
MPSoCs Run-Time Monitoring through

Networks-on-Chip

Leandro Fiorin

ALaRI, Faculty of Informatics

University of Lugano

Lugano, Switzerland

Email: fiorin@alari.ch

Gianluca Palermo, Cristina Silvano

Politecnico di Milano

Dipartimento di Elettronica e Informazione

Milano, Italy

Email: {gpalermo, silvano}@elet.polimi.it

Abstract—Networks-on-Chip (NoCs) have appeared as design
strategy to overcome the limitations, in terms of scalability,
efficiency, and power consumption of current buses. In this paper,
we discuss the idea of using NoCs to monitor system behaviour
at run-time by tracing activities at initiators and targets. Main
goal of the monitoring system is to retrieve information useful
for run-time optimization and resources allocation in adaptive
systems. Information detected by probes embedded within NIs
is sent to a central unit, in charge of collecting and elaborating
the data. We detail the design of the basic blocks and analyse
the overhead associated with the ASIC implementation of the
monitoring system, as well as discussing implications in terms of
the additional traffic generated in the NoC1.

I. INTRODUCTION

Next generation MPSoC platforms will integrate in the same

embedded device a large number of processing cores, storage

elements and I/O peripherals, interconnected by Networks-on-

Chips (NoCs) [1], [2], foreseen as the design paradigm to over-

come efficiency problems of traditional solutions for inter-core

communication based on shared bus. In order to optimize the

utilization of available resources in such complex platforms,

the use of adaptive and reconfigurable platforms implementing

a run-time management of components and resources has

been proposed [3], [4]. Fundamental components of run-time

management systems are the monitoring subsystems, that must

be able to detect variations in the run-time conditions of

users and applications requirements, and to allow run-time

managers to perform an appropriate and optimized allocation

of resources.

In this work, we propose the idea of monitoring run-time

system activities in adaptive NoC-based MPSoC platforms

through the observation of transactions performed on the

communication subsystem. As central element of architectures

based on the communication-centric paradigm [1], NoCs are

the ideal mean to collect information about cores, and more

general system behaviour. In particular, probes collecting

information about system activity are implemented within

OCP/IP [5] compliant Network Interfaces (NIs). A central unit

is in charge of collecting run-time information and adopt the

suitable strategy for optimizing the use of system resources.

1This work has been partially funded by FP7-ICT-2007-1-216693-
MULTICUBE project.

Probes, working in parallel with protocol translation, do not

influence core operations, and a relatively small overhead is

paid in term of area consumed by the monitoring system, as

well as in the amount of data transmitted by probes to the

central unit.

The remainder of this paper is organized as follows. Sec-

tion II reviews related work. Section III presents an overview

of the proposed NoC monitoring architecture, while Section IV

provides implementation details of the probes deployed in the

system. Section V presents synthesis results, and discusses

overhead in NoC traffic due to the monitoring system. Finally,

Section VI presents conclusions.

II. RELATED WORK

This Section overviews related work on monitoring of

NoCs. Methodologies for real-time debugging of NoC-based

SoCs are presented in [6], [7] . Authors propose a NoC mon-

itoring systems composed of configurable monitoring probes

attached to NIs or to routers and NIs. Associated programming

models are discussed, as well as monitoring traffic manage-

ment strategies. In [8], several design alternatives for NoC

monitoring systems are discussed, in particular focusing on

the interconnection of the monitoring resources.

In [9], a debugging approach based on probes inserted

between the cores and their network interfaces is proposed. A

system-level debug agent controlled by an off-chip multi-core

debug controller collects information about system activities,

providing in-depth analysis features such as NoC transaction

analysis, multi-core cross-triggering and global synchronized

timestamping.

While some of the concepts developed for testing and

debugging NoCs can be used in our case, monitoring for

run-time management of system information presents unique

challenges related to the implementation of intelligent probes

that should be able to minimize the impact of monitoring on

the overall system behaviour. Our work can be considered

similar in some concepts to [10], in which link utilization is

monitored to implement a strategy for controlling congestion

in on-chip networks, or [11] and [12], where monitoring of

NoCs to detect security violations in suggested. However, we

differentiate from [10], [11], [12] in the fact that we propose

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



NoC

NI

OCP/IP
Adapter

MCmd

MAddr

MData

MBurstLength

MBurstPrecise

MBurstSeq

MReqLast

MConnID

MThreadID

MReqInfo

SCmdAccept

SResp

SData

SThreadID

Target

NI Kernel

NodeID

S
ch

ed
u

le
r

E
v
en

t 
G

en
er

at
o
r

TMP

NI

NI Kernel

NodeID

OCP/IP
Adapter

MCmd

MAddr

MData

MBurstLength

MBurstPrecise

MBurstSeq

MReqLast

MConnID

MThreadID

MReqInfo

SCmdAccept

SResp

SData

SThreadID

Initiator

S
ch

ed
u

le
r

THP

E
v
en

t 
G

en
er

at
o
r

TMP

CTP

Fig. 1. Monitoring architecture including the proposed probes

a more general approach that can be considered valid for all

type of NoC based adaptive systems.

