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Abstract—The main disadvantage of LFSR-based compression is 
that it should be usually combined with a constrained ATPG 
process, and, as a result, it cannot be effectively applied to IP 
cores of unknown structure. In this paper, a new LFSR-based 
compression approach that overcomes this problem is proposed. 
The proposed method allows each LFSR seed to encode as many 
slices as possible. For achieving this, a special purpose slice, 
called stop-slice, that indicates the end of a seed's usage is en-
coded as the last slice of each seed. Thus, the seeds include by 
construction the information of where they should stop and, for 
that reason, we call them self-stoppable. A stop-slice generation 
procedure is proposed that exploits the inherent test set charac-
teristics and generates stop slices which impose minimum com-
pression overhead. Moreover, the architecture for implementing 
the proposed technique requires negligible additional hardware 
overhead compared to the standard LFSR-based architecture. 
The proposed technique is also accompanied by a seed calculation 
algorithm that tries to minimize the number of calculated seeds. 
 

Ι. INTRODUCTION 
The ever-increasing size of modern Systems-on-Chips 

(SoCs), the extensive integration of pre-designed and pre-
verified modules (i.e., cores) in them, and the limited channel 
volume, memory and speed of Automatic Test Equipment 
(ATE) pose significant challenges to the test engineers; more 
and more test data have to be delivered as fast as possible deep 
into the chips. That is why embedded testing and test-data 
compression have become an integral part of today's testing 
methodology. According to the embedded testing approach, a 
compressed version of a core's test set is stored in the ATE and 
is then downloaded and decompressed on chip by means of an 
embedded decompressor. In this way, the burden of testing is 
moved from the ATEs to the on-chip structures. 

Two of the most popular categories of test-data compres-
sion techniques are the code-based ones [1]-[4], [7]-[9], [13], 
[14], [16]-[18], and the linear-decompressor-based [10]-[12], 
[15], [20], [21]. The schemes belonging in the first category 
employ data-compression codes for encoding the test sets of 
the cores under test (CUTs), whereas those of the second cate-
gory use linear decompressors (which are, most of the times, 
Linear Feedback Shift Registers – LFSRs). LFSR-based meth-
ods are very effective in exploiting the don't care bits (i.e., the 
x's) of the test sets [19]. Since the test sets of large industrial 
circuits include more than 95% don't cares [15], LFSR-based 
methods generally offer greater compression than the code-
based ones [19], and hence are more preferable. 

However, most of the times, LFSR-based techniques re-
quire constraints to be imposed in the ATPG process so as to 
reach their potential efficiency [19]. For that reason, they are 
not very effective for Intellectual Property (IP) cores for which 
no structural information is available. Such cores are accom-
panied by test sets that have been precomputed by their ven-
dors. Although such test sets still contain many  x's,  the  distri- 
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Fig. 1. Basic LFSR-reseeding architecture. 

bution of the x's in the test vectors usually prevents the adop-
tion of LFSR-based compression methods. 

To tackle this problem, a new LFSR-based compression 
technique is proposed in this paper. The proposed approach 
allows the compression of an arbitrary number of slices in an 
LFSR seed by encoding a special-purpose slice, called stop 
slice, as the final slice of each seed. Since a slice is the small-
est block of data that can be generated by an LFSR-based de-
compressor, by allowing each seed to compress as many slices 
as possible, we fully exploit its encoding ability. The stop slice 
is not applied to the CUT but is needed for indicating that the 
slice generation from a seed is over. Thus, all seeds can mani-
fest the end of their usage on their own, and that is why we 
call them self-stoppable. A stop-slice generation procedure is 
proposed that takes advantage of the inherent characteristics of 
a CUT's test set and generates stop slices that impose mini-
mum compression overhead. Moreover, the architecture that 
implements the proposed approach is only slightly different 
from the standard LFSR-based architecture and, as a result, its 
additional hardware overhead is negligible. 
 

II. PREVIOUS WORK AND MOTIVATION 
The basic LFSR-reseeding architecture is shown in Fig. 1. 

The LFSR is fed (reseeded) by the ATE with compressed data, 
which are expanded into test data (i.e., test vectors) by the 
combined operation of the LFSR and the phase shifter (the 
phase shifter is needed for reducing the linear dependencies of 
the LFSR-generated bit sequences). A whole slice is generated 
at every system-clock cycle. To determine the proper values of 
the compressed data, we initially consider them as binary vari-
ables [10]. By simulating the LFSR and the phase shifter sym-
bolically, linear expressions of these variables are obtained. 
Specifically, Nsc linear expressions are generated at the Nsc out-
puts of the phase shifter at each clock cycle, and consequently 
every bit of the test set corresponds to one linear expression. If 
a test-set bit is not a don't care (i.e., an x), the corresponding 
linear expression is set equal to it, forming in this way a linear 
equation. By gathering together all linear equations a system is 
derived and, by solving this system, the values of the binary 
variables (i.e., the compressed data) are specified. 

