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Abstract—The IEEE 802.15.4a amendment has introduced
ultra-wideband impulse radio (UWB IR) as a promising physical
layer for energy-efficient, low data rate communications. A
critical part of the UWB IR receiver design is the low-power
implementation of the digital baseband processing required for
synchronization and data decoding. In this paper we present the
development of an application-specific instruction-set processor
(ASIP) that is tailored to the requirements defined by the
baseband algorithms. We report a number of optimizations
applied to the algorithms as well as to the hardware architecture.
This enables performance increases up to a factor of 122x and
energy consumption decreases up to 90x as compared to a 16-
bit baseline architecture. Furthermore, this ASIP offers greater
flexibility due to programmability as compared to an ASIC
implementation.

I. INTRODUCTION

Within IMEC’s Human++ research program [1], ultra-low
power radio transceivers are identified as the key components
in future wireless sensor networks for mobile healthcare appli-
cations. IEEE 802.15.4a ultra-wideband impulse radio (UWB
IR) represents a potential communication scheme for these
low-power radios.

UWB IR transceivers typically make use of an analog/digital
partitioning: An analog radio front-end is used to transmit
and receive modulated RF signals. The baseband signals are
encoded and decoded by a digital baseband processor as
depicted in Fig. 1.

In first generation systems an ASIC implementation has
been employed for digital baseband processing [2]. This
implementation has been extended to an application-specific
instruction-set processor (ASIP), offering greater flexibility as
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Fig. 1. Baseband processing principle

well as better energy-efficiency [3]. Both implementations are,
however, operating on a predecessor modulation scheme and
do not support the latest revision of the standard. This paper
presents the design and implementation of a new baseband
ASIP supporting the low-power and low-rate modes of the
novel IEEE 802.15.4a standard amendment [4]. In addition to
the previous ASIP, basic channel estimation and a rake receiver
structure are being considered.

Section II gives a brief introduction to IEEE 802.15.4a ultra-
wideband impulse radio and baseband algorithms. The design
process of the baseband ASIP is described in Section III.
Furthermore, the design methodology is outlined. In Section
IV various optimizations are presented. Finally, Section V il-
lustrates implementation results and in Section VI conclusions
are drawn.

II. IEEE 802.15.4A ULTRA-WIDEBAND IMPULSE RADIO

Ultra-wideband impulse radio communication is based on
the emission of very short pulse waveforms, exhibiting wide-
band spectral characteristics in the frequency domain. Due
to the stringent UWB emission limits (e.g., [5]), the energy
contained in a single pulse is very low. In order to be still
able to extract information out of UWB transmitted data and
to fight noise and interference, a technique called spreading is
used. A symbol to be transmitted is represented by a number
of consecutive pulses instead of a single pulse. The pseudo-
random bit sequence determining the polarity of these pulses
is referred to as spreading code.

In order to restore the original bit, i.e. to despread the
sequence of pulses, a cross-correlation operation

y =
N∑

i=1

(x [i] · C [i]) (1)

of N pulses x with the spreading code C, also of length N ,
is calculated. The value of the decision variable y determines
the value of the original bit.
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A. IEEE 802.15.4a Frame Structure

In IEEE 802.15.4a UWB IR systems data is being transmit-
ted in frames consisting of three major sub-parts:

• Synchronization header (SHR) / Preamble

• Data header (PHR)

• Data unit, i.e. the actual payload data (PSDU)

The synchronization header, also referred to as preamble,
is being transmitted in order to aid receiver algorithms in
timing acquisition and frame synchronization. It also serves
the purpose of channel estimation and gain control setting
optimization. This preamble is composed of SHR symbols that
contain a number of isolated pulses as depicted in Fig. 2.

The data unit and its header are constructed out of PSDU
symbols. Each symbol is able to carry two bits of information:
One bit is coded in the symbol half in which a burst, i.e.
a concatenation of pulses, occurs (burst position modulation,
BPM). Another bit is used to determine the polarity (phase)
of the burst itself (binary phase shift keying, BPSK). The state
of a linear feedback shift register (LFSR) varies the spreading
code for each transmitted PSDU symbol. This spreading code
determines the burst sequence as well as the exact burst
position within one of the symbol halves (”hopping code”).
A PSDU symbol is depicted in Fig. 2.

