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Abstract—Advances in chip-multiprocessor processing capabil-
ities has led to an increased power consumption and temperature
hotspots. Maintaining the on-chip temperature is important
from the power reduction and reliability considerations. Achiev-
ing highest performance while maintaining the temperature
constraint is a challenge. We develop analytical solutions for
the optimal control of frequencies for each core in a chip-
multiprocessor. The objective is to reduce the makespan or the
latest task completion time of all tasks. We show that the optimal
frequency policy is bang-bang when the temperature constraint
is not active and is exponential when the temperature constraint
is active. We show that there is a significant improvement in
overall throughput with our proposed solution and yet all cores
operate under the thermal maximum.

I. INTRODUCTION

It is known that Moore’s law is no longer sustainable due
to the increasing power consumption of processors in recent
decades. Multi-core processors seem to provide the solution
by distributing the transistors of a single core implementation
over many smaller cores, each with lower throughput and
lower power, and exploit thread level parallelism to boost
performance, while keeping the total power approximately the
same as that of a single core implementation. Increasing the
number of cores per die has become the new “scaling” strategy,
with the number of cores expected to double every two to
three years. This rate of increase in the number of cores will
overwhelm the reduction (if any) in power of the individual
cores, and consequently high die temperatures are expected to
become a major problem for future multi-cores.

Cooling and packaging technologies do not scale with
device technology. It would become prohibitively expensive
if they were designed to accommodate the maximum power
dissipation of modern high performance processors. For this
reason, processor manufacturers specify a conservative upper
limit called the thermal design power (TDP) – which is
typically determined by running representative, real-world
applications. The responsibility of ensuring that the TDP
constraint is not violated is left to dynamic thermal manage-
ment (DTM) [1], [2], which are a collection of techniques
(in hardware and/or software) that include DFS (dynamic
frequency scaling), DVFS (dynamic voltage and frequency
scaling), thermally-aware task distribution, etc., to maximize
performance subject to thermal constraints.
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DTM techniques can be classified into online and offline
strategy. Online techniques [2], [3] employ local control
(DVFS or DFS) determined by the current temperature of
the processor. Although online approaches can respond to
the current conditions of the processor and provide necessary
correction to ensure that the constraints are met, they can
be suboptimal because the correction is based on heuristics
derived by experimentation. A better approach is to first
determine an offline solution [4], [5] where the objective is
to determine a globally optimal control policy. The online
policy can use real-time measurements of the temperature
T (t), compare the model based estimate temperature T ∗(t),
and make small corrections to the offline solution.

Some of the recent works on determining DTM policies
consist of [4]–[6]. In [5], optimal performance for a periodic
sequence of tasks under thermal constraints for a single
processor is found using DVFS approach with discrete voltage
and frequency states. In [6], discrete version of the optimal
frequency assignment problem to maximize operation cycles
within a given time in multi-cores is obtained using convex
optimization. In both the works, a highly simplified thermal
model is assumed with just one R and one C and no leakage
component of power is considered, which is definitely sub-
optimal. Reference [4] describes a continuous approach to ob-
tain analytical solutions of the optimal processor frequency for
given sequence of tasks, but only for a single-core processor.
It uses a highly detailed and accurate hotspot model [7] and
also accounts for leakage.

A. Key Contributions

In this paper, we present a novel solution to the critical
problem of determining the optimal time-varying speed profile
of each core in a multi-core processor, ensuring that temper-
ature constraints are satisfied at all the operational times. The
optimality criterion is to minimize the maximum completion
time (makespan) over all tasks. We believe that this is the
first analytical solution that relates performance to the number
of cores, and the power and thermal parameters of the cores
using the accurate hotspot model [7]. In addition, this work
considers the important leakage dependence on temperature
(LDT). Unlike the results in [1], we show that the optimal
throttling is an exponentially decreasing function of time rather
than a constant speed. Our solution, which is also applicable
to heterogeneous cores, can serve as an approximate solution
to the discrete optimal speed control.
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II. MULTI-CORE SYSTEM MODEL

A. Execution Task Model
We consider analysis of tasks whose durations are much

greater than the die thermal time constants (tens of millisec-
onds) and not much greater than the package thermal time
constant (few minutes). Class A and class B of NAS bench-
marks are examples of such tasks. The reason for choosing
such tasks is because longer duration tasks than considered
can be easily solved through steady state analysis as it will be
a zero order system (all capacitances are ignored), whereas the
analysis of shorter duration tasks requires much higher order
systems and generally not amenable for analytic derivations.
They are more suitable for detailed numerical analysis.

