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Abstract—This paper presents an accurate and scalable im-
plementation of an energy-aware simulator for wireless sensor
networks (WSN’s). Scalability and accuracy have been achieved
through an energy-aware instrumentation of the Instruction Set
Simulator of node’s microcontroller and a functional SystemC
TLM model of the radio module implementing the IEEE 802.15.4
protocol. The framework allows to execute actual software and
to evaluate accurately its effect on the network lifetime. We first
validate energy estimation results against a working hardware
prototype of a wireless sensor node. The methodology, compared
against state-of-the-art simulators such as NS-2, represents a
flexible and scalable solution for fast and accurate prototyping
of WSN software.

I. INTRODUCTION

Wireless sensor networks (WSN’s) are complex systems that
require scalable, flexible, and accurate simulation tools for
their design [1]. The number of entities involved in a WSN
may range from tens to thousands according to the application
and the same simulation tool must reproduce their behavior in
both cases without problems in speed and resource consump-
tion. A good technique to speed up the simulation is decreasing
the detail level at least for some nodes. This approach requires
good flexibility, i.e., capability to simulate nodes described at
different detail level or even with different functionality, e.g.,
sensing, routing, and bridging towards other networks. Finally
WSN simulation must be accurate, i.e., statistics must capture
the performance of the actual system with high fidelity. A
particular aspect which must be accurately evaluated is power
consumption that may affect network lifetime.

Figure 1 shows the different components to be modeled
in a simple WSN of four nodes. First of all, not all nodes
require the same level of detail. For example, Node O requires
an accurate modeling of HW (e.g., I/O peripherals, timers,
analog-to-digital converter, sensors, and radio module) and
SW (e.g., application, operating system, drivers and interrupt
service routines) components while in other nodes HW/SW
partitioning has not been performed. Node 1 and node 2 are
described as a set of smaller inter-connected blocks while
Node 3 is described in a functional way. Furthermore, the
interconnection of smaller blocks in Node 1 and Node 2 can
be represented either at transactional level (TLM) (i.e., through
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Fig. 1. Modeling aspects of a WSN.

function calls) or at RT level (RTL) (i.e., through signals and
ports).

Among the tools focusing on the software aspect, WSim [4],
TOSSIM and its extension PowerTOSSIM [2] emulate the
target instruction set on the host machine where the simulator
runs. Regarding network simulation, WSNet [4] and NS-2 [3]
are two of the traditional tools for WSN’s. They represent
nodes as traffic generators, focusing on the accurate simulation
of communication protocols. Both approaches do not allow
to describe HW components as in traditional HW description
languages and, therefore, lack of integration with the HW
design flow. Furthermore, they do not reproduce power-saving
mechanisms based on a shared knowledge between network
modules and the CPU.

A different solution consists in using an instruction set
simulator (ISS) to execute the target code. This approach
allows to simulate frequency scaling as well as shutdown
policies as long as the ISS supports these features. However,
the ISS cannot model efficiently the other HW components
belonging to a wireless node and the communication channel
and thus its combined use with other tools could improve
accuracy. In literature SystemC [5] has been combined with
ISS to create a co-simulation approach [6]. SystemC has
the key feature of allowing the representation of system
components at different detail levels, i.e., behavioral, structural
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Fig. 2. Co-simulation schema.

and gate level. Furthermore, it can be used also to simulate
the communication channel through appropriate libraries as
explained below. These features increase the scalability of
the WSN simulator by allowing the simulation of network
nodes with variable accuracy. During design and optimization
of node’s software, programmers require a few nodes running
the target software. Other nodes acting as routers or interfering
nodes can be represented as traffic generators thus speeding
up simulation time.

The paper is organized as follows. Section II gives an
overview of the co-simulation approach as starting point of
our work. Section III describes our contribution to provide
a scalable power-aware co-simulation of WSN’s. Section IV
describes how this methodology can be applied to a reference
platform. Section V reports and discusses the experimental
results. Finally, conclusions are drawn in Section VI.

II. BACKGROUND
A. Co-simulation approach

The energy-aware co-simulation methodology described in
this paper is based on the ISS-centric co-simulation ap-
proach [6] depicted in Figure 2. This approach consists of an
ISS running the application SW and system SW (i.e., operating
system, drivers and interrupt service routines) interfaced to
hardware models, specified by using SystemC at some levels
of abstraction.

The ISS reproduces the effect of each instruction on the
internal registers and memory locations. It keeps the notion
of time by assigning a given number of clock cycles to each
instruction and assuming a given clock frequency. In the case
study of Section V the dynamic control of clock frequency will
be the core of a power-saving policy. In general, the number
of clock cycles needed to perform an instruction also depends
on the presence of a cache which can be modeled in the ISS.