B. Baseband Algorithms

When designing the UWB IR baseband algorithms, the
frame structure as pointed out in Section II-A has to be taken
into account. The different sub-parts of a frame are processed
by different sub-algorithms.

1) Synchronization / Timing Acquisition: The synchroniza-
tion phase is commonly composed of noise estimation, signal
detection (coarse acquisition), fine acquisition, channel esti-
mation and end-of-preamble search sub-states [7]:

• Initialization & Noise Estimation
All necessary data structures are initialized and a thresh-
old value corresponding to current noise levels is com-
puted.

• Signal Detection (SD)
The purpose of the signal detection state is to detect the
presence of an ultra-wideband impulse radio signal within
input data that is corrupted by noise.

• Fine Acquisition (FA) & Channel Estimation
The fine acquisition algorithm is used to optimize syn-
chronization and to detect false positives during signal
detection. Furthermore, channel estimation is integrated
into this algorithm.

• End-Of-Preamble (EOP) Search
The EOP search algorithm detects the end of the pream-
ble (synchronization header) and the start of the actual
payload data within the UWB IR frame.

2) Payload Decoding (PD) / PSDU Data Despreading:
Once all synchronization algorithms have been successfully
passed, the decoding of the actual payload data can be carried
out. A selective-rake receiver structure is employed in order to
achieve higher signal-to-noise ratios. The channel coefficients
previously derived by the channel estimation algorithm are
used as weights within the rake receiver structure.

III. DESIGN OF A BASEBAND ASIP

The methodology used for designing this ASIP employs a
gradual exploration process covering multiple processor archi-
tectures. The use of the following architectures for baseband
processing is investigated:

• Scalar RISC

• Vector RISC

• Vector Very Long Instruction Word (VLIW)

Each of these architectures is adapted to optimize the
execution of the baseband algorithms.

A. ASIP Design Flow

In the design process the IP Designer [6] tool suite by Target
Compiler Technologies as depicted in Fig. 3 was employed.
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Fig. 3. Target tools environment [6] used for baseband ASIP design



It allows for fast architectural exploration due to retar-
getability. The high-level description of the processor facil-
itates rapid architectural changes.

The highly optimizing C-compiler, the (dis)assembler and
the linker, are used to generate machine code for a given
processor architecture. This code is then executed and bench-
marked on the cycle-accurate instruction-set simulator. If
performance requirements are met, a HDL model can be
generated out of the same high-level description.

B. Architectural Exploration

We use a scalar 16-bit Harvard RISC processor as depicted
in Fig. 4 as the starting point in the architectural design
process. It comprises a 16-bit arithmetic logical unit (ALU),
a 16 × 16-bit register file (RF), load-store unit, branch unit
and instruction decoder. Furthermore, a custom extension unit
is used to speed up scalar UWB operations.

Due to the fact that the cross-correlation, which is heavily
employed by large parts of the baseband algorithms, is an ideal
candidate for parallelization, the move to a vector processor
seems obvious. A single instruction multiple data (SIMD)
architecture is hence used to investigate the impact of data
parallelism on execution performance. The vector architecture
as depicted in Fig. 4 is derived from the scalar architecture but
additionally includes a vector ALU, a vector register file and
vector data memory. In addition to standard vector operations,
dedicated UWB application-specific instructions are enabled
through the use of a custom extension unit and a spreading
code register.

In order to support real-time processing of IEEE 802.15.4a
UWB IR baseband data, the algorithmic functionality specified
above has to be executed on the baseband architecture obeying
several timing limitations. The minimum time spans of SHR
and PSDU symbols as well as the amount of data sampled per
symbol have to be taken into account. Maximum input data
rates of 1250.0 Mbit/s for SHR symbols1 and 624.4 Mbit/s

1These numbers are derived from timing requirements set forth in the
standard [4], an assumed ADC resolution of 5 bit as well as algorithm-
dependent settings.
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for PSDU symbols1 have to be sustained by the architecture.
Both, scalar and vector architecture, fail to meet these data
rates for moderate clocking frequencies (<250 MHz).

