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Abstract— We are interested in the problem of improving ip-
reuse in SoC design. This paper presents an MDE based 
approach based on a proposed IP-XACT standard extension. 
This approach combines the benefits of using MDE techniques in 
SoC design such as abstraction levels definition and model 
transformation for code generation, and the benefits of the IP-
XACT standard such as a unique exchange format of packaged 
IPs (Intellectual Property) with reuse capabilities. 

I. INTRODUCTION 
  Interoperability of SoC models from multiple vendors is a 

key issue in SoC design. To guarantee this objective, there is 
an increased use of standards such as SystemC [1] and UML 
profiles for SoC design (MARTE [2], Sysml [3], UML profile 
for SystemC [4], UML profile for IP-XACT [5]). The IP-
XACT specification provided by the SPIRIT consortium 
represents one of the important standards used to facilitate the 
integration of various IP coming from different sources. It 
offers a standard way of describing IPs for integration 
purpose. IP-XACT proposes a set of XML schema to describe 
the components of a system. The standard targets hardware 
modeling at a low level of abstraction and particularly the 
RTL level. Although the latest versions offer support for TLM 
though, for example the transactional port component, the 
formalism is still based towards RTL modeling. The TLM 
level is not a model and represents a library implementing a 
high level approach where the details of communication are 
abstracted by transaction requests.  We believe that IP-XACT 
could be a good environment for modeling HW/SW systems at 
higher abstraction levels. In this work, we try to improve ip-
reuse in SoC design by taking advantage of the Model Driven 
Engineering techniques in an IP-XACT environment. We 
show how to extend IP-XACT to allow more formalized IP 
modeling at different abstraction levels with hardware 
dependent software representation, and how to generate 
SystemC code for simulation. 

II. RELATED WORKS 
There are several frameworks and environments for 

modeling embedded systems using an MDE approach. UML 
profiles definition for SoC design represents an important 
MDE activity. The SysML (Systems Modeling Language) [3] 

is a profile which takes a part from UML, extends the other 
part and defines new types of diagrams. Sequence, use case 
and state machine diagrams were taken by SysML. The profile 
defines a parametric and a requirement diagrams to structure 
requirements. Others profiles exist such as the UML profile 
for SystemC [4] and MARTE profile [2]. The MARTE profile 
is used to model IP-XACT designs [6]. Gaspard [7] is a tool 
implementing an MDA based design flow. The design flow is 
based on a “Y” chart design. The application and the hardware 
architecture are two models which represent the two sides of 
the Y design. Models for application and hardware 
architecture are done separately and each of them is conform 
to a corresponding meta-model. There is a third meta-model, 
named association meta-model, which defines relation 
between the functional components and the hardware 
components. The Gaspard flow focuses on intensive signal 
processing applications. Metropolis [8] is a system modeling 
environment based on a meta-model of computation. This 
meta-model provides the possibility to design various model 
of computation with various semantics. The meta-model 
specification is used to model the functionality, the 
architecture and the mapping. The main elements are 
"Process" and "Media" which represent respectively 
computation and communication semantics. MoDES [9] is an 
embedded systems design methodology which defines meta-
models for application, platform and the mapping of 
application onto the platform. The methodology uses model 
transformation to define the possible mappings. 

III. ABSTRACTION LEVELS, IP-XACT AND MDE BASICS 

A. Abstraction levels in SoC modeling 
Abstraction Levels in SoC design are used in a multilevel 

SoC design flow context. Intermediate abstraction levels are 
used to allow software generation, simulation and debug. The 
multilevel design flow proposed in [10] defines four 
abstraction levels starting from the system level and getting to 
the Cycle accurate level. We will focus in the third abstraction 
level called “Transaction Accurate” for three main reasons: (1) 
this abstraction level is the one that immediately precedes the 
RTL level (2) it represent the easiest level to integrate within 
the current IP-XACT specification (3) and it is interesting for 

