
Overcoming Limitations of the SystemC
Data Introspection

Christian Genz
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

Email: genz@informatik.uni-bremen.de

Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

Email: drechsle@informatik.uni-bremen.de

Abstract—Today verification, testing and debugging of
SystemC models can be applied at an early stage in the
design process. To support these techniques gaining required
information of the respective model, the SystemC Verification
Library (SCV) implements a concept called data introspection.
Unfortunately data introspection holds problems that arise with
increasing usage of language features. Native C++ data types for
instance will not appear in meta-data extracted by introspection
facilities.

In this paper we propose a non-intrusive analysis concept to
overcome the drawbacks of traditional data introspection. The
presented approach is a hybrid technique joining a parser to
collect statical information and a code generator to evaluate run
time information.

Index Terms—SystemC, data introspection, analysis, interme-
diate representation

I. INTRODUCTION

Meanwhile the system description language SystemC is
a widely accepted standard for hw/sw co-designs. In fact
SystemC has even been approved as a standard by the IEEE
consortium [1]. Complementary to Hardware Description Lan-
guages (HDLs) SystemC offers concepts and techniques to
system architects, which have been available for software
programming languages exclusively in the past (e.g. object
orientation). Thus, the time required for development can
be shortened drastically by parallelizing several development
steps, e.g. the generation of test suites, the synthesis, the pro-
gramming of applications and the creation of driver software.
One premise for this gain of productivity is the availability
of C++ features to SystemC architects. Typical C++ features
are polymorphism that support a clever reuse of existing
algorithms and data structures, as well as the inclusion of
arbitrary software libraries into prototypical hw/sw co-designs.
In addition, a wide range of abstraction levels is supported,
allowing the description of cycle accurate hw-structures as
well as untimed software algorithms.

But even though the power and the flexibility of the lan-
guage represent its greatest benefits, these attributes have vast
impact on the complexity of SystemC design analysis. As
can be seen in Figure 1 the analysis is crucial for many
SystemC applications like synthesis [2], verification [3], [4],

This work was supported in part by the German Federal Ministry of Edu-
cation and Research (BMBF) and by Concept Engineering GmbH, Freiburg,
Germany within the project Herkules under contract no. 01 M 3082.

debugging [5] or visualization [6], [7]. They all require an
analysis concept to collect meta data from the model to operate
on.

SystemC supports the extraction of meta data by using the
kernel interface at run time. Additionally the Open SystemC
Initiative (OSCI) introduced the SCV library in December
2002. The SCV delivers an extension of SystemCs analysis
capabilities named data introspection. While data introspection
uses run time information to assemble its meta data of a given
model, the meta data itself lacks information that has been
lost during the compilation process. We implemented a tool
realizing the analysis concept presented in this paper. Our tool
preserves SystemC applications from ”reinventing the wheel”
by overcoming the following disadvantages of the SCV.

• The circuit behavior, i.e. the operational semantic of the
analyzed SystemC program, shall be described in meta
data.

• Not only SystemC data types but also user defined types
shall appear in the analysis results. Without knowledge of
inheritance and member types inside classes the observed
design hierarchy would be incomplete.

• All names of declarations (as variables, data types and
functions) must be known after analysis. Otherwise the
names of ports, modules and signals are not stored in the
meta data or may be ambiguously named using internal
SystemC names (sc_object).

The paper at hand is structured as follows: Section II
outlines existing approaches in this area and compares them to
ours. Since the approach presented in this paper is separated
into several transformations, Section III, containing the main
contribution, is subdivided into four parts. The first part of
Section III introduces the architecture of the approach. In the
following parts of Section III the details of our analysis are
described. In Section IV we exemplify the extraction of meta

Verification

DebuggingMeta DataSynthesis

Visualization

Fig. 1. Applications for analysis

978-3-9810801-5-5/DATE09 © 2009 EDAA

data from a given SystemC source file. Finally this work is
concluded by a summary in Section V.

II. RELATED WORK

Some existing approaches are based on simulation tech-
niques only (e.g. data introspection or kernel usage). But
simulation is not able to collect information that is lost after
C++ compilation, like array dimensions or declaration names.
Others offer extended facilities to extract the static architecture
of an analyzed model, too. Clearly the first category cannot
solve the problems mentioned in Section I.

