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Abstract—The case for developing and using virtual platforms 

(VPs) has now been made.  If developers of complex HW/SW 

systems are not using VPs for their current design, complexity of 

next generation designs demands for their adoption.  In addition, 

the users of these complex systems are asking either for virtual or 

real platforms in order to develop and validate the software that 

runs on them, in context with the hardware that is used to deliver 

some of the functionality. Debugging the erroneous interactions 

of events and state in a modern platform when things go wrong is 

hard enough on a VP; on a real platform (such as an emulator or 

FPGA-based prototype) it can become impossible unless a new 

level of sophistication is offered. The priority now is to ensure 

that the capabilities of these platforms meet the requirements of 

every application domain for electronics and software-based 

product design.   And to ensure that all the use cases are satisfied. 

A key requirement is to keep pace with Moore´s Law and the 

ever increasing embedded SW complexity by providing novel 

simulation technologies in every product release. This paper 

summarizes a special session focused on the latest applications 

and latest use cases for VPs. It gives an overview of where this 

technology is going and the impact on complex system design and 

verification. 

I. MORE REAL VALUE FOR VIRTUAL PLATFORMS 

VPs are popular vehicles for various design tasks, such as 
early embedded SW development and HW platform 
architecture optimization. However, creating a VP from scratch 
for a new HW platform still means a huge investment of time, 
money, and manpower. Complex technologies have to be 
mastered, many platform components have to be modeled from 
scratch, and professional VP tools have a price tag, too. 
Enabling new applications and extending a typical VP´s 
lifetime would imply a higher return of investment. In turn, this 
requires R&D on various new technologies. We sketch three 
different routes here that, in our view, promise new 
opportunities for advanced VP use cases. 

1. System-level power estimation 

The design of new HW platforms, in particular in the 
telecom domain, is frequently driven by tight power 
consumption constraints. While VPs are already partially in use 
for post-silicon power optimizations, true electronic system 

level (ESL) power estimation is getting more and more 
attention [1]. However, it is also known that power estimation 
without at least some gate-level and layout information is 
highly speculative at best. We therefore envision technologies 
as illustrated in Fig. 1, where abstract power models are first 
created and calibrated based on low level circuit information 
and afterwards are used stand-alone for accurate, yet very fast, 
power evaluation of different design points.  

 

Fig. 1: High-level power model design methodology 

This requires enhancements of current abstract processor 
simulators (e.g. [2]) as well as careful characterization of the 
key circuit parameters that determine the power estimation at 
higher levels. 

2. Multicore SW verification 

With the increasing number of processor cores inside SoC 
platforms, SW verification and debugging become pressing 
issues. We need to manage detection of new types of bugs in 
parallel SW applications as well as the complexity of 
debugging on dozens of cores simultaneously. VPs provide a 
great debug infrastructure due to maximum observability and 
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controllability. They should be extended towards 
systematically catching concurrent SW bugs. For instance, this 
can happen by means of an assertion mechanism that monitors 
SW event traces (e.g. shared memory accesses) and reports 
hazardous inter-process communication behavior. 

3. Need for (simulation) speed 

Simulation speed might well evolve as the key limiting 
factor for VP use. Multi/Manycore system complexity is still 
skyrocketing, and (quoting Lisa Su´s DAC 2011 keynote) 
transistor counts are increasing faster than simulation tool 
speed. In the long term, this will prohibit some of the 
traditional VP use cases. Unfortunately, unlike in previous 
times, there is no universal turbocharger for ESL simulation in 
sight. We may thus expect that the need of keeping pace with 
Moore´s Law will lead to VPs that adopt a blend of different 
approaches currently under investigation in research [3]: 
abstract/hybrid processor and NoC simulation, sampling based 
simulation, parallel and/or distributed simulation, just to name 
a few.  