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



the design because of the simulation results obtained in [10]. 
The Transaction Accurate level abstracts hardware 
architecture details. This specification requires the definition 
of software services offered by the hardware components. 
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Figure 1.  Transaction Accurate abstraction level 

Those services are specified in the hardware abstraction layer 
(HAL API) of the software side (Fig 1.b). The software is 
linked with an explicit OS and specific communication 
primitives. The resulting software makes use of hardware-
abstraction layer primitives (HAL API). The software is 
executed over an abstract model of the platform (Fig 1.a) that 
represents the explicit devices used by the HAL API, and the 
abstract processor. The simulation at this level allows 
validating the integration of the application with the OS and 
the communication layer. It may also provide precise 
information about the communication performances [10]. 

B. IP-XACT overview 
IP-XACT is an independent front-end standard that allows 

IP packaging. It uses its own XML syntax to describe structure.  
The objective of SPIRIT is to facilitate the integration of 
various IP coming from different sources through the use of the 
IP-XACT specification [11]. The IP-XACT specification is 
provided by the SPIRIT consortium and offers a standard way 
of describing IP for integration purpose. SPIRIT proposes a set 
of XML schema to describe the components of a system. The 
IP-XACT model is an XML file that should be validated by an 
IP-XACT XML schema which represents the meta-model. IP-
XACT XML schema enable hardware component modeling at 
the RTL and TLM levels. The IP-XACT Component [11] is the 
central concept. It is used to describe cores (processors, 
DSPs…), Peripherals (Memories, DMA controllers, Timers …) 
and Busses. A Design describes the component instances and 
the interconnection between these instances. IP-XACT 
represents a standard meta-modeling environment for hardware 
modeling. 

C. MDE basic definitions 
The basic entity in Model Driven Engineering is the 

Model. A Model is an abstract description of a system. A 
meta-model is a model that defines the language to create a 
model. A meta-model can be written in different ways (XML 
schema, UML diagram, etc…). The relation between a model 
and a Meta-model is a relation of conformance. The main 
MDE techniques are Meta-modeling and models 
transformations. Models transformations are sets of rules 
which describe how a model in a source language can be 
transformed into a model of a target language using the source 
and the destination meta-models. Model Transformations 
ensure automatic transition from a meta-model to another, by 

generating an output model from an input model. There are 
some languages which are used to implement model 
transformations such as ATL (ATLAS Transformation 
Language) [12]. The ATL language provides “ATLModule” to 
define transformation between source and destination models 
and “ATLQuery” to define transformation from a source 
model to text. 

IV. IP-XACT EXTENSION TO SUPPORT MDE BASED 
APPROACH 

A. MDE approach for IP-XACT SoC design 
MDE techniques may improve the SoC design with IP-

XACT in different ways: (1) the meta-modeling techniques 
can be used to define concepts to use at a defined abstraction 
level (2) the model transformation technique to generate 
simulation models in SystemC. (3) The introduction of 
different modeling abstraction levels may facilitate the reuse 
of existing components defined in different libraries. The 
modeling approach we propose allows modeling by using a 
meta-model of the desired abstraction level (Abstraction Level 
Definition in Fig 2.b). This meta-model will be written in 
XML schema and takes part of an IP-XACT extension that we 
call IP-XACT++. Theses meta-models will be considered as 
the semantic rules for each appropriate abstraction level, 
because the IP-XACT specification presents only the syntax 
side. Indeed, IP-XACT allows modeling at two levels: TLM 
and RTL. The concepts corresponding to those levels are 
gathered in the same XML schema. We want the designer to 
distinguish the concepts of each supported level of abstraction. 
This will be guaranteed by the definition of meta-models for 
each level of abstraction in the IP-XACT environment. This 
ensures a clear separation of concerns. This also ensures that 
the introduction of a new abstraction level, like the 
Transaction Accurate level seen in III.A, does not break the 
existing specification.  
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Figure 2.  MDE approach for SoC design with extended IP-XACT 

Figure 2 shows the MDE approach for SoC modeling. The 
relation between components from the abstraction level meta-
models (fig 2.b) and the IP-XACT meta-models (fig 2.a) is 
specialization and reuse. It means that a concept corresponding 
to a specific abstraction level is a specialization or a reuse of a 
component from the IP-XACT meta-model. The SoC models 
will be extracted from this intermediate layer and will be 
conform to the IP-XACT specification (Fig 2.c). For generating 
SystemC code, model transformation (Fig 2.d) will be defined 



between meta-models of the intermediate layer and the 
SystemC meta-model (Fig 2.e) inspired from [4]. 