We assume that the processor consists of n cores, and each
core is assigned a specific task and is run until its completion,
i.e., we do not consider task migration among the cores. The
task c is characterized by the normalized number of cycles Nc
(w.r.t Umax) and its power consumption Pc.

B. Power and Thermal Model
Our thermal model is based on Hotspot thermal RC circuit

model [7], which uses the well known duality between heat
transfer phenomena and electrical circuit phenomena. Our
simplified thermal model is based on the observation of the
thermal parameters in Alpha 21264 [8]. For this processor,
there are 20 functional blocks and the order of the system
is 31. Each functional unit has a resistance connected to the
package called as vertical resistance, few more resistances con-
nected to the neighboring blocks called as lateral or horizontal
resistances and a capacitance to ground. We observe that the
lateral resistances are nearly four times that of the vertical
resistances and hence can be ignored without significant loss
of accuracy [9]. (NOTE: This does not remove the possibilities
of hotspots as they are caused by the differences in the power
densities of neighboring blocks.)

Based on these observations, we form a high-level thermal
RC model with n cores and M blocks per core. This is
shown in Fig. 1. It is a first order circuit with one package
capacitance Cp. RP and Tp are the package’s resistance and
temperature respectively. Similarly, Rc,i, Pc,i and Tc,i are the
vertical thermal resistance, power and temperature of block
i in core c, respectively. The effect of LDT as a feedback
is also shown in the figure. Since our work load duration is
much more than the die thermal time constants (around ten
milliseconds) the die capacitances are neglected.

Power consumption Pc,i of block i in core c has a dynamic
and a static component. While the dynamic power Pd,c,i de-
pends linearly on the core c’s normalized operating frequency
uc, the leakage or static power Ps,c,i varies exponentially with
the temperature [8]. Hence the total power Pc,i(uc, Tc,i) is a
function of both speed and the temperature of the block i in
core c. We do not make use of DVFS in our work for the
reasons that the majority of modern day processors use DVFS
with a linear power-speed relationship for DTM purposes [10]
and also with the technology scaling, the scope for supply
voltage scaling is less.

Rc,1 Rc,M

Rp Cp

Block iCore c

Package

Rc,i

Pc,iPc,1 Pc,M

Fig. 1. Simplified multi-core thermal model.

III. PRELIMINARY RESULTS

A. Decoupling of Leakage and On-chip Temperature
In order to decouple the LDT, we need to linearize the LDT.

To this effect the operating range of the temperature is divided
into two regions (easily extendable to any number) and the
exponential relationship is approximated by a piece-wise linear
(PWL) relationship [9] as shown below:

Ps,c,i =

{
Ps,c,i,mid − kc,i1(Tmid − Tc,i), Tmin < Tc,i ≤ Tmid,
Ps,c,i,max − kc,i2(Tmax − Tc,i), Tmid < Tc,i ≤ Tmax.

(1)

∀i ∈ 1, . . . ,M, ∀c ∈ 1, . . . , n. kc,i1 and kc,i2 represent the
slope of the leakage vs temperature for block i of core c in
the corresponding region of the PWL model. Tmin and Tmax
denote the ambient temperature and the maximum allowed
temperature of the die respectively. Tmid is chosen suitably so
that the linear model is close to the exponential LDT model.
Note: Since the range of the operational temperature mostly
falls in the upper half of the PWL model, for the sake of
simplicity, we will assume that there is just one kc,i in our
derivations. However, the numerical results obtained use the
appropriate kc,i to determine the leakage power.

Now we summarize the results from [9] for decoupling LDT
which uses the above linear model. The key observation in
this derivation is the fact that the die thermal time constant is
three orders of magnitude less than that of the package thermal
time constant. Thus for the thermal transients of the order of
die thermal time constant, the package temperature appears
constant. With this assumption it can be shown [9] that the
temperature of block i within core c is given by:

Tc,i(t) = ζc,iTp(t) + (P ′s,c,i + uc(t)P ′d,c,i)Rc,i (2)

where, ζc,i , (1 − kc,iRc,i)−1 (leakage coefficient), P ′s,c,i ,
ζc,i(Ps,c,i,max − kc,iTc,max) (apparent static power), P ′d,c,i ,
ζc,iPd,c,i (apparent dynamic power).