Große et.al. extract hierarchy information of a model in [8]
accessing the SystemC kernel at execution time. All objects
that have been declared with a data type that is derived
from sc_object can be found in a list of the SystemC
kernel after elaboration. This list can be accessed through
the kernel interface and stores important details of the models
hierarchy. By traversing this list the underlying modules and
their connecting signals can be accessed. Afterwards these data
is used to partially display the structure of the model.

Quiny [9] is a so called self-synthesizing approach. Similar
to [8] Quiny operates during run time of the processed system
model. But in difference to the approaches mentioned above
Quiny is not limited to the use of data introspection. Quiny
rather computes a complete Intermediate Representation (IR)
of an analyzed model. The tool consists of wrappers for
SystemC macros, data types and C++ keywords. Before
compiling the analyzed model, the included wrappers are
expanded by the preprocessor. During elaboration phase the
expanded code fragments build up an IR that collects meta
data of the executed model. While many C++ data types are
concatenated keywords, Quiny cannot substitute those data
types non-intrusively.

A further tool which was developed for analysis only is
KaSCpar [10] (Karlsruhe SystemC Parser). KaSCpar is a
collection of various programs realizing syntactical analysis
as well as an elaboration. KaSCpar derives a parse tree from
a SystemC model that contains the operational semantic of
the program. But KaSCpar is not feasible of capturing state
spaces.

In contrast to all other work presented above, PINAPA [3] is
a hybrid approach. PINAPA is made especially for the purpose
of extracting information from a given SystemC program
and is based on the GNU Compiler Collection (GCC). The
integration of the GCC allows a comfortable way to derive a
parse tree from a SystemC program. In a following elaboration
phase the nodes of the parse tree that symbolically represent
a value are connected to the corresponding value. Since the
parse tree is not able of capturing dynamic structures that grow
during run time, they are not observed completely. As well as
all other related work PINAPA is not able of supporting cross
probing.

Our approach is fully non-intrusive. Neither the SystemC
library that is needed for elaboration, nor the used com-
piler is modified. Also the behavior and the architecture
of the analyzed SystemC model stay untouched. Thus, the
methodology proposed is suited for dynamic types which grow

unforeseeable at run time. This is an important feature since
SoC designs tend to contain software partitions sharing this
characteristic.

III. STATE EXTRACTION

To obtain a complete hierarchy (as mentioned in Section
I), this work distinguishes between two different kinds of
hierarchy. The first one is a statical one that can be derived by
parsing. The second one is a dynamical hierarchy that has
to be examined using run time information. To derive the
dynamic hierarchy of a model the approach presented in this
work extracts its start state. This state is part of each valid
SystemC model that can be simulated. The observed system
state is defined by a concrete set of values for all variables,
declared in the program. These variables again define the state
space of the respective model at start time of its simulation
that is reached when the function sc_start is called.

A. Architecture

As can be seen in Figure 2 the extraction methodology
is partitioned into four phases. First the syntactical analysis
derives a given SystemC program and generates a parse tree
that holds the static architecture of the input program. The
parser and an additional scanner have been developed for this
application and support special features, like cross probing.
Both tools have been implemented using the Purdue Compiler
Construction Toolkit (PCCTS) [11].

The parse tree is also called Abstract Syntax Tree (AST)
and is used for communication among the different phases.
But since our elaboration only allows SystemC programs as
input, we implemented the inverse function of the parser. The
AST-synthesis generates a SystemC program from its parse
tree to establish communication between instrumentation and
elaboration.

In order to obtain the result of the elaboration in the form
of an AST, the model that is to be elaborated has to be
annotated first. Afterwards the set of automatically generated
functions that are annotated to the model implement our
elaboration. The generation of those functions is realized by
the instrumentation.

The outcome of the finally applied state extraction is the
unrolling of all generic nodes inside the AST, i.e. to de-
rive concrete values from all expressions. In contrast to the
SystemC data introspection our technique expands the AST
that has been computed by the parser before, instead of only
storing values of variables in the structures of the kernel.