B. IP-XACT Extension: Meta-models for abstraction levels 
The meta-model for describing a level of abstraction 

allows the definition of constructs and rules between the 
different types of components for creating lacking semantics 
in IP-XACT. These components have a relation of 
specialization and reuse with the concepts defined by IP-
XACT. This section will focus in the definition of the 
Transaction Accurate meta-model. It is written as an XML 
schema and represents the IP-XACT extension to allow 
modeling at this level. The “Execution Unit” abstracts 
computation in the SoC model.  It is composed of one or more 
processing elements which are implemented with independent 
threads. The “Execution Unit” represents a task level view of 
the hardware parallelism. The “Address Space Unit” is an 
abstraction of the communication and the data transfer. It 
abstracts an addressable domain in the architecture which can 
be a bus, memory …. The “Synchronization Unit” abstracts 
the interruption process, which is a distributed process over 
many hardware components (interrupt controller …). The 
“Device Unit” in our meta-model is a functional view of the 
physical device represented by a set of HAL services.  
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Figure 3.  Transaction Accurate Meta-model 

This meta-model level distinguishes four types of hardware 
ports and one type of software port connecting the logical 
units.  The “Access Port” abstracts memories accesses 
between logic units. Executing a task by the processor requires 
writing data in address spaces. The Access Port is used to 
abstract this operation from “Execution Unit” to “Address 
Space Unit”. The “Map Port” abstracts mapped memories. 
Some devices have a local memory mapped with other 
memory in the address space. The operation realized in the 
address space is automatically realized in the corresponding 
mapped memory of the device. The “Interrupt In Port” 
abstracts interruption trigger. For example, the device triggers 
an interruption and the synchronization unit receives this 
request. The “Interrupt Out Port” abstracts the process of 
sending the interruption from the “Synchronization Unit” to 
the “Execution Unit”. This interruption will be handled by the 
abstract CPU. The “HAL Port” is a software port which 
abstracts the software communication. The logic units provide 
“HAL services” to the operating system. An initiator hardware 
port requires a hardware service, which is provided by a target 
hardware port of the same type. (The same applies for 

software port). The complete Meta-model is shown in Fig 3. It 
covers the needs for the expression of a TA model used in 
[10]. An IP-XACT extension for modeling at the TA Level is 
composed of two files; the fisrt one is an XML schema called 
“ta_library.xsd” which contains the definition of specific 
components to be used at this level. By analogy to 
“spirit:component” of IP-XACT, the central element is  
“spirit:TAComponent” which reuse the “spirit:model” and 
“spirit:view” elements of IP-XACT. The specialization and 
reuse of IP-XACT concepts are realized at this level. For 
example, the “spirit:HALPort” of the Transaction accurate 
level will reuse the “spirit:portTransactionType” concept of 
IP-XACT. If we were to use directly IP-XACT, we would be 
obliged to create a port which type is “spirit:port”. Thus, we 
are able to create a new element “spirit:HALPort” which is a 
specialization of the “spirit:port” element and a reuse of the 
“spirit:portTransactionType”. The second one is an XML 
schema called “ta_level.xsd” which define the interaction of 
component defined in “ta_library.xsd” to design a coherent 
model at the TA level. For example, we define at this level 
which type of ports are needed to define an “Execution Unit” 
component. With a “ExecutionUnit” component, we can 
define an unbounded “spirit:HALPort” ports which are in 
reality a reuse of “spirit:portTransactionnalPort” and a 
specialization of “spirit:port”. 