Using the above equation, the circular dependency is re-
moved and Ps,c,i is made to depend only on the package
temperature Tp as shown below:

Pc,i(t) = P ′s,c,i + uc(t)P ′d,c,i + (ζc,i − 1)Tp(t)/Rc,i (3)

Note: The temperature of each core is still affected by the
activity of other cores. However, this dependence is through
the package temperature.



B. Computation of Package Temperature

With the PWL approximation to the LDT, we can com-
pute the package temperature based on the simplified high-
level thermal model described in Section II-B. Let P ′s ,
n∑
c=1

M∑
i=1

P ′s,c,i (Total apparent static power), P ′d,c ,
M∑
i=1

P ′d,c,i

(Total apparent dynamic power at u = 1) and G ,
n∑
c=1

M∑
i=1

(ζc,i − 1)/Rc,i. From the high-level thermal model

described in Section II-B it can be shown that:

dTp(t)
dt

= − Tp(t)
RpCp

+
1
Cp

n∑
c=1

M∑
i=1

Pc,i(t)

= − Tp(t)
RpCp

+
1
Cp

n∑
c=1

M∑
i=1

[
P ′s,c,i +

(ζc,i − 1)Tp(t)
Rc,i

]
+

1
Cp

n∑
c=1

uc(t)P ′d,c

= − Tp(t)
R′pCp

+
P ′s + uT (t)P′d

Cp
(4)

where, R′p , Rp/(1−GRp) . Tp(t) can be obtained by solving
the above first order linear ODE.

IV. PROBLEM FORMULATION AND SOLUTION

We now formulate the problem of optimal speed control for
a n core processor with each core being assigned a specific
task and whose power profile and number of execution cycles
are given. Our objective is to find the optimal time varying
speed control for each core such that the latest task completion
time is minimal, while satisfying the thermal constraints. Here
we have used the fact that the hottest block (one with the
largest power × resistance product block) in a core remains
the hottest irrespective of the frequency of its operation.
Notation: Bold face variables represent vectors. xc(t) repre-
sents the activity of core c in terms of number of cycles exe-
cuted at time t in core c. As task migration is not considered
we do not distinguish between a task and core number.

The formulation of the optimization problem is as follows:

min
u(t)

tf =
∫ tf
0

1 dt, (5)

s.t.
.
x(t) = u(t), (6)

x(0) = 0, x(tf ) = N, (7)
dTp(t)
dt = − Tp(t)

R′pCp
+ P ′s+uT (t)P′d

Cp
, (8)

Tp(0) = Tpi, (9)
ζc,hTp(t) + (P ′s,c,h + uc(t)P ′d,c,h)Rc,h ≤ Tmax, ∀t ∀c, (10)

0n×1 ≤ u(t) ≤ 1n×1, ∀t (11)

In the above formulation, tf represents the final completion
time or makespan of all tasks. (8) states that each task starts at
time 0 and finishes by time tf . (10) represents the constraint
that the temperature of the hottest functional unit has to less

than Tmax. (8) is used to compute the package temperature
and is same as (4).

The above formulation is a time optimal control problem. It
has two state variables x and Tp, with a variable endpoint tf
and fixed boundary conditions at both the ends for the states,
except for Tp. The mixed control-state point-wise inequality
(10) complicates the solution process. We have used the direct
adjoining approach [11] to obtain the solution.

In the interest of clarity and lack of space, we have omitted
the detailed derivations and present only the final results.

The optimal speed profile for core c is given by:

u∗c(t) =


1, 0 ≤ t ≤ tm,c,
ur,c(t), tm,c ≤ t ≤ te,c,
0, t ≥ te,c.

(12)

where tm,c and te,c are the transition times. ur,c is the singular
speed during the transition time tm,c to te,c.

