An efficient and deterministic multi-tasking run-time environment for Ada
and the Ravenscar profile on the Atmel AVR®)32 UC3 microcontroller

Kristoffer Nyborg Gregertsen
Dept. of Engineering Cybernetics
NTNU, Norway
gregerts @itk.ntnu.no

Abstract

This paper describes how an efficient and deter-
ministic multitasking run-time environment supporting
the Ravenscar tasking model of Ada 2005 was imple-
mented on the Atmel AVR32 UC3A microcontroller.
The open source GNU Ada Compiler (GNAT GPL
2007) was also ported to AVR32 as a part of this
work, making a working Ada development environment
available on the architecture for the first time.

1. Introduction

Dependability is essential in many embedded and
real-time systems. Failures can often result in financial
losses, environmental damage and even the loss of
lives. Ada is a programming language designed for
high-integrity systems and has many safeguards against
common programming errors. The language is an
ISO standard [1], making programs portable within
different compilers, run-time libraries and operating
systems.

While Ada is much used within high-integrity sys-
tems, the concurrent constructs of the language have
often been excluded as being non-deterministic and
inefficient [2]. Instead such methods as the cyclic exec-
utive [3], [4] has been used. Advances in static analysis
have made it possible to check hard deadlines when
using preemptive fixed priority scheduling. This has
led to development of the Ravenscar profile [5], a sub-
set of the Ada tasking model designed to provide the
static and deterministic environment needed to perform
static analysis [2]. The simplicity of the tasking model
also allows efficient run-time environments.

The Polytechnical University of Madrid developed
the Open Ravenscar Kernel (ORK) [6] on contract
to the European Space Agency for the ERC32 ar-
chitecture. The Open Ravenscar Kernel was further

978-3-9810801-5-5/DATE09 © 2009 EDAA

Amund Skavhaug
Dept. of Engineering Cybernetics
NTNU, Norway
amund @ itk.ntnu.no

developed and integrated into the GNU Ada Run-Time
Library (GNARL) by José F. Ruiz at AdaCore [7].

The Atmel AVR32 [8] is a brand new architec-
ture designed by Atmel Norway in cooperation with
the Norwegian University of Science and Technology
(NTNU), and is optimized for code density and high
computational throughput with low power consump-
tion [9]. By porting the GNU Ada Compiler (GNAT)
to AVR32 and the bare-board Ravenscar run-time
environment to the UC3A microcontroller [10] Ada is
made available on this architecture for the first time.

It is shown how the simplicity and power of the
AVR32 architecture and the UC3A microcontroller
combined with the restricted Ravenscar tasking model
allows the multi-tasking run-time environment to be
deterministic and efficient, making it well suited for
high-integrity embedded applications.

2. The Ravenscar profile

The Ravenscar profile is specified as a set of config-
uration pragmas [1], [5] defining restrictions to the Ada
tasking model and the required dynamic semantics.
The following features are supported [2]:

o Tasks types and objects defined at library level.

o Protected types and objects, defined at library

level, limited to one entry having a simple guard
and a queue length of one.

o Ceiling Locking policy with FIFO dispatching

policy within priorities.

o The AdaReal_Time package for high-precision tim-

ing and the delay until statement.

o Synchronous task control, including suspension

objects for simple synchronization.

o Protected procedures as statically bounded inter-

rupt handlers.

The sequential parts of Ada are not affected by the
profile [2].



3. GNARL

The Ravenscar version of the GNU Ada Run-Time
Library (GNARL) is designed to take advantage of
the simplifications allowed by the profile [7]. Task
management is simplified since all tasks are at library
level, cannot terminate and have fixed priority. All task
data structures are statically allocated, thus memory
requirements are determined at link time. Protected
objects are simplified since there are no asynchronous
operations, no time-out on entry calls and no varying
queue length on entries. Evaluation on protected entries
may be done by proxy, thereby improving performance
by reducing the number of context switches [7].

The GNU Low-Level Library (GNULL) is a transla-
tion layer between generic and actual operating system
calls on most systems, but in this case it fully imple-
ments the needed dynamic semantics of the Ravenscar
profile by including a multitasking core based on the
Open Ravenscar Kernel [6], [7].

The core implements preemptive fixed priority
scheduling with ceiling locking, having 256 priorities
including the interrupt priorities. The number of pri-
orities can easily be changed if needed. Each interrupt
priority has its own interrupt stack allowing interrupt
nesting while avoiding priority inversion [7]. Interrupts
are masked as long as there is a task with higher or
equal priority to that interrupt and all interrupts are
masked while modifying core data.

The timing services of the core provides as high
precision as possible while supporting the needed 50
year time span. This is done by using a 64-bit value
for time divided into two parts. The least significant
part is present in the hardware timer, while the most
significant part is stored in memory and is incremented
every time the hardware timer overflows.