The memory is modeled directly in the ISS as a data array.
An interrupt controller has been also implemented in the
ISS; when an interrupt arrives, the value of program counter
is changed accordingly to execute the corresponding service
routine.

Hardware simulation is implemented by SystemC [5] which
provides both a simulation kernel and a HW description
language to describe devices at various level of detail (i.e.,

from transactional level to RT level). The SystemC kernel was
modified to communicate with the ISS through inter-process
communication primitives (e.g., a socket or shared memory).
The information exchanged are: commands to read/write HW
registers (from ISS to SystemC), interrupts (from SystemC
to ISS). Each piece of information exchanged reports the
simulation time at which it has been generated so that HW
and SW simulations can proceed in a synchronized way.

B. Network Simulation

Figure 3 shows the architecture of a network scenario
modeled with SCNSL. Three components are highlighted, i.e.,
the Node, the NodeProxy, and the Network.

Module Node models a network node and it can be used as
a wrapper or base class for any SystemC module which must
communicate over the channel. The node has two input ports
and an output port to model network input, received signal
energy and network output, respectively. The presence of a
network port for each direction allows to model both wired
and wireless interfaces; the input port reporting the received
signal energy has been introduced since in some modern
wireless interfaces it can be used both for carrier sense and
localization techniques based on the evaluation of the received
signal strength. Module Node has a set of properties which
are used by the simulation framework to reproduce network
behavior. Transmission rate represents the number of bits per
unit of time which the interface can handle; it is used to
compute the transmission delay and the network load. The
transmission power is used to evaluate the transmission range
and the signal-to-noise ratio.

Class Network is the core of the network simulator. It
reproduces the behavior of the channel and manages the
packet forwarding from the source node to destination nodes;
transmission delay, path loss, collisions, and the state of
destination nodes are taken into account. To accomplish this
task, class Network maintains an object reference for each
NodeProxy and keeps track of every on-going transmission.

Module NodeProxy is the interface between Nodes and
Network and each instance of Node must be bound to
a different instance of NodeProxy. Each Node interacts
with its own NodeProxy by using SystemC ports only,
while NodeProxies maintain an object reference of the
Network and call its methods. Also the Network instance
maintains an object reference for each NodeProxy. By
using NodeProxy, nodes can be designed as pure SystemC
modules without object references to other non-SystemC
classes; this approach enables the use of traditional hardware
verification and synthesis tools. NodeProxy manages two
node properties: node position and receiver sensitivity. Node
position is used to compute the path loss and to reproduce
a mobile scenario. The receiver sensitivity is the minimum
signal power below which the packet cannot be received.

III. POWER-AWARE WSN CO-SIMULATION

Figure 4 shows the proposed modeling approach which
is applied to an example of three interacting wireless nodes
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shown in the upper right part of the Figure. Normal arrows
represent interactions inside the model, while dashed arrows
represent interactions between simulation tools.

A. Support to Power-awareness

With respect to the basic co-simulation approach shown
in Figure 2, we added some new features to support power-
awareness:

« anew bi-directional channel between the ISS and the Sys-

temC simulation kernel to exchange power information;

« a mechanism for the dynamic change of clock frequency

in the ISS.

B. Hierarchical Modeling

In Figure 4 the nodes are described with different detail lev-
els. Node 0 is described by fully exploiting the co-simulation
framework described in Section II. The ISS executes appli-
cation SW, the operating system, drivers, and the interrupt
service routines. SystemC is used to model the radio interface
and other HW peripherals such as timers, the serial interface,
and physical sensors.

SystemC with different abstraction levels trading off between
design needs and simulation speed; the description can be
either structural, i.e., reproducing the interaction of smaller
modules, or functional, i.e., reproducing the behavior (e.g.,
through a finite state machine). Furthermore, the interaction
of smaller modules can be described either at transactional
level or RT level.

SystemC is also used to reproduce the behavior of the radio
channel through the adoption of an open source library named
SystemC Network Simulation Library (SCNSL) [8] whose
features are summarized in Section II-B. Through this library,
SystemC becomes a glue which gathers together all network
nodes as a kind of single system.

The choice between co-simulation and pure SystemC for
node modeling depends on the design phase and evaluation
needs. Pure SystemC may be used to create raw functional
descriptions to be progressively refined while co-simulation
is used when HW/SW partition has already been performed,
when the HW platform has been chosen, and when the
designer wants to test the actual SW and to evaluate its
performance and resource needs.