II. CONFIGURABLE PROCESSOR-CENTRIC VIRTUAL 

PLATFORMS – NEW DOMAINS AND NEW USES 

VPs and processor-centric design have gone together for 
many years.    Configurable processors emphasize the need for 
virtual prototyping in both early design space exploration, 
where applications are partitioned and individual 
heterogeneous processors are configured with structural 
parameters and application-oriented instruction extensions, and 
in verification of back-end software development.   Starting 
with proprietary C/C++ system modeling approaches, support 
for virtual prototyping has migrated to the use of SystemC as 
the modeling integration infrastructure, linking to C++ based 
instruction set simulation technology in both cycle-accurate 
and just-in-time host-compiled-code fast functional simulation 
forms.  This base SystemC infrastructure has been integrated 
into a variety of commercial ESL virtual prototyping tools, 
which promotes interoperability with models of other IP and 
advanced analysis capabilities. 

The applications for such virtual prototyping have grown in 
lock-step with the application of configurable, extensible 
processor technology.  The domains of audio, video, and 
network processing were relatively early uses.  More recently, 
wireless applications for both base stations and user equipment 
have pushed the envelope on heterogeneous multi-core 
simulations.   Just the baseband subsystem for LTE can require 
a few to more than a dozen processors, ranging from highly 
application-specific engines to complex DSPs. 

It is not possible to sit still with VPs.  The growth in the 
number of cores in systems and the growth in the amount of 
software running on these cores demand frequent refreshes of 
technology.    What was effective in fast-functional compiled-
code simulation technology when first introduced – for 
example, running at 50 MIPS for simulating complex 
instruction extensions – becomes too slow when divided 
among ten processors rather than used for one.  In addition, 
specific use-cases – such as mixes of peripherals with memory-
mapped registers, some of which have side effects on writing 
(which is infrequent) and some of which are polled frequently, 

may require finer granularity in direct memory access methods 
to achieve good performance.   The heuristics used to control 
interpretation vs. compilation of hot code regions, the use of 
different compilers with different speed of compilation vs. 
speed of compiled code tradeoffs, and the use of multiple tasks 
and processors for compilation, all need upgrading as demand 
for performance increases, along with many other 
improvements for speed. 

The need for more speed when using commercial ESL tools 
requires refreshes of integration and the capabilities supported 
in such integration.  This can be an extensive many-month 
exercise, but given the importance of commercial virtual 
prototyping tools to many users, is again triggered by the 
increase in performance required for their platforms and use 
cases.   This also triggers demand to support OSCI TLM-2.0 
standards even when existing integrations support an 
equivalent set of transaction level modeling capabilities.   The 
attractions of a standard for interoperability such as TLM-2.0, 
even though late in arriving, mean that more models will be 
built to this standard over time, increasing the desirability of 
supporting the TLM-2.0 ecosystem.    

One extremely interesting use case for virtual prototyping 
technology with configurable processors could be called 
―virtual prototyping without SystemC Tears, virtual 
prototyping without commercial ESL $$$‖.   This is a way of 
using configurable processor SystemC modeling technology to 
build subsystem VPs, with one processor or many, and drawing 
on a library of components such as memories, routers, arbiters, 
DMAs, and memory mapped peripherals.   The technology has 
several intriguing characteristics: 

 It does not require the modeler to know anything 
about SystemC or C++. 

 It is interpreted, creating a SystemC subsystem model 
on the fly. 

 It uses a very simple script-like notation to specify the 
subsystem. 

 It uses inference to interconnect components. 

 It can model a variety of interconnect structures. 

 It can be easily integrated into an Eclipse based IDE 
to allow rapid subsystem model creation and software 
mapping to the heterogeneous set of processors. 

 It can output a full static SystemC model of the 
subsystem, that can be developed further to 
incorporate IP from other sources and more complex 
interconnect models. 

This technology has some constraints – it is limited to IP 
from one configurable processor vendor, and adding a new 
component to the interpreter requires a tedious set of 31 distinct 
steps.   However, it is being evolved to add standard APIs that 
will greatly reduce the effort of adding new components to the 
library, thus extending its range of application further.   