III. OVERVIEW OF MONITORING ARCHITECTURE

A. General Architecture

In our work, we refer to a NoC-based MPSoCs with

memory-mapped cores. The NoC implements a transaction-

level protocol [13], with cores acting as initiators or targets of

transactions. We assume a source-based routing, and a worm-

hole control flow strategy. The monitoring system is mainly

composed of three elements: probes (P), the communication

infrastructure (NIs and Routers (R)), and a Run-time Manager

(RTM).

In probes, transactions are analysed when requested by

the core (in case of probes at initiators’ NI), or when it

receive them (probes at targets’ NI), in parallel with operations

performed by the NI kernel for the protocol translation from

the OCP/IP interface.

Probes generate Events (definition is given Subsection III-C)

to communicate to the central unit (RTM) the information

collected. Without loss of generality, we assume in our ar-

chitecture a Master/Slave configuration [3], where a master

processor is in charge of acting as RTM and collecting and

elaborating information from the several probes distributed in

the system.

B. Types of Profiling

From the analysis of possible transactions requested by a

core acting as initiator (or target), we identified three general

categories of profiling that can be extracted by our monitoring

system:

• Throughtput: amount of traffic generated and received by

cores is monitored in order to measure communication

bandwidth required by applications;

• Timing/latency: time can be monitored at different levels

and different purposes. We can distinguish between time

monitoring involving communication and computational

aspects of applications;

• Occurrences: counters for measuring the occurrence of a

particular event can be placed within the NI to monitor

the number of requests of access to a specific address

range and its related memory-mapped element (e.g. core,

memory, I/O, etc.).

C. Event messages

As definition of event message, we comply with what

discussed in [6]: an Event can be represented as a tuple com-

posed of an Identifier, a Timestamp, a Producer, and several

Attributes.The Identifier identifies events of a certain class of

events, and it is unique for each class. The Timestamp defines

the time at which the event was generated by the producer,

identified by the field Producer. Attributes are represented in

the form Attribute = (Attribute Identifier, V alue), and
the type of attribute and its value depend on the type of the

event generated.

In our case, Identifier specifies the type of information de-

tected by the probe, while Producer specifies the identifier of

the NoC node. While not using Timestamp (we assume service

packets transmitted in order and with prioritized or predictable

latencies - statistics about global timing are therefore generated

inside the RTM), Attributes depend on type of probe and

information collected.

IV. IMPLEMENTATION

In this Section, we present implementation details of the

probes embedded in NIs, able to provide measurements de-

scribed Section III. Fig. 1 shows NIs (at initiator and target)

embedding the probes we propose (in grey in the figure).

The Throughput Probe (THP) provides measurements about

the amount of traffic generated by cores. Timing Probes

(TMP) provide indication about time measurements, while the

Counter Probe (CNP) about occurrences of a specific trans-

action. The Event Generator is triggered by the probes and

generates the event packets sent to the RTM to communicate

values and information measured.

A. Throughput Probe

Fig. 2 shows architectural details of the Throughput Probe.

This probe keeps track of the amount of traffic to/from a

selected range of addresses generated by an initiator (thread

running on a processing element). The bandwidth is calculated

by considering the length of data loaded/stored per each

connection by every initiator during a defined time window.

The length of the time window can be set by the RTM at run-

time or by the designer at design time. The time window is

implemented by using a programmable counter. In general, the



E
v
e
n

t 
G

e
n

e
r
a
to

r

NodeID
NI

Time Window Generator

THP

MConnID

MThreadID

OCP/IP

Adders

+
+

RTH

Rmax

>

MBurstLength

Configuration Registers

MCmd Rmin

<

no_threshold

LUT_PathAddrNI
Kernel

logic

enable

CNP
Counters

Rmax

>

Rmin

<

no_threshold

SResp

enable

Fig. 2. Implementation details of the Throughput Probe (THP) and the
Counter Probe (CNP)

probe is realized by using a combination of registers (RTH,i)

where the collected run-time information is stored, and circuits

to trigger the Event generator. Through the RTM, each register

is associated to a specific connection and is selected by the

combination of the OCP/IP signals which identify the initiator

(MCmd,MConnID, andMthreadID, respectively indicating the

type of operation (load/store), the connection identifier, and the

thread identifier) and the LUT PathAddr signal, coming from

the look up table (LUT) of the NI Kernel. LUT PathAddr

drives the RAM of the LUT looking up the memory address

present as input in the OCP/IP MAddr signal to retrieve the

path to be inserted in the header of the packet.