4. The AVR32 architecture

The Atmel AVR32 architecture [8] is a 32-bit RISC
architecture designed for high computational through-
put with low power consumption [9]. The architecture
defines instruction lengths of both 16 and 32-bits for
high code density and there is a rich set of load /
store instructions for high efficiency, supporting byte,
half-word, word and double word memory access. The
register file of the AVR32 architecture is fairly small
having only 13 general purpose registers (RO to R12),
the link register (LR) used for storing routine return
addresses, the program counter (PC) and the system
register (SR).

The UC3 core [10] is the second implementation
of the AVR32 architecture and is primarily intended

for embedded control applications where deterministic
execution times is important. The UC3 has an internal
SRAM integrated with the CPU pipeline in order
to bypass the system bus. This allows deterministic,
single-cycle read/write memory access. The UC3 fully
implements the DSP instructions of the AVR32 ISA
such as single-cycle multiply and accumulate instruc-
tions for both modular and saturated arithmetic. Atmel
claims it to deliver 1.3 Dhrystone MIPS / MHz.

5. Porting to the AVR32 architecture

5.1. Hardware setup

The EVK1100 evaluation board with the UC3A0512
microcontroller [10] was used for developing and
testing the run-time environment. The UC3A0512 has
64 KB of internal SRAM, 512 KB of internal flash
and is clocked by a 12 MHz external oscillator. The
Atmel JTAG ICE Mk II was used for programming
and debugging the device.

5.2. Porting the GNAT front-end

The GNU Ada compiler (GNAT) is an Ada front-end
for the GNU Compiler Collection (GCC) developed at
the University of New York and is now maintained
by AdaCore. The GCC back-end for AVR32 was
developed at the Norwegian University of Science and
Technology and is now maintained by Atmel Norway.
Both the front-end and back-end are open source soft-
ware licensed under the GNU Public License (GPL).

GNU Compiler Collection

Source GNAT AVR32 Object
(Ada) Front-End Back-End (ELF)

A
A\ 4

Figure 1. The GNU Compiler Collection.

Since both the front-end and back-end are open
source components of GCC, porting GNAT to the
AVR32 architecture was much matter of applying the
GNAT GPL 2007 patches from AdaCore to the already
patched GCC version 4.1.2 source code supplied by
Atmel. There were however some incompatibilities
caused by register promotion of return values from
functions. A quick fix disabling register promotion was
provided by Atmel, the problem should however be
investigated further.



5.3. Porting the Ravenscar run-time

Only the code that needed to be changed due to
differences between the ERC32 and the AVR32 was
altered when porting the run-time environment.

5.3.1. Context switch. The context switch code con-
sists of only 15 instructions with no branches:
/* Get address of running thread x/

lda.w r8, running_thread
1d.w r9, r8(0]

/* Save context of running thread =/
sub r9, —48

stm —r9, r0—r7,sp,lIr
mfsr r0, SYSREG_SR
st.w —r9, ro0

st.w —r19, rl2

/* Get address of first thread =/
lda.w rl, first_thread
Id.w r9, r1[0]

/* First thread is now running thread =x/
st.w r8[0], r9

/*x Load context of first thread x/
1d.w r12, r9++

1d.w r0, r9++

mtsr SYSREG_SR, r0
sub pc, —2

Idm r9++, r0—r7,sp,pc

The addresses of the running and first thread are
stored in memory instead of being passed as arguments
for debugging purposes [7].

5.3.2. Interrupt handling. The AVR32 has a periph-
eral interrupt controller which groups different inter-
rupt lines. Each interrupt group is assigned to one of
the 4 interrupt levels by the software driver.

There is a low-level handler for each interrupt level.
The interrupt ID is found by reading the interrupt cause
register of the level to find the interrupt group, and then
the interrupt request register of that group to find the
interrupt line. The highest numbered asserted line is
chosen if there are more than one.

The handler loads the interrupt stack for the given
level and calls the interrupt wrapper with the interrupt
ID. Prior to returning from the handler the task stack
pointer is restored and a context switch is done if
needed.

5.3.3. Peripheral drivers. The power manager unit is
used to enable the external oscillator upon initialization
of the system and setup the CPU and peripheral clocks
relative to it. For simplicity, it was chosen to run both
the CPU and the peripherals at the same clock rate as
the external clock.

The interrupt controller provides the functionality to
activate interrupts and read the interrupt ID. The pack-
age provides the mapping between interrupt identities
and groups, and is specific to a given MCU series. The
interrupt priorities are also defined in this package.

Two 16-bit counters are used by the timing services.
One counter is used as the least significant part of
the system clock, counting the whole 16-bit range
and generating an interrupt on overflow. The other
counter is used in one-shot mode for setting off alarms
between the regular interrupts, allowing fine grained
task release.

6. Metrics
6.1. Code size

The context switch for the AVR32 consists of only
15 assembler code lines. The number of assembler
code lines for interrupt handling is only 18 compared
to more than 100 for the ERC32. In total the number of
assembler code lines is reduced from about 400 with
the ERC32 to about 50 with the AVR32. The AVR32
implementation needs more peripheral drivers resulting
in more Ada code lines as seen from Table 1. Most of
the added lines are however register declarations for
the peripherals and not executable statements.