To achieve sufficient throughput, our proposed UWB base-
band architecture resembles a four issue-slot VLIW archi-
tecture, consisting of two slots containing scalar and control
functional units and two slots containing vector units. Func-
tional units specially tailored to the requirements of baseband
processing are present in the design and can be accessed
through custom instructions. Register-file sizes are adapted to
the resolution of the ADCs used in the radio front-end as well
as to algorithm requirements. Similar to the vector processor
described above, a dedicated spreading code register is present.
Fig. 5 presents an architectural overview of the final baseband
processor.

IV. ASIP OPTIMIZATIONS

A. Vector Correlation

A vital part of UWB baseband processing is the cross-
correlation of input data and spreading code as expressed
in Equation 1. The multiplications inside the sum can be
calculated independently from each other, hence enabling their
parallel computation. Due to the binary or ternary structure
of the spreading code the multiplication itself can be imple-
mented as invert/replace operation.

Furthermore, the different sub-sums can partly be calculated
in parallel, resulting in an adder-tree of depth log2(n) where
n is the number of vector elements.

B. Custom Instructions

The instruction-set of the VLIW processor is extended by
a number of custom instructions as listed in Table I. Scalar
operations are used to load, read out and modify the spreading
code register. Furthermore, special arithmetic operations are
present in the form of the addition of absolute values as well
as the emulation of a linear feedback shift register (LFSR).

Custom vector instructions are used to implement the par-
allelized computation of the cross-correlation as pointed out



TABLE I
LIST OF IMPLEMENTED CUSTOM INSTRUCTIONS

Instruction Input par. Outp. par.
Addition of absolute values (scl,scl) (scl)

Spreading code loada (scl) (-)
Spreading code storeb (-) (scl)
Spreading code rotatea (-) (-)

Spreading code shift-loada (scl) (-)
LFSR clocking (scl) (scl)

Vector SC correlation (PSDU) (vec) (scl)
Vector SC correlation (SHR) (vec) (scl)

Vector shift (vec) (vec)

aInternal spreading code register is modified.
bData is read from internal spreading code register.

in Section IV-A. Different variants for header as well as
payload decoding, operating on different representations of
the spreading code, are available. An additional vector logic
operation is present in the form of a vector shift instruction.

C. Algorithmic Optimizations

The baseband algorithms are adapted to the architectural
extensions implemented in the ASIP. The synchronization as
well as the payload decoding algorithms harness the cross-
correlation custom instructions as well as vectorization. Ex-
pensive mathematical operators such as divisions, squares and
roots can be replaced by suitable shift and absolute value
add instructions. Furthermore, by exploiting the size of the
register files, a multi-buffer synchronization approach can
be implemented. This speeds-up the signal detection state
by correlating more than one input data vector during each
synchronization phase.

D. Low-Power Techniques

Techniques for low-power logic design employed within the
baseband processor are clock gating and operand isolation.
By applying the clock gating technique [8] the distribution
of the clock signal to inactive modules of the processor is
avoided. The clock signal is then turned off, reducing the
power dissipation due to switching activity.

Operand isolation [9], often also referred to as guarded
evaluation, is used to avoid the propagation of switching
activity to inactive parts of the architecture’s datapath. Thus,
power dissipation due to unnecessary activity is eliminated
in unused modules. Both types of logic optimization are
performed automatically by the Target HDL generator [10].

V. EXPERIMENTAL RESULTS

Experimental results for evaluating the impact of archi-
tectural optimizations are structured into performance and
power consumption metrics. Performance metrics for different
processor architectures have been determined by means of
cycle count measurements on the instruction-set simulator
provided by the Target tool suite. For that purpose, various
versions of the baseband algorithms have been executed on

the different baseband processor architectures as introduced
in Section III-B.

In order to obtain power consumption characteristics of the
final UWB baseband processor, the VHDL model generated
by the ASIP tool flow, extended with the user primitives for
the custom functional units, is synthesized as well as placed
and routed for a TSMC 90nm process including memories.
The baseband algorithms are then simulated on the back-
annotated netlist of the placed and routed processor including
parasitics using Cadence NCSim 5.7. The value change data
(VCD) information obtained during these simulations is used
to obtain power consumption values with Synopsys PrimeTime
PX Z2007.