When a core requests a transmission by driving the MCmd

signal of the OCP/IP interface of the NI, the length of the

data transmitted or received (given by the OCP/IP signal

MBurstLength) is added to the value already stored in the

selected RTH,i register. At the end of the time window,

the Event Generator is triggered and creates a packet to

communicate the collected information to the RTM.

In order to potentially reduce the amount of data transmitted

by the Event Generator, we implemented the possibility to

transmit only information about data traffic exceeding or under

a certain thresholds set by the RTM, and stored in registers

Rmax,i and Rmin,i.

B. Timing Probes

Fig. 3 shows architectural details of probes monitoring

timing related aspects of applications. We distinguish probes

implemented at initiators (TMPI) and targets (TMPT). Only

timing probe at initiator is shown in Fig. 3. TMPIs monitor

time needed by transactions to be completed. We assume a

transaction being composed of a request sent by the initiator

to the target, and of an acknowledgement signal sent back by

the target to the initiator. The transaction can be considered

complete when the initiator receives the last part of the packet

containing the acknowledgement message. When the initiator

begins a transaction, the probe detects a change in the OCP/IP

signalMCmd, recording a timestamps in the associated register

MCmd

MBurstLength

MBurstPrecise

MBurstSeq

MReqLast

MConnID

MThreadID

SCmdAccept

SResp

SData

SRespLast

TMPI

Adders

+
+

RTM

Rmax

>

Rmin

<

no_threshold

enable

Timer

Configuration Registers

NodeID
NI

LUT_PathAddrNI
Kernel

SThreadID

OCP/IP

E
v

e
n

t 
G

e
n

e
r
a

to
r

logic

Fig. 3. Implementation details of the Timing Probe at initiator (TMPI)

RTM,i. Therefore, the probe waits for the transaction to be

finished, i.e., when the acknowledgement message is received

by the NI of the initiator and, in case of load requests, the last

information received is passed to the initiator (corresponding

to a change of state of the OCP/IP signal SResp). When

the transaction ends, the value previously stored in RTM,i is

subtracted from the current time, and the Event Generator is

triggered to communicate the event and the value collected to

the RTM.

The second type of timing monitoring probe we propose

is in charge of measuring time employed by targets to ex-

ecute their tasks. Differently from TMPs, these probes are

implemented at targets’ NIs. When receiving the requests of

a new transaction, and on the change of the OCP/IP signal

MCmd (Master signal driven is this case by the target’s NI),

the timestamp is recorder in register RTM,i, as well as the

information about the initiator of the transaction taken from

the header of the packet. Once the execution is completed,

the time recorded is subtracted from the current time, and the

Event Generator is triggered to generate the event packet.

As in the case of THPs, we implemented the possibility

to communicate the event and the related information only if

the time measured is outside boundary values stored in two

registers (Rmax,i and Rmin,i).

C. Counter Probe

Counter Probes (CNPs) (located at the initiator’s NI and

shown in Fig. 3), monitor the number of transactions directed

towards a specific target. They are mainly composed of

counters, incremented when a new transaction starts. Similarly

to THPs, they collect data during a time window and are

assigned by the RTM to initiator - target tuples. They are

selected by the combination of MCmd, MConnID, MthreadID,

and LUT PathAddr signals. At the end of the time window,

the Event Generator is triggered and creates a packet to

communicate the collected information to the RTM. A system

with threshold has been implemented as well, to reduce the

amount of traffic transmitted to the RTM.



TABLE I
AREA COST OF PROBES

Area Percentage (%)

Probes at Initiator 100

THP 26.38

TMP 26.73

CNP 20.62

Event Gen. 26.27

Probes at target 100

TMP 75.13

Event Gen. 24.87

V. SYNTHESIS AND EXPERIMENTAL RESULTS

In this Section, we present synthesis results for the imple-

mentations of the probes presented in Section IV, obtained

by using the 0.13µm HCMOS9GPHS STMicroelectronics

technology library. The synthesis was optimized for a clock

frequency of 500 MHz. In Table I, we show the area per-

centage values of the proposed components, in the case of the

implementation of a monitoring system able to monitor 4 con-

nections with THP, TMP and CNP probes. The value shown

for the THP includes also the programmable counter used to

generated the time window, employed also by CNPs to time

the generation of their data. Area occupied by components

increases linearly with the maximum number of connections

that it is possible to monitor at the same time (the graph is not

shown for space limitation). This results is expected, being in

fact the area proportional to the number of registers recording

the monitored information, directly proportional to the number

of possible connections. Considering as reference [13], the

total area overhead of the system is around 27% of the area

occupied by the NI for the probes implemented at the initiator,

while around 10% for those implemented at the target.