Table 1. Comparison of Ada code metrics.

Metric ERC32 | AVR32
Statements 261 378
Declarations 528 896
Total 789 1274

6.2. Memory requirements

The memory requirements of the multitasking core
are generally low, only the interrupt handling package
uses a noticeable amount of SRAM memory due to
the interrupt stacks in its BSS section. The size of the
text section used by the run-time core is about 5.5
KB which is just above 1% of the total Flash memory
available on the UC30512.

6.3. Performance

A simple test of the time needed to switch context
was performed by having one task assert an external
pin, unblock a second task and then go to sleep,
when the second task started executing it negated the
same pin. The time the external pin was asserted was
measured to be about 15 ps when the system was
running on 12 MHz, this equals approximately 180
clock cycles.



7. Discussion

7.1. Choice of hardware

The AVR32 is a brand new architecture with an in-
struction set created from scratch, making it interesting
for research purposes. The architecture was created by
Atmel Norway in Trondheim in collaboration with the
NTNU located in the same city. The relationship be-
tween Atmel Norway and NTNU makes it possible to
later design and test new hardware solutions supporting
the run-time environment together with the code for the
AVR32 core.

The UC3 core was chosen over the more powerful
AP7 core out of several reasons. System implemen-
tation was easier on the UC3 since it requires less
software drivers. However the deterministic one-cycle
access time to internal SRAM was the primary reason
for choosing the UC3. The AP7 has a higher average
performance, but relies on external cached SDRAM
resulting in a high worst-case time for memory access.

7.2. Multitasking core

The context switch is highly efficient and has a con-
stant execution time, avoiding the problem of having
a worst-case execution time that is significantly longer
than the average. This should make it easier to preform
accurate static analysis of applications.

The timer/counter module of the UC3 is only 16-
bit causing frequent overflows. Division of the clock
signal used by the timer reduces the frequency of
timing interrupts but also the resolution of the system
clock. Which is preferred depends on the application.

The programmable interrupt handling model of the
AVR32 is very flexible. Different applications may
assign different priorities to interrupt groups instead of
having these decided by hardware. Only a modification
of constants in the interrupt specification file and a
recompilation is needed to change the priorities.

7.3. Memory requirements

The memory requirements are dominated by the task
and interrupt stacks. The number of interrupt stacks
is reduced from 15 on the ERC32 implementation to
only 4 on the AVR32, reducing the amount of memory
needed for these stacks with more than 73%. The size
of the stacks may easily be altered. The secondary
stack is used for returning objects of variable size
from routines, and may be removed altogether for some
systems further reducing the memory requirements.

8. Conclusion

The simplicity and power of the AVR32 architecture
allows several enhancements compared to the original
ERC32 implementation with regards to determinism,
analyzability and efficiency. In particular the context
switch and interrupt handling code are simplified. The
context switch execution-time is deterministic easing
schedulability analysis.

By porting the GNAT to AVR32 Ada is made
available on this architecture for the first time. This
could open new applications for AVR32 within high-
integrity embedded real-time systems, and also open
new markets for Ada 2005 and GNAT. The system
may also be suitable for educational purposes.

Acknowledgment

Many thanks to José F. Ruiz and Arnauld Charlet
at AdaCore for guidance on porting GNAT. Thanks to
Atmel Norway for providing hardware and tools, and
Ronny Pedersen for supporting the GCC back-end.

References

[1] ISO/IEC, Ada Reference Manual - ISO/IEC
8652:1995(E) with Technical Corrigendum 1 and

Amendment 1.

[2] A. Burns, B. Dobbing, and T. Vardanega, “Guide for
the use of the Ada Ravenscar profile in high integrity
systems,” Ada Lett., vol. XXIV, no. 2, pp. 1-74, 2004.

[3] A. Burns and A. Wellings, Real-Time Systems and
Programming Languages, 3rd ed. Pearson, 2001.

[4] T. Baker and A. Shaw, “The cyclic executive model
and Ada,” in Proc. Real-Time Systems Symposium, 6-8
Dec. 1988, pp. 120-129.

[5] A. Burns, “The Ravenscar profile,” Ada Lett., vol. XIX,
no. 4, pp. 49-52, 1999.

[6] J. A. de la Puente, J. Zamorano, J. Ruiz, R. Fernandez,
and R. Garcfa, “The design and implementation of the
Open Ravenscar Kernel,” in IRTAW ’00: Proceedings
of the 10th international workshop on Real-time Ada.
New York, NY, USA: ACM, 2001, pp. 85-90.

[7]1 J. F. Ruiz, “GNAT pro for on-board misson-critical
space applications,” Ada-Europe, 2005.

[8] Atmel Corporation, AVR32 - Architecture Document.

[9]1 J. Uthus and @. Strgm, “MCU architectures for
computer-intensive embedded applications,” Atmel
Corporation, Tech. Rep., 2005.

[10] Atmel Corporation, AT32UC3A Series - Preliminary
Datasheet.



	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