B. AST-Synthesis

The AST represents an acyclic graph. Consisting of six
different node types it implements a possibility to express
any arbitrary combination of control flow operation and data
dependency. And because all kinds of declarations that are
allowed in C++ can be represented by the AST, also state
spaces can be represented in an AST graph.

While the semantic of the program is directly transferred
to the AST, each manipulation of the AST will have an
influence on the corresponding SystemC document that is a

Syntactical-Analysis
AST

SystemC-
Model AST

y y

Instrumentation

AST

Library
Reflection

Library

AST

Instrumentation

AST-Synthesis

SystemC-
Model

AST

Binarygcc
SystemC-

Model

Elaboration

System
StateAST

S t C

AST-Synthesis

SystemC-
Model

AST

Fig. 2. Architecture of the approach

result of the AST-synthesis. Thus, with a fair amount of effort
each operation in the program can be captured during run
time by just adding an additional statement to the AST. The
synthesis of an AST is much less complex than the syntactical
analysis. While the analysis frequently faces the problem of
ambiguities when deriving a parse tree, the generation of a
program from its AST is unambiguous. To be able to support
cross probing facilities as described in Section I, tokens that
form the AST, integrate additional information besides line
numbers. Among the additional information are byte positions
and corresponding file names of the token context. With this
information the generated code of the AST-synthesis is written
to files that use the same names as the input files of the
syntactical analysis.

C. Instrumentation

The instrumentation of the source code is a generation of
a set of functions. These functions again will be executed in
a binary that has been compiled from the output files of the
AST-synthesis. These functions are called recorder functions
in the following. Each recorder function causes the recording
of a state variable after a change of its value. Therefore the
recorder function stores each modified value in the AST of
the corresponding variable during elaboration.

All user defined data types are compounds of primitive types
e.g. int and pointers. Hence, only entities that are declared as
native types or pointers are going to be recorded when chang-
ing their value. To store value changes of variables without
side effects in the AST, the propagation of the value changes
happens directly after computing the respective expression but
before the elaboration of adjacent expressions.

In case the stack frame changes during elaboration (e.g.
when passing function calls, statement blocks or overloaded
operators), also the stack frame of the corresponding AST
has to change. Thus, also more recorder functions have to

be generated, that enlarge or shrink the respective AST when
entering or leaving a statement block.

To be able to expand an AST of a SystemC program
during run time, an inclusion directive is generated into
the AST that includes the source code of our syntactical
analysis. Additionally the AST is extended by a sequence
of instructions. This sequence causes the statical (syntactical)
analysis of the model during elaboration. So before elaboration
starts an exact copy of the AST that was also used as input of
the instrumentation phase is handed over to the simulator. A
simplified representation of the combination between statical
and dynamical analysis with the help of instrumentation can
be seen in Figure 3.

D. State Elaboration

Instead of elaboration by pure interpretation, like done
in [6], our approach follows a hybrid strategy. After the
static analysis has finished, a simulative analysis is applied
for the purpose of elaboration. Compared to an interpreting
elaboration an execution has the advantage of being able to

SystemC-
Model

Static
Analysis

Instrumented
SystemC-ModelAnalysis y

gcc

Analysis ofAnalysis of
Source-Code gcc

Elaborated Dynamic
AST

Dynamic
Analysis

Fig. 3. Hybrid analysis

1 s t r u c t E u c l i d : p u b l i c sc module
2 {
3 s c i n <unsigned i n t > por tA ;
4 s c i n <unsigned i n t > por tB ;
5 sc ou t <unsigned i n t > por tC ;
6 unsigned i n t valA ;
7 unsigned i n t valB ;
8
9 void c a l c ()

10 {
11 valA = por tA . r e a d () ;
12 valB = por tB . r e a d () ;
13 whi le (valA & valB)
14 max (valA , valB) −= min (valA , valB) ;
15
16 por tC . w r i t e (valA) ;
17 }
18
19 SC CTOR (E u c l i d)
20 {
21 SC METHOD(c a l c) ;
22 s e n s i t i v e << por tA << por tB ;
23 }
24 } ;

Fig. 4. Euclidean algorithm

elaborate expressions, without knowing the respective source
code. This becomes important when using system calls or
when linking the program to external libraries, which are
common techniques in system designs.