In order to avoid the delay of monitored information due to

possible network congestion, the transmission of packets from

probes must be guaranteed through the use of priority com-

munication or guaranteed throughput services [13]. Therefore,

the communication system should be over-designed in order

to allocate the monitoring traffic. The bandwidth required by

the proposed probes can be evaluated considering that in case

of THPs and CNPs an event packet will be produced every

time the time window expires, while in case of TMPs at the

end of a transaction or a task execution. Therefore, for THPs

and CNPs the bandwidth can be expressed as:

BWTHP =
n bitheader + (n bitinfo ∗ n conn)

twclk

∗ fNoC (1)

where n bitheader is the number of bits needed by the

packet header, n bitinfo the length of the information trans-

mitted for each connection, and n conn the number of con-

nections monitored by the probe. twclk is the length of the

time window expressed in number of clock cycles, while fNoC

the frequency at which the NoC transmits. For TMPs, the

bandwidth is equal to:

BWTMP =
n bitheader + n bitinfo

tranclk

∗ fNoC (2)

where tranclk is the time needed for executing the trans-

action or the task. While in the first case the value of the

bandwidth can be calculated once that the length of the

minimum time window to be used has been decided, the value

of BWTMP should be estimated considering the minimum

transaction time foreseen for the applications.

VI. CONCLUSIONS

In this paper, we presented the basic blocks of a run-

time monitoring system for NoC architectures, whose goal

it to monitor run-time system activities through the Network

Interface. Information collected is sent to a central unit (RTM),

in charge of elaborating data received. The monitoring sys-

tem is targeted to be used with adaptive and reconfigurable

platforms, in order to provide useful information in the op-

timization of the use of system resources in environments

where user requirements are not fully known at design time,

or in which multiple applications are competing for same

shared resources. We proposed the use of ”intelligent” probes

to monitor throughput, time and occurrence of events in

applications, and we presented architectural details of their

implementation. We analysed the overhead associated with an

ASIC implementation of the monitoring system, as well as

providing an estimation of the traffic generated by probes.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on Chips: A New SOC
Paradigm,” IEEE Computer, 2002.

[2] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intecon-
nection networks,” in Proc.of DAC’01, 2001.

[3] V. Nollet, D. Verkest, and H. Corporall, “A Quick Safari Through the
MPSoC Run-Time Management Jungle,” in Proc. of ESTIMedia’07,
2007.

[4] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H. Corporaal, “Run-
Time Management of a MPSoC Containing FPGA Fabric Tiles,” IEEE

Trans. on VLSI Systems, vol. 16, no. 1, pp. 24–33, January 2008.
[5] Open Core Protocol Specification 2.2.
[6] C. Ciordas, T. Basten, R. Radulescu, K. Goossens, and J. Van Meerber-

gen, “An Event-Based Monitoring Service for Networks on Chip,” ACM

Trans. on Design Automation of Electronic Systems, vol. 10, no. 4, pp.
702–723, Oct. 2005.

[7] B. Vermeulen, K. Goossens, and S. Umrani, “Debugging Distributed-
Shared-Memory Communication at Multiple Granularities in Networks
on Chip,” in Proc. of NOCS’08, 2008.

[8] C. Ciordas, K. Goossens, R. Radulescu, and T. Basten, “NoC Monitor-
ing: Impact on the Desing Flow,” in Proc. of ISCAS ’06, 2006.

[9] S. Tang and Q. Xu, “A multi-core debug platform for noc-based
systems,” in Proc. of DATE’07, 2007.

[10] J. van Den Brand, C. Ciordas, K. Goossens, and T. Basten, “Congestion-
Controlled Best-Effort Communication for Networks-on-Chip,” in Proc.

of DATE ’07, 2007.
[11] L. Fiorin, C. Silvano, and M. Sami, “Security Aspects in Networks-on-

Chips: Overview and Proposals for Secure Implementations,” in Proc.

of DSD’07, 2007.
[12] J. P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “NoC-centric

security of reconfigurable soc,” in Proc. of NOCS’07, 2007.
[13] A. Radulescu, J. Dielissen, S. G. Pestana, O. Gangwal, E. Rijpkema,

P. Wielage, and K. Goossens, “An Efficient On-Chip NI Offering
Guaranteed Services, Shared-Memory Abstraction, and Flexible Net-
work Configuration,” IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 24, no. 1, January 2005.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