A final area of continued exploration and development is the 
evolution of ISS technology to allow simulations to run on 
multiple cores – ―use multicore to design multicore‖ [4]. 



III. ARCHITECTURE-LEVEL HARDWARE/SOFTWARE DESIGN 

SPACE EXPLORATION FOR MULTICORES 

Extensive design space exploration requires scalable and 

accurate simulation methods and tools in order to keep up with 

the growing complexity of multiprocessor VPs. Conventional 

performance estimation methods, e.g. employing instruction set 

simulators (ISS), cannot satisfy the increasing requirements on 

the performance of ESL simulations. In order to speed up the 

exploration at the architecture and system level, it is essential to 

define a sufficient amount of simulation events and raise the 

abstraction level of the models. At the same time, higher levels 

of abstraction introduce new challenges in the accurate 

modeling of the components’ timing behavior since micro-

architectural details, such as instruction pipelining or out-of-

order execution, are partially (or completely) abstracted. 

Addressing the trade-off between performance and accuracy, 

trace-driven simulations accelerate the design space exploration 

by eliminating unnecessary details in the models [5, 6]. The 

idea behind this method is to capture and abstract the behavior 

of processing elements in the form of application traces. The 

collected trace data describe interactions between processing 

elements and are used to predict the system’s behavior in 

different environments in a shorter time. The traces can be 

defined at different levels of detail depending on the points of 

interests in design space exploration. At the architecture level, 

the application traces capture the interaction between VP 

components while abstracting the internal events of the 

processing elements. The challenge is in generating a 

representative set of meaningful traces that cover realistic 

scenarios for the exploration. The proposed workflow of our 

approach consists of two steps shown in Fig. 2. In the first step, 

the application traces are obtained during a pre-evaluation 

phase by executing the target code on a reference cycle-

accurate simulator which incorporates all necessary micro-

architectural details. The simulator generates a trace consisting 

of bus accesses observed during the execution of the code and 

the time intervals between them. 

 

 
Fig. 2: Generation and simulation of abstracted traces for 

architecture-level design space exploration 

 

Generated once, the application traces can be reused 

multiple times during the design space exploration. The traces 

are simulated at the architecture level in a trace-driven VP 

which contains abstracted models of the processing elements. 

These models reproduce the application workload captured in 

the traces and stimulate the models of shared resources and 

interconnect. Due to the abstraction of internal processing, 

trace-driven simulation performs faster compared to full cycle-

accurate model, achieving reported speedup factors of up to 

174x [7]. The simulation performance is limited by the speed of 

system-level models of shared components (e.g. caches or on-

chip interconnect) as well as by the performance of the 

simulation engine employed for the management of simulation 

events. In addition, the performance of trace-driven simulations 

is constrained by the IO-bandwidth of the hard disk which is 

used for storing and fetching the traces.  

Along with the target applications, the traces can abstract the 

workload of the target operating system. By means of a high-

level scheduler, the designer can perform more comprehensive 

design space exploration. The scheduler manages the execution 

of traces on the underlying core models, allowing for 

evaluation of various application mappings and scheduling 

policies at a higher level of abstraction [5].  

The abstraction of functionality in the trace-based 

simulations requires a separate trace to be generated for each 

input applied to the target application. One way to tackle this 

problem is to reduce the granularity of traces. The trace can be 

sliced into smaller parts or atomic traces, according to the 

control flow graph of the target code (Fig. 3). 

 

 
Fig. 3: Fine-granular atomic traces capturing the execution of 

basic blocks of the target code 

 

The original trace can be reconstructed by concatenating the 

atomic traces according to the control flow of the target 

application, which can be changed at simulation run-time in 

this setup. The concatenation of atomic traces requires the 

values of target branch addresses which define the next traces 

to be executed. For this purpose, fast, untimed, functional 

simulation can be employed in order provide the control flow 

information (Fig. 3).  