However, the elaboration and by this the state space ex-
traction is limited to variables and functions that are declared
inside the analyzed model. Other declarations i.e. identifiers
that have been declared in an external library exclusively, do
not appear in the resulting AST. But only known entities that
do occur in the AST can be annotated with recorder functions.
And finally only nodes that are attached to recorder functions
can be expanded to values. All values of elaborated state
variables are written to the AST automatically because the
instrumentation code for those variables is compiled automat-
ically, too. Hence, after elaboration the AST becomes a tree
whose leaves comply to one of the following:

• constant values,
• state variables,
• undefined functions or
• undefined variables.
Consequently all control- and data operations of the AST

are placed between the root and the leaves. Variables, which
describe the state space, can be traversed in depth first search
order after elaboration to be extracted.

IV. EXAMPLE

To demonstrate a practical run of our analysis concept, we
applied the respective implementation to SystemC models. As

an example in the following we report the results for a model
that computes the Euclidean algorithm within a combinational
process (see Figure 4).

Only the ports are declared using SystemC types here. The
computation itself is done on two integer variables. The loop
that calculates the greatest common devisor (line 13) is not
a SystemC construct as well. And note that the Functions
min/max are user defined. Thus the interface of the module is
clear to SCV. But considering the behavior data introspection
can only observe a black box without manual annotations.

After parsing our approach considers valA and valB as
part of the architecture. Running elaboration phase attached
SystemC applications (e.g. [6]) are not only aware of the
changing values in signals. They do have a direct knowledge
of the control sequence that caused this change of the value.

V. SUMMARY

In this paper we presented an analysis concept to extend
SystemC models with non-intrusive reflexion capabilities. Our
approach facilitates the state extraction of SystemC programs
without being limited regarding the abstraction level of the
model. Advantages over pure simulative or statical analysis
techniques as [5], [6] have been shown, as well as the necessity
for a combination of statical and dynamical strategies.

Future work in this area will concentrate on extending
this approach with syntactical control mechanisms for the
instruction phase. By this, arbitrary modifications can be
applied to different models in an automatic way that is less
error prone and time consuming than the manual insertion of
macros to insert additional operations into SystemC models.

REFERENCES

[1] IEEE Standard SystemC Language Reference Manual, IEEE Computer
Society, 2006.

[2] G. Fey, D. Große, T. Cassens, C. Genz, T. Warode, and R. Drechsler,
“ParSyC: An efficient SystemC parser,” in Workshop on Synthesis And
System Integration of Mixed Information technologies (SASIMI), 2004,
pp. 148–154.

[3] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “PINAPA: An extraction
tool for SystemC descriptions of systems-on-a-chip,” in ACM interna-
tional conference on Embedded software, 2005, pp. 317–324.

[4] D. Große, R. Ebendt, and R. Drechsler, “Improvements for constraint
solving in the SystemC Verification Library,” in Great Lakes Symposium
on VLSI, 2007, pp. 493–496.

[5] F. Rogin, C. Genz, R. Drechsler, and S. Rülke, “An Integrated SystemC
Debugging Environment,” in Embedded Systems Specification and De-
sign Languages: Selected contributions from FDL’07, E. Villar, Ed.
Springer-Verlag, 2008, pp. 59–71.

[6] C. Genz, R. Drechsler, G. Angst, and L. Linhard, “Visualization of
SystemC Designs,” in IEEE International Symposium on Circuits and
Systems, 2007, pp. 413–416.

[7] C. Genz and R. Drechsler, “System exploration of SystemC designs,”
in IEEE Annual Symposium on VLSI, 2006, pp. 335–340.

[8] D. Große, R. Drechsler, L. Linhard, and G. Angst, “Efficient automatic
visualization of SystemC designs,” in Forum on Specification and Design
Languages, 2003, pp. 646–657.

[9] T. Schubert and W. Nebel, “The quiny SystemC frontend: Self-
synthesizing designs,” in Forum on Specification and Design Languages,
Sep. 2006, pp. 317–324.

[10] KaSCpar, FZI Karlsruhe, http://www.fzi.de/sim/kascpar.html.
[11] T. Parr, Language Translation using PCCTS and C++: A Reference

Guide. Automata Publishing Company, 1997.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