C. IP-XACT ++ proposition 
The need to model SoC at different abstraction levels, and 

especially high levels, requires developing concepts able to 
express component at all these levels. In order to enhance the 
expressivity in IP-XACT, we introduce an intermediate layer 
which contains abstract concepts specific to the desired 
abstraction levels (Fig 4.b).  
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Figure 4.  IP-XACT++ structure 

The goal of adding this intermediate layer (Fig 4.b) is to 
restore the IP-XACT structure to be modular which allows the 
definition of specific models related to each modeling 
abstraction level. The Model level (Fig 4.c) in IP-XACT++ is 
the same as in the IP-XACT specification and different 
component libraries are developed with XML files. The 
modular structure of IP-XACT++ grants easy evolution and 
easy component reuse. Introducing this intermediate layer 
allow developing libraries of components specific to 
abstraction levels and thus eases IP reuse in SoC design. 

V. EXPERIMENT AND INTEGRATION 
An example of instance corresponding to the Transaction 



accurate Meta-model is shown in Fig 5 with IP-XACT++. In 
this model, the “Execution Unit” element is the ARM 
processor. It is described as an abstract processor which 
provides HAL services via “spirit:HALPort” and request for 
data access services via “AccessPort”. The HAL services 
offered by “Execution Unit” elements are basically context 
services (load_context, switch_context …). 
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Figure 5.  IP-XACT++ transaction accurate model 

The data access services are access services (Read, Write). 
The model uses a TIMER device which provides services such 
as “init_timer”, “start_timer”. It uses a synchronization unit 
and address space elements too. The transformation process 
for SystemC code generation is detailed in Fig 6. We 
implement model transformations to define relations between 
the TA elements and the SystemC concepts with the ATL 
language. We use “ATL Module” to define mapping between 
concepts (Fig 6.a) and generate a SystemC model in a XML 
format. Transformations over SystemC XML model is 
performed with “ATL Query” which generate SystemC code 
(Fig 6.b). 
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Figure 6.  Transaction Accurate to SystemC Transformation for code 

generation. 

Transformations in Fig 6.a consists of transforming a 
component at the TA level into a SystemC module. An 
initiator port is transformed into a “sc_port” and a target port 
into a “sc_export”. The initiator port requires services while a 
target port provides services and has to implement them in the 
local SystemC module. The services described in the TA 
architecture are transformed into “sc_interface”. Thus, we 
generate for each component an interface file (arm.h, mem.h, 
dma.h… Fig 6.c.1) and the file “services.h” (Fig 6.c.2) which 
contains the services interfaces. We intend to generate those 
files basically from the “HALservices” description of our 
model. The implementation of those interfaces needs the use 
of some predefined libraries. Limitations of this work are at: 

(1) Code generation of the behavior of some components 
such as Execution Unit or DMA device (2) Modeling with 
different abstraction levels at the same time represents a point 
that our approach didn’t take in consideration (3) Refinement 
of model from an abstraction level to another is still a complex 
task because it requires some designer decisions like the 
choices in mapping and in the libraries to be used in the 
communication and in the operating system. 

VI. CONCLUSION 
This paper presents an MDE approach in IP-XACT context to 
well formalize abstraction level models and to generate 
SystemC. We propose an extension of IP-XACT to support 
this approach. This extension consists of a set of meta-models 
implemented as XML schemas and used to formalize 
abstraction levels concepts. By means of our proposition of IP-
XACT extension (IP-XACT++), we show how to integrate an 
abstraction level called Transaction Accurate. The integration 
of different abstraction levels may improve IP reuse in IP-
XACT. Our future works will focus on modeling at other 
abstraction levels. We will focus on modeling application and 
software with IP-XACT++. This will offer software 
component reuse. The refinement between different 
abstraction levels will be an important activity we will focus 
on. We will work also in representing our proposed meta-
models with UML profiles such as MARTE. 
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