In general co-simulation is slower than pure SystemC sim-
ulation because of the need to exchange information between
two different processes on the host machine. However SW
and HW components can coupled at different levels of detail
leading to different co-simulation overhead as follows.

e Cycle-accurate interaction: each read/write operation on
HW registers and interrupt event is decomposed into bus
operations and each operation generates messages be-
tween the ISS and SystemC. This kind of interaction can
be used when the HW description is highly detailed and
the bus has been introduced. However, the co-simulation
overhead is very high and common CPU emulators do
not generate bus actions; for these reasons we decided to
avoid this approach.

e Register-driven interaction: each read/write operation on
HW registers and interrupt event generates exactly one
interaction between the ISS and SystemC. The advantage
of this approach is that actual SW drivers can be used
since they access HW components by writing/reading
registers. In our case study, this approach has been used
to interact with simple HW components (i.e., the UART
and the accelerometer).

o Function-driven interaction: each interaction between the
ISS and SystemC represents a high-level operation (e.g.,
packet transmission/reception on the network interface).
This kind of interaction leads to the lowest co-simulation
overhead but it requires the use of specific device drivers
in the guest environment. In our case study, this approach
has been used to interact with complex HW components
such as the radio module.

IV. REFERENCE POWER-AWARE MODELING

This Section describes the modeling of a wireless sen-
sor network based on the AquisGrain-2 node provided by
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Fig. 5. Model of the AquisGrain-2 node and of the wireless network.

Philips [9] and designed for body-worn smart medical sensors.
The main modules belonging to an AquisGrain2 node are: (I)
Application SW and communication protocol stack, (II) Texas
Instruments CC2430-F128, and (III) sensors/actuators. The
CC2430-F128 is a system-on-chip containing an Intel 8051
MCU, 128 KB flash memory, an IEEE 802.15.4 radio module,
a UART interface and several analog and digital ports. The
Intel 8051 is a 8-bit data, 16-bit address microcontroller for
embedded systems. The CC2430-F128 extends the 8051 ad-
dressing space to 128 KB by using a support register and a
bank-oriented accessing mode. AquisGrain-2 node is equipped
with a LIS3LV02DQ accelerometer by ST Microelectronics;
this chip is connected to the MCU through the UART interface.

The test application consists in sampling acceleration values
and sending them to a sink node. The application SW on
Node 0 reads acceleration values from the UART module and
puts them into the RF module for the transmission on the radio
channel.

A. Model of the AquisGrain platform

Figure 5 shows how the different elements of the co-
simulation framework are applied to reference platform. We
used an ISS named pCSim [7] which emulates the behavior
of the Intel 8051 microcontroller. This choice is related to
the need of simulating a specific WSN platform; however
the changes introduced in pCSim can be also applied to
other ISS’s. uCsim [7] recognizes the same HEX-format
executable files downloaded on the actual board. The ISS has
been modified to support co-simulation, CC2430 addressing
mechanism, and clock frequency change. The accelerometer
and the UART are memory-mapped devices modeled at RT
level by using the SystemC language; co-simulation of these
components follows the register-driven approach explained in
Section III-B.

The radio interface contains the finite state machine of the
peer-to-peer unslotted 802.15.4 MAC protocol. The states are
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Fig. 6. Finite state machine of the IEEE 802.15.4 MAC protocol.

shown in Figure 6; each of them not only describes a com-
munication behavior but also it is characterized by a specific
energy consumption thus enabling accurate power estimation
during simulation. This module has been implemented both at
RTL and at TLM-PVT level to analyze simulation speed in
both cases.

TinyOS implements CC2420 radio stack (e.g., the Telos and
MicaZ platforms both use the CC2420 radio stack). However,
the TinyOS radio stack does not support the full IEEE 802.15.4
standard; in particular, it provided B-MAC primitives and
sends 802.15.4-compliant packets, but does not implement the
802.15.4 MAC protocol.

B. Application and Frequency Scaling

Modern microcontrollers supports various operating fre-
quencies that can be programmed by the applications through
a dedicated API. However, depending on the system architec-
ture, certain frequencies can be prohibited when the node is in
a particular state. For instance, our MCU is integrated together
with the RF transceiver. Since the transceiver requires the
highest clock frequency to work, frequency scaling is disabled
during transmission and reception. On the other side, when
the radio interface is off, the frequency of the microcontroller
can switch among a number of discrete frequencies. Typically
these frequencies are obtained by dividing the maximum
frequency by a factor of two. Indeed, frequency scaling is
obtained by a pre-scaler hardware module acting on the clock
signal entering the microcontroller core.

The acceleration sample rate depends on the speed of the
microcontroller, as shown in Table I. There is a negligible
delay for changing the speed at run time being this obtained by
programming a pre-scaler sitting on the clock path to the core.
In all the experiments the transmission buffer of the network
interface is set to 32 packets. Each simulation ends after the
transmission of a given amount of packets over the network.



Frequency [[ Output Rate | Power

8 MHz 2 KHz 8.25 mW

16 MHz 4 KHz 14.85 mW

32 MHz 8 KHz 31.35 mW
TABLE I

POWER CONSUMPTION AND PERFORMANCE OF THE MICROCONTROLLER
AS A FUNCTION OF THE CLOCK FREQUENCY.
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for a data request operation with acknowledge received.

