iterative placement improve-
ment by network flow methods. TCAD (1994), 13, 10, 1189–1200.

[8] M.R. Garey, R.E. Tarjan, and G.T. Wilfong: One-processor scheduling
with symmetric earliness and tardiness penalties. Mathematics of Oper-
ations Researchs, 13,2 (1988), 330–348.

[9] D. Hill: Method and system for high speed detailed placement of cells
within an integrated circuit design. U.S. Patent, 6370673 (2002).

[10] T.-Y. Ho and S.-H. Liu: Fast legalization for standard cell placement
with simultaneous wirelength and displacement minimization. VLSI-
SoC (2010), 369–374.

[11] S.-W. Hur and J. Lillis: Mongrel: Hybrid techniques for standard cell
placement. ICCAD (2000), 165–170.

[12] ISPD 2006 placement contest.
http://www.sigda.org/ispd2006/contest.html

[13] A. Kahng, P. Tucker, and A. Zelikovsky: Optimization of linear place-
ments for wirelength minimization with free sites. ASPDAC (1999),
241–244.

[14] A. Khatkhate, C. Li, A.R. Agnihotri, M. Yildiz, S. Ono, C.-K. Koh,
P.H. Madden: Recursive bisection based mixed block placement. ISPD
(2004), 84–89.

[15] J.B. Orlin: A faster strongly polynomial minimum cost flow algorithm.
Operations Research (1993), 41, 338–350.

[16] M. Pan, N. Viswanathan, and C. Chu: An efficient and effective detailed
placement algorithm. ICCAD (2005), 48–55.

[17] H. Ren, D.Z. Pan, C.J. Alpert, and P. Villarubia: Diffusion-based
placement mitigation. DAC (2005), 515–520.

[18] P. Spindler, U. Schlichtmann, and F.M. Johannes: Abacus: Fast legal-
ization of standard cell circuits with minimal movement. ISPD (2008),
47–53.

[19] M. Struzyna: Flow-based partitioning and position constraints in VLSI
placement. DATE (2011), 607–612.

[20] T. Taghavi, X. Yang, B.-K. Choi, M. Wang, and M- Sarrafzadeh:
Dragon2006: blockage-aware congestion-controlling mixed-size placer.
ISPD (2006), 209–211.

[21] N. Viswanathan, M. Pan, and C. Chu: Fastplace 3.0: a fast multi-
level quadratic placement algorithm with placement congestion control.
ASPDAC (2007), 36–41.