The success of LFSR-reseeding schemes is due to the great 
number of x's in the test sets of the CUTs; even if sophisticated 
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dynamic compaction algorithms are used, the test-vector fill 
rates are very low, especially for large designs (1% - 5%) [15]. 
Thus, the number of bits (variables) required for compressing 
the test data is much smaller than the actual test data. The effi-
ciency of an LFSR reseeding scheme depends on the degree of 
variable utilization. In other words, if most of the variables fed 
to the LFSR do not remain free after the linear-system-solution 
process, the achieved compression is high (because the non-
free variables are indeed needed for generating the specified 
bits of the test set). Otherwise, the compression ratio is com-
promised. The degree of variable utilization of an LFSR re-
seeding architecture depends on the adopted reseeding scheme. 

In the literature, there are two main approaches for reseeding 
an LFSR: a) static reseeding and b) dynamic or continuous flow 
reseeding. Static reseeding, in its simplest form, uses one new 
initial LFSR state (seed) for encoding a single test cube (test 
vector with x's) of the test set [10]. In this case, the LFSR size is 
determined by the cube with the greatest defined-bit volume, 
smax. Specifically, it has been shown in [10] that if the LFSR size 
is equal to smax+20, then the probability of not being able to 
solve the linear system for encoding a test cube is less than 10-6. 
In practice though, smaller LFSRs can be used. If each seed is 
used for encoding only one test cube, the achieved compression 
is relatively low, since most of the cubes in a test set have fewer 
specified bits than smax [15]. As a result, a lot of variables re-
main free when the corresponding systems are solved, and 
therefore much of the LFSR compression potential is wasted. 

For reducing the LFSR size when static reseeding is used, 
the authors of [12] proposed the conceptual partitioning of the 
scan chains into scan windows or, in other words, groups of 
consecutive slices. All scan windows have the same size (i.e., 
the same number of slices). The number of defined bits in-
cluded in a scan window is much smaller than the defined-bit 
volume of a whole test cube, and thus smaller LFSRs, com-
pared to the one-seed-for-one-cube case above, can be used. 
The size of the utilized LFSRs is determined by the scan win-
dow with the maximum number of defined bits. Hence, the 
smaller the scan windows, the greater is the variable utiliza-
tion. However, even if this reseeding method is adopted, there 
is a significant waste of variables, since, in the test sets, there 
are some scan windows that are almost fully specified and 
many others that are only partially or slightly specified. 

Another solution for improving the efficiency of static 
LFSR reseeding is to use each seed for generating more than 
one test vectors [20]. Although this approach improves the 
degree of variable utilization and, as a result, the compression 
ratios a lot, it also increases the test-application time signifi-
cantly, since many pseudorandom patterns are generated and 
applied to the CUT along with the deterministic ones. 

Test set manipulation can be also used to improve the per-
formance of static reseeding. There are the following alterna-
tives: a) Do not encode the test cubes with many defined bits, 
b) perform ATPG with no or low-effort dynamic compaction, 
and c) encode the test cubes with few defined bits first, fault-
simulate the corresponding decoded test patterns and then per-
form ATPG for the remaining undetected faults without dy-
namic compaction. However, option (a) either compromises 
the fault coverage if the unencoded test cubes are not applied 
to the CUT, or increases the test-application time and the test 

complexity, if they are applied to the CUT by bypassing the 
decompressor. Option (b) increases the test-set size considera-
bly and, as a result, the test-application time. Option (c) is a 
good choice only when the structure of the CUT is known, and 
consequently cannot be applied to IP cores that come with a 
precomputed test set [the same also holds for option (b)]. 

Dynamic reseeding [11], [15] on the other hand modifies 
the state of the LFSR continuously by inserting compressed 
data (variables) at specific LFSR positions as test generation 
proceeds (i.e., during normal LFSR operation). Although this 
approach can cope with densely specified test cubes without 
using large LFSRs, the number of variables that should be fed 
to the LFSR at every clock cycle depends on the defined-bit 
volumes of the more specified test cubes. Therefore, when 
sparsely specified cubes have to be encoded, there are more 
variables than needed in the related equations. To solve this 
problem, the authors of [15] use a fixed number of variables 
per test cube. Moreover, they integrate the ATPG tool with the 
linear-system solver, so that dynamic compaction keeps in-
crementing a test cube as long as the solver can still compress 
it. However, this approach cannot be applied to compression 
methods that are not integrated with an ATPG tool and, surely, 
it cannot be applied to IP cores with precomputed test sets. 