V. EXPERIMENTS
A. Validation of Power Estimation

Characterization and validation of power consumption es-
timation provided by the network simulation has been per-
formed against the Aquisgrane-2 wireless sensor node. The
current absorbed by the radio interface has been monitored
and sampled using a data acquisition board (DAQ) connected
to a PC [10]. This allowed to extract power consumption levels
used for power state characterization.

Since the 802.15.4 model captures the most relevant states
of the transceiver both from a power and timing viewpoint, the
resulting energy estimation is very accurate. This is confirmed
by validation results where the energy consumed for one
packet transmission has been quantitatively compared between
hardware and simulator. Results indicate an error lower than
5%. In Figure 7 the simulator trace is reported together with
the power trace obtained by hardware current measurements.

B. Scalability Assessment

Different scenarios have been simulated with SCNSL by
using nodes at different abstraction levels: /) all nodes at
TLM-PVT level, 2) all nodes at RTL, and 3) Node 0 at
RTL and other nodes at TLM-PVT. The designer had written
172 code lines for the sc_main (), 688 code lines for the
RTL node and 633 code lines for the TLM-PVT node.

Figure 8 shows the CPU time as a function of the number of
nodes for the three scenarios and for a simulation provided by
NS-2 representing the behavior of a pure network simulator.
A logarithmic scale has been used to better show results.
Simulations have been performed on the Intel Xeon 2.8 MHz
with 8 GB of RAM and 2.6.23 Linux kernel; CPU time has
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Fig. 8. CPU time as a function of the number of simulated nodes for the

different tools and abstraction levels.

been computed with the t ime command by summing up user
and system time.

The speed of SCNSL simulations at TLM-PVT level is
about two-order-magnitude higher than in case of NS-2 sim-
ulation showing the validity of SCNSL as a tool for efficient
network simulation. Simulations at RT level are clearly slower
because each node is implemented as a clocked finite state
machine as commonly done to increase model accuracy in
System design. However a good trade-off between simulation
speed and accuracy can be achieved by mixing nodes at
different abstraction levels; in this case, experimental results
report about the same performance of NS-2 with the advantage
that at least one node is described at RT level.

C. Design of energy management policies

In this section we describe how system designers can profit
from the proposed framework to compare the effectiveness of
power management policies for wireless sensor networks. The
policies are implemented within the network interface driver,
so that their cost in terms of performance and power is taken
into account.

The clock scaling support can be exploited by an energy
management policy to save power when the network is con-
gested. In this case, the processing speed can be slowed-
down and later sped-up when the congestion period ends. The
transmission queue can be used as a monitor of the network
congestion. In this experiments, congestion is emulated by
imposing busy periods within the 802.15.4 model.

When a congestion period begins, the transmission queue
starts filling-up at a speed depending on the producer rate. In
order to save power on the microcontroller, a simple approach
could be to switch to the lowest possible frequency (or even
shut-off) when and if the transmission queue becomes full
and restore the maximum frequency when the queue starts to
be depleted again. A more aggressive approach would be to
scale the processor speed before the queue is full to save more
power. However, there are two side effects on the performance
viewpoint. First, the occupancy level of the queue is lower on
average, which implies that there could be less packets to be
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transmitted once the congestion period finishes. Second, if the
algorithm is not reactive enough, the processor speed at the end
of the congestion period could be lower than the maximum,
leading to a lower transmission rate on average. As such, there
is a trade-off between power savings and performance that
must be explored.

The trade-off depends on the characteristics of the control
law by which the core frequency is regulated depending
on the queue occupancy, which in turns depends on the
network congestion. The simulator allows to tune the control
algorithm to achieve the wanted trade-off. In this experiment,
the adaptive policy is implemented using a linear proportional-
integrative control law.

Energy comparison results between a simple shut-down pol-
icy and a congestion-adaptive approach are shown in Figure 9
as a function of the congestion fraction. This is the fraction
of simulated time in which the network is busy because of
congestion. Energy consumption values refer to one single
node. Energy consumption when no power management policy
is applied are also reported. Performance penalties related to
the adaptive policy are also reported in Figure 10. They are
normalized with respect to the simulation without congestion.
Thanks to the energy estimation capabilities and frequency
setting support it is possible to evaluate the effectiveness of
power management policies and refine them to obtained the
wanted performance vs power trade-off.

VI. CONCLUSIONS

This paper presented an energy-aware simulation tool for
wireless sensor networks. We discussed its main features in-
cluding the synchronization between ISS and SystemC simula-

tion engines and the power estimation technique. We validated
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Texas Instruments and we compared the performance of the
tool with respect to NS-2. Finally, we showed the use of the
tool to design a power management policy based on network
conditions.
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