To obtain tm,c we define Tp,max as the package temperature
when all the cores are at maximum allowable temperature and
running at maximum speed. It is given by,

Tp,max = [Tc,max − (P ′s,c,h + P ′d,c,h)Rc,h]/ζc,h, ∀c (13)

Using above definition, we can calculate tm,c as shown below:

tm,c = τpln

(
Tp0 −R′pP ′max

Tp,max −R′pP ′max

)
(14)

Let us define αc =
P ′d,c,hRc,h+ζc,hR

′
pP
′
d,c

R′pCpRc,hP
′
d,c,h

, βi =
P ′d,iζi,h

CpP ′d,i,hRi,h

and γc =
Tmax−P ′s,c,hRc,h−P

′
sR
′
pζc,h

R′pCpP
′
d,c,h

Rc,h
. The singular speed

ur,c(t) can be computed using:

ur,c(t) = ur,c,0e
− t−tm,cτr,c + ur,c,ss(1− e

− t−tm,cτr,c ) (15)

where ur,c,0 = (Tmax − ζh,cTp0 − P ′s,h,cRh,c)/(P ′d,h,cRh,c)

is the initial speed of core c, τr,c =

αc +
∑

i∈na,i6=c

βi

−1

is the time constant of the throttling curve, ur,c,ss =

γc/

αc +
∑

i∈na,i6=c

βi

 is the steady state value of the throt-

tling curve and na is the number of active cores. By active
cores we mean those cores with tasks scheduled on them.

Task completion time te,c for a core c is computed by
calculating the time at which the area under the speed curve
uc equals Nc , i.e.,

tm,c +[ur,c(tm,c)− ur,c,ss]τr,c
(

1− e−
te,c−tm,c

τr,c

)
+ur,c,ss(te,c − tm,c) = Nc (16)

This equation needs to be solved numerically to obtain the
value of te,c. The optimal task completion time tf is then
given by tf = max

c
(tm,c + te,c)

Note: Every task completion enables higher speeds in remain-
ing cores due to decrease in the number of active cores. Thus
speeds have to recomputed at every task completion.
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Fig. 2. Thermal and speed profiles for the optimal throttling policy

V. EXPERIMENTAL RESULTS

A. Optimal vs Constant Throttling

We first obtained the simplified Hotspot model parameters
(Section II-B) for the single core Alpha 21264 [8] processor
and replicated it to form the multi-core model. Power numbers
were obtained from PTscalar tool [8] for SPEC CPU2000
benchmarks: crafty, gcc, galgel and bzip2. We allowed a
maximum temperature of 110 ◦C and total power consumption
of 130 W. The maximum clock frequency was set to 4 GHz.

Fig.2 shows the result of the optimal control policy for
the case of four cores. The minimum makespan is found to
be 492.3 s for the task durations mentioned in the figure.
The optimal policy ensures that the makespan is minimized
while satisfying the temperature constraints. We compare our
optimal policy against the constant throttling policy [1] shown
in Fig.3. The constant throttling policy simply throttles each
core to its steady-state speed ur,c,ss (see (15)). Constant
throttling policy resulted in a makespan of 556.7 s. Thus giving
the optimal policy an improvement of 13.1%.

B. Discrete Approximation to Optimal Control

We use the optimal control policy to derive a discrete
control policy which can serve as an approximation to discrete
speed control. We evaluated the extra delay encountered in the
makespan completion times due to discretization for a set of
discrete speeds. Fig.4 shows the variation of delay with the
number of discrete speeds. We note that the makespan delay
is less than 10% and can serve as a good approximate method
to discrete speed control.

VI. CONCLUSION

Advent of chip multiprocessors have resulted in high pro-
cessing powers. However, with the ever increasing power
dissipation and power density, thermal issues are becoming
very significant with multi-cores. In this paper, we have for the
first time, derived optimal speed control policy using accurate
hotspot model that minimizes the makespan of parallel, but
non-identical tasks. Our method ensures that the temperature
constraints are always satisfied and we demonstrate this with
our experimental results. We have shown that our optimal
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Fig. 3. Thermal and speed profiles for the constant throttling policy
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Fig. 4. Plot of extra delay in makespan due to discretization.

throttling policy can be used to obtain an approximate solution
to the optimal policy with discrete frequency states. Our work
finds application in early phase design space exploration and
offline optimal frequency allocation.
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