From the above discussion it becomes clear that the various 
LFSR reseeding schemes have drawbacks concerning either 
their variable utilization or test-application time, when applied 
to highly compacted precomputed test sets (i.e., test sets gener-
ated by unconstrained ATPG processes). That is why the vast 
majority of LFSR reseeding techniques in the literature do not 
report results for such test sets (e.g., dynamically compacted 
Mintest [6]). A much more flexible approach would be to let 
each seed generate as many slices as possible (a slice is gener-
ated in a single clock cycle, and therefore it is the smallest quan-
tity of data that can be produced by an LFSR-based decompres-
sor). Since there is no limitation in the slice volume generated 
by each seed, a densely specified test cube can be generated by 
multiple seeds, whereas a set of sparsely specified cubes may be 
generated by just a single seed. In this way, the degree of vari-
able utilization is maximized. This practice is followed by the 
authors of [21]. The main issue in such a scheme is how the end 
of slice generation from a seed is indicated. In [21] an extra sig-
nal is fed to the decompressor by the ATE. In this way though, 
an additional bit has to be stored in the ATE for every test-set 
slice plus for every extra cycle needed for loading the next seed 
in the Seed Buffer of [21]. This can be memory consuming, 
especially for large test sets. Moreover, this approach requires 
the ATE and the system clocks to be equal. This may lead to 
increased test-application times. As a conclusion, a much more 
flexible and effective approach is required that would also al-
low the decoupling of the system and the ATE clocks. 

 

III. STOP SLICES AND PROPOSED ARCHITECTURE 
A. Stop-Slice Calculation 

The main idea of the proposed approach is to encode some 
extra information in every seed that will indicate the conclusion 
of slice generation from the seed. In this way, each seed will 
manifest its end of usage on its own (hence the name self-
stoppable). This "stop generation from current seed" informa-
tion should have two  characteristics:  a) it  should  not  consume 
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Fig. 2. An example of the stop-slice calculation process. 
too many variables for its encoding so as the compression ratio 
not to be affected, and b) it should take advantage of the inher-
ent characteristics of the test cubes. A single bit could be en-
coded along with each slice for indicating if the slice generation 
should continue with the current seed or stop to load the next 
seed, but such a solution would waste one variable per slice. 
The approach proposed in this paper is to encode a stop slice as 
the final slice generated by each seed. As stop slice we define a 
special purpose slice that is not part of the test set (i.e., it should 
be different in at least one bit position from all generated test-
set slices). More specifically, all the slices of the test set, which 
are called hereafter test slices, contain test information and are 
applied to the CUT, while the stop slice is used only for flow-
control purposes (it indicates the conclusion of slice generation 
from the current seed) and is not applied to the CUT. 

Thus, the stop slice should have two properties: a) it should 
be different in at least one bit position from all test slices, and 
b) it should have as few defined bits as possible, so as just a 
few variables to be consumed for its encoding. The following 
greedy stop-slice calculation process is therefore proposed: 
Step 1. Partition all test cubes into test slices and set all bit 
positions of the stop slice equal to x. 
Step 2. Calculate the volumes of 0's and 1's in all bit positions 
of the test slices. 
Step 3. Select the bit position with the greatest volume of 0's or 
1's and set the corresponding position of the stop slice equal to 
the complement of the binary value with the greatest volume. 
Step 4. Remove from the stop-slice calculation process all the 
slices that have a complementary binary value or an x in the 
bit position that has been set in the stop slice. 
Step 5. If there are any remaining test slices go to Step 2. 

The above described process is illustrated with an example 
(Fig. 2); suppose that we have a circuit with 30 scan cells, 
which are distributed in 10 scan chains (i.e., each scan chain has 
3 scan cells). Assume now that this circuit is tested by two test 
cubes, whose partitioning into slices is shown in Fig. 2. Initially 
all the bits of the stop slice are set equal to x. During the first 
algorithm's iteration, the volumes of 0's and 1's for all bit posi-
tions of the six test slices are calculated. These volumes are 
shown below the dashed line in Fig. 2. The greatest among them 
are the 0's volume in the second bit position (column) and the 
1's volume in the eighth column of the slices (there are three 0's 
and three 1's in these two columns, respectively). The first of 
these two bit positions is selected (i.e., the second column with 
the 0's) and hence, the second bit position of the stop slice is set 
equal to the complement of 0 (i.e., 1). This is shown at the bot-
tom of Fig. 2. Next, all the test slices that have 0 or x in the sec-
ond bit position (i.e., all the slices of the first cube and the third 
slice of the second cube) are removed and are not further con-

sidered by the stop-slice calculation algorithm. Since there are 
two test slices remaining, the same process is repeated just for 
them in a second iteration. The greatest defined-bit volumes per 
bit position are the 1's volumes in the second and the eighth col-
umn. However, since the second bit position of the stop slice is 
already set, the eighth one is selected and is set to 0. This leads 
to the exclusion of both considered test slices from the stop-
slice calculation process, which is consequently concluded. The 
calculated stop slice is the x1xxxxx0xx. Observe that this stop 
slice differs from all the test slices in at least one of the two se-
lected defined-bit positions. Thus, by encoding the stop slice as 
the last slice generated by all seeds and by using a very small 
decoding logic that decodes state {1, 0} in bit positions 2, 8 of 
each generated slice, we can identify the stop slice and conse-
quently the conclusion of slice generation from a seed. 