In advanced out-of-order processors, the timing of basic 

blocks is not static but strongly context-dependent. In order to 

address different execution patterns of the same basic block, 

more than one atomic trace per basic block has to be 



considered. This approach requires run-time evaluation of the 

simulation context in order to determine which atomic trace of 

the block has to be executed [7]. The use of multiple atomic 

traces per basic block allows for accurate reconstruction of the 

processor’s behavior at higher simulation speeds than in 

conventional ISS´s. 

IV. VIRTUAL PLATFORMS AND THEIR ECOSYSTEM 

To understand VPs and their eco-system it is important to 
understand the design flow they are enabling. Fig. 4 shows an 
abstract system development flow starting from system 
modeling through hardware software partitioning leading into 
the three pillars of hardware development, software 
development and hardware/software integration. The hardware 
development flow re-uses as much IP as possible, generates 
new RTL from high-level Transaction Level Models (TLM) 
and then leads into the traditional EDA flows of SOC and 
Silicon Realization. The software flow equally re-uses as much 
IP as possible and implements from C and C++ using 
compilers the actual software stacks starting with firmware 
enabling operation systems through drivers, middleware and 
applications.  

 

Fig. 4: An abstract system-development flow 

For the center pillar of HW/SW integration, various 
techniques are in use today.  

Virtual prototypes for software development are available 
pretty early in a project and are representing fully functional 
software models of systems on chip (SoCs), boards, I/Os and 
user interfaces. They execute unmodified production code, and 
they run close to real-time with virtualized external interfaces. 
They offer high system visibility and control, including multi-
core debug. The speed of VPs will degrade to the single-digit 
MIPS range or even lower if users choose to mix in more 
timing-accurate models of the hardware, which is an approach 
often used for architectural analysis.  

Variations of virtual platforms are so-called software 
development kits (SDKs) like the iPhone SDK. While SDKs 
offer most of the advantages of the standard virtual prototypes, 
their accuracy is often more limited because they may not 
represent the actual registers as accurately as virtual prototypes 
but instead allow programming toward higher-level application 
programming interfaces (APIs) and often require re-
compilation of the code to the actual target processor after 
users have verified functionality on the host machine on which 
the SDK executes. 

Prior to VPs and SDKs, system-level models may exist at a 
level of abstraction at which decisions about hardware and 
software have not been made. They typically use descriptions 
like UML or proprietary languages like MatLab. 

Later areas of software and hardware integration use the 
register transfer level (RTL) used for hardware development. 
Because RTL takes time and effort to implement and integrate, 
design teams can be very hesitant to change the hardware 
architecture once RTL is available, unless major defects have 
been found. 

After simulation confirms that the RTL is reasonably stable, 
emulation and acceleration provides a vehicle for hardware-
assisted software development. It differs from FPGA 
prototypes in that it enables better automated mapping of RTL 
into the hardware together with faster compile times, but the 
execution speed will be lower and typically drop to the single-
MIPS range or below.  

Available later in the design flow, but still well before 
silicon, FPGA prototypes can serve as a vehicle for software 
development and integration as well. They are fully functional 
hardware representations of SoCs, boards and I/Os. They 
implement the ASIC RTL code and often run in the speed 
range of 10s of MIPS, with all external interfaces and stimulus 
connected. Due to the complexity and effort of mapping the 
RTL to traditional FPGA prototypes, it is not really feasible to 
use them before RTL verification has stabilized.  

Finally, after the actual silicon is available, early prototype 
boards using first silicon samples can enable software 
development on the actual silicon. Once the chip is in 
production, very low-cost development boards can be made 
available. At this point, the prototype will run at real-time 
speed and full accuracy. Software debug is typically achieved 
with specific hardware connectors using the JTAG interface 
and connections to standard software debuggers.  

At least ten different characteristics determine the 
applicability of the chosen prototyping approach and the 
models it is built from. They include time of availability in a 
project, execution speed, accuracy, bring-up cost, production 
cost, replication cost, debug insight into hardware, debug 
insight into software, execution control and availability of 
system interfaces to include the system environment for 
analysis and verification. 