A. Performance Results

For evaluating the overall performance of an algorithm-
architecture combination, the different sub-algorithms have
been profiled while processing an entire UWB IR frame. Fig. 6
and Fig. 7 depict the worst-case amount of cycles consumed by
the different sub-parts of the baseband algorithm. In Fig. 6 the
cycle counts for the execution on the basic scalar architecture
are shown. Fig. 7 illustrates the cycle counts for processing the
same data executing the optimized algorithms on the optimized
vector VLIW baseband processor. It can be seen that the cycle
count numbers have been drastically reduced due to these
optimizations.

Fig. 8 and Fig. 9 illustrate the impact of different opti-
mizations on performance. For this, the baseband algorithms
were profiled on the vector VLIW architecture while gradually
enabling optimizations in the algorithms. The improvements
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due to vectorization and enabling different custom instructions,
i.e. vector correlation, addition of absolute values and LFSR
emulation (see Section IV-B), are shown as compared to
a scalar implementation. For the signal detection and fine
acquisition algorithms cycle count reductions by factors of
122x and 79x can be achieved. For the payload decoding
algorithm the combined use of all architectural improvements
enables a reduction by factors of 39x (spreading code length
16) and 41x (SC length 128).

It is observed that the signal detection during synchro-
nization is the most cycle-intensive state, hence determining
the required clock frequency. Only due to all architectural
optimizations, real-time processing of baseband data at a
relatively moderate clocking frequency of 225 MHz is made
feasible. At this frequency, a computational performance of
7.65 GOPS is achieved by the VLIW architecture as compared
to 0.23 GOPS and 3.6 GOPS for scalar and vector architecture
respectively.

B. Power and Energy Results

Out of active and idle power consumption as well as
the execution time profiling information, energy values and
average power consumption values per algorithm state are
calculated.

Fig. 10 summarizes the average power values obtained
for different baseband algorithms running on the final UWB
baseband processor. It can be seen that during the execution of
the signal detection (SD) and the EOP search algorithms for a
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spreading code length of 16, the average power consumption
is quite high. This is due to the fact that in these phases the
computational effort is high while the time span available for
processing is very limited. For the fine acquisition (FA) and
the decoding of the actual payload data (PD) on the other
hand, the duty cycle is considerably smaller, resulting in a
lower average power consumption.

Fig. 11 and Fig. 12 depict the decrease of energy con-
sumption for different versions of the synchronization and
the payload decoding algorithms. All algorithms are being
profiled on the final vector VLIW baseband architecture but
make use of different processor optimizations. The impact of
vectorization as well as the benefit of enabling different custom
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instructions, as introduced in Section IV-B, is shown. Due to
the shorter run-times, energy consumption is reduced by a
factor of 90x for signal detection algorithm and 70x for the fine
delay search state. For the payload decoding, improvements by
a factor of 30x for a spreading code length of 16 and a factor
of 29x for a SC length of 128 are achieved as compared to
the unoptimized version. These improvements enable energy-
efficient baseband processing.

C. Area Results

The overall area of the final baseband processor (vector
VLIW) after synthesis, place and route, is 0.77 mm2. Program,
scalar data and vector data memories contribute to almost 60%
of this area. Large data memories are required to buffer incom-
ing data of the radio front-end. A large part of the processor
core itself is used by the vector register file (58%) that is
especially needed for synchronization. The UWB IR functional
units implementing the custom instructions as mentioned in
Section IV-B only contribute to a small part (≈3%) of the
core area.

VI. CONCLUSIONS

Novel wireless sensor networks require ultra-low power
radios for data communications. The IEEE 802.15.4a ultra-
wideband impulse radio amendment represents a promising
physical layer for energy-efficient, low data rate commu-
nications. In this paper we present an application-specific
processor architecture tailored to the needs of digital baseband
processing.

Within the design process, various optimizations on differ-
ent levels of abstraction are introduced. By exploiting these
optimizations and migrating from a scalar to a vector and
finally to a vector VLIW architecture, performance speed-
ups in the range of 39x to 122x for payload decoding and

signal detection algorithms are presented. Furthermore, energy
consumption can be decreased by a maximum of 30x for
payload decoding and 90x for signal detection as compared
to the baseline implementation.

We conclude that an energy-efficient, low-power baseband
ASIP implementation for IEEE 802.15.4a is feasible while still
offering a greater amount of flexibility due to programmability
than an ASIC.
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