From Fig. 4 it becomes clear that various interfaces and 
connections can enable different use models for VPs. 
Architects for the hardware and software portions and their 
partitioning will appreciate executable representations of the 
system models which were used to make the initial design 
decisions. As a result, connections to high-level representations 
and hybrid execution can make sense for VPs to allow 
verification as well as performance analysis. 

VPs for software development increasingly are becoming 

part of the verification flow for hardware. Low-level software 

often will be a required part of test benches for hardware 

verification, ensuring correctness of the HW/SW interface. 

But more and more also the higher level functions can become 

part of hardware verification flows. For that purpose, hybrids 



of VPs with all RTL based integration techniques are 

becoming more popular. They allow users to optimize the 

balance between the advantages of the different techniques, 

specifically as it relates to the ten characteristics of 

prototyping approaches mentioned above. 

V. SOFTWARE-DRIVEN VERIFICATION 

It is common knowledge that functional RTL verification 
consumes up to 70% of the total HW development time. Two 
major factors among that budget are the effort to create the 
testbench and the time for debugging of detected issues. Using 
SW running on VPs for functional verification adds value in 
both areas: First, VPs can be used as directed stimuli generators 
as well as reference models in RTL testbenches. Second, VPs 
can accelerate the debugging of detected issues. Despite the 
obvious advantages, so far only a few companies are 
successfully deploying SW Driven Verification (SDV). The 
slow adoption is mainly due to the high effort to establish this 
flow, which in turn is caused by the previous lack of standards 
in both the VP domain as well as the verification domain. 
Recently the standards in both areas are maturing and with that, 
a SDV flow can be established with little effort from standard 
building blocks.  

The release of the TLM-2.0 standard in 2007 was inflection 
point for the broad adoption of VPs. Since then all IP vendors 
and EDA tool providers have migrated their proprietary model 
interfaces to TLM-2.0. By now, users can compose VPs from a 
broad range of Loosely Timed (LT) off-the-shelf components 
[8] and reap the benefits of VPs for early SW development and 
HW/SW integration.  

On the verification side, the consolidation of vendor specific 
verification methodologies into the Universal Verification 
Methodology (UVM) fosters the broad availability of 
Verification IP (VIP) with standard SystemVerilog transaction-
level interfaces. In addition, the modular structure of state-of-
the-art testbenches enables the deployment of Loosely Timed 
SystemC models and VPs as reference models as well as for 
stimuli generation.  

 

Fig. 5: Software Driven Verification Testbench 

 
As depicted in Fig. 5, there are two main use models for 

SDV. The left side depicts the usage of a VP as a reference 
model in a SV testbench. By that, the creation of an additional 
SV reference model is not needed any more, which greatly 
reduces the testbench development effort. As an additional 

benefit, the development and testing of the testbench itself can 
start early, long before the actual Device Under Test (DUT) 
becomes available. This enables the parallel creation of the 
DUT and the testbench and thus reduces the overall time to 
market. 

The right side of Fig. 5 illustrates the usage of a VP as a 
stimuli generator for the DUT. As soon as an RTL block 
becomes available, it can replace its transaction-level model in 
the VP. Knowing that real Software and system scenarios are 
used greatly increases the confidence in the verification. 
Furthermore, the simulation speed is much faster, given that 
most of the system is simulated at the transaction-level. 

The SVD use-models are based on the integration of VPs 
into SystemVerilog (SV) based verification environments. This 
setup relies heavily on existing testbench infrastructure like 
TLM-to-pin conversion with drivers and monitors as well as 
scoreboards for the smart comparison of the from the Loosely 
Timed reference and from the timed DUT. In addition the 
availability of the SystemC TLM-2.0 standard for VPs and the 
UVM verification standard enables the creation of highly 
reusable Transaction Level Interfaces (TLI) between the VP 
and the rest of the SystemVerilog testbench. Based on these 
off-the-shelf components it is very little effort to set up a SDV 
environment. As a result, we are starting to see a growing 
adoption of SDV. 

VI. VIRTUAL PLATFORMS FOR AUTOMOTIVE 

While ―hard‖ automotive applications have much in 
common with consumer electronics, the differences w.r.t. 
technical characteristics and constraints, development 
processes, and supply chains have to be taken into account 
before exploiting new methodologies in this domain, such as 
VPs. Hard automotive, in this context, means the focus on 
control-flow oriented, real-time, safety-critical applications 
such as engine control or electronic stability programs ESP™ - 
in contrast to, for example, infotainment systems.  

 
Fig. 6: Automotive ECU generation lifecycle 

 

Similar to consumer devices, the user perceptible 
functionality of today’s automotive electronic control units 
(ECUs) is mainly defined by highly complex embedded 
software; and the challenges of this complexity make the use of 
VPs for system and software development attractive throughout 
the lifecycle of an ECU generation (Fig. 6): (1) In the System 
definition and partitioning phase models can aid 
communication between disciplines and companies and serve 
as executable specifications. (2) Before HW is available (―pre-
silicon‖) development can be accelerated by parallelizing the 
SW-development, adapting the SW tooling (e.g. debugger and 



compiler), and preparing HW bring-up. (3) During the lifetime 
of a generation (―post-silicon‖), where the advantages of virtual 
over real HW such as scalability, improved distribution, or 
automation and replication capabilities can be exploited. While 
better observability and controllability are properties of VPs for 
all kinds of applications (notably involving Multicore µCs), in 
the context of automotive safety requirements (e.g. as stated in 
ISO26262 [9]) they seem particularly appealing for code 
coverage measurements and fault injection. In contrast to the 
consumer electronics business, this phase spans several years 
during which the tool environment has to be stable. Many 
variants are developed and maintained which have to be 
supported by the VP environment by means of a robust variant 
and version handling mechanism as well as by a scriptable 
model assembly methodology.  

 

 

Fig. 7: Virtual Prototypes in the automotive context 
 

The above use cases in combination with the involved 
(AUTOSAR [10])-SW layers (see Fig. 7) inflict a tremendous 
diversity of requirements on the used VPs w.r.t. complexity (IP 
blocks, µCs, ECUs, networks of ECUs), accuracy and 
simulation speed (i.e. abstraction level), and maturity, which 
should be handled optimally by the same tool environment. On 
the other hand, the automotive supply chain becomes more 
diverse and fragmented, meaning that the models used by the 
different players must be able to interact seamlessly regardless 
of which tool was used to create them and which is used to 
integrate and execute them. In addition, these cyber-physical 
systems interact heavily and in hard real-time with their 
physical environment by means of a multitude of directly 
attached sensors and actuators in addition to communicating to 
other ECUs over networks. As a consequence, purely 
electronic (digital and analog) VPs are not sufficient: they have 
to interact seamlessly with existing simulation environments 
specializing in e.g. hydraulic, mechanical, electrical, and 
behavioral properties. The same holds for the sophisticated 

legacy SW-tool chains and existing development processes, 
where the new methodology has to fit into in order to preserve 
the considerable investments made.  

VPs will find wide-spread use in automotive, only if (1) the 
above issues are addressed and (2) the cost of modeling is 
bearable, which can only be accomplished by establishing open 
automotive modeling standards that guarantee the 
interoperability of models and tools within the whole 
ecosystem. 

VIII.   CONCLUSIONS 

We have summarized the state-of-the-art, current trends, and 
future needs in the domain of virtual prototyping. VPs remain 
an extremely interesting and fast developing topic, in terms of 
both academic research and new business directions. VPs are 
also an excellent example of an EDA domain, where academia 
and industry have shown a very fruitful collaboration in the 
past two decades. In order to continue this success story, the 
research community should address the fundamental technical 
issues, such as speed, abstraction, parallelization, reuse, and 
interoperability. At the same time, advanced use cases 
(including system optimization and verification) and new 
applications domains (such as automotive) offer fresh 
perspectives and provide ESL vendors with new marketing 
opportunities. 
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