Practically, the above described process can always generate 
a stop slice. Theoretically though, the generated stop slice may 
be identical in all bit positions, including the x bits, with a test 
slice. Note that this is an extremely rare case. If it occurs, one of 
the stop-slice's x values can be randomly specified to solve it. 

The stop slices calculated by the proposed procedure have 
two main advantages. The first one concerns the selection of 
the bit positions of the stop slice that will be specified. As 
shown above, these specified bit-positions are chosen so as to 
be complementary to the corresponding bits of as many test 
slices as possible. In this way, many test slices have at least one 
bit that is complementary to the corresponding bit of the stop 
slice, which means that they inherently include the information 
that the slice generation from the current seed should continue 
(or, equivalently, they are inherently not recognized by the 
decoding logic as the stop slice). Thus, apart from such a test 
slice itself, no extra information needs to be encoded for denot-
ing this "continue to generate from current seed" information. 
However, there may also be test slices, whose bits are compati-
ble (but never equal) with the corresponding specified bits of 
the stop slice. For example, if the third slice of the first cube in 
Fig. 2 was xx10xx00x1 instead of xx10xx01x1, then the stop-
slice calculation process would produce the same stop slice as 
in Fig. 2 (i.e., x1xxxxx0xx), which is though compatible in the 
bit positions of interest (the second and the eighth) with the 
hypothetical test slice xx10xx00x1. In this case, the second x 
bit of the test slice should be set to 0, so as the generated test 
slice not to be interpreted as the stop slice by the decoding 
logic. However, since the combination of the LFSR and the 
phase shifter constitutes a pseudorandom generator, there is a 
50% probability that this x bit will fortuitously acquire the 0 
value. This probability increases with the number of x's. For 
example, it becomes 75% when a test slice has x's in two of the 
bit positions that correspond to the defined bits of the stop 
slice, since only one of them should be complementary to the 
respective specified bit of the stop slice. Only when the pseu-
dorandom operation of the decompressor does not set at least 
one of the test slice's x bits to the desired value, we have to 
force the appropriate value assignment by solving one addi-
tional linear equation and, thus, by wasting one binary variable. 
However, it should be now clear that this is a rather rare case. 

The second advantage of the calculated stop slices is that 
they should contain very few defined bits. This is due to the 
great number of x's in the cores' test sets and the  locality  of  the 



TABLE I. NUMBER OF DEFINED BITS IN THE STOP SLICES 
Circuit Nsc = 20 Nsc = 32 Nsc = 64 Nsc = 100 
s9234 5 4 5 2 

s13207 5 4 3 4 
s15850 5 5 3 3 
s38417 6 5 5 4 
s38584 6 6 5 5 

hard faults, which results in the majority of the test cubes to be 
biased towards either 0 or 1 in certain bit positions. For demon-
strating this characteristic, in Table I we present the number of 
defined bits included in the stop slices of the largest ISCAS '89 
benchmark circuits, for various scan-chain volumes (Nsc de-
notes the number of scan chains). As input, we utilized the dy-
namically compacted test sets generated by Mintest [6]. We 
observe that, as expected, due to the aforementioned test set 
characteristics, the defined-bit volumes of the stop slices are 
quite small for all examined scan-chain volumes. 

A last issue that should be discussed in this section concerns 
the case in which the stop slice of a test set has many defined 
bits. If this happens, we can divide the test-set cubes in two or 
more subsets and use a different stop slice for each subset. The 
different stop slices are again determined by using the above 
described stop-slice calculation procedure, but they are calcu-
lated separately for each cube subset. This approach reduces 
the defined-bit volumes of the stop slices, improving in this 
way the compression ratio, at the expense of some small hard-
ware overhead, as will be explained in the following section. 
B. Proposed Architecture 

The architecture that implements the proposed approach is 
shown in Fig. 3. Compared to the basic LFSR reseeding archi-
tecture of Fig. 1 it requires minimum extra hardware overhead, 
since just a NAND gate plus some inverters (not shown in Fig. 
3) are needed for decoding the required outputs of the phase 
shifter. Observe that not all the phase-shifter outputs but only 
those that correspond to the specified bit-positions of the stop 
slice are fed to the decoding logic. As test slices are generated 
by the LFSR and the phase shifter, the NAND gate generates a 
logic 1 that keeps the scan chains enabled and the LFSR run-
ning (scan enable=1, ~load/shift=1). When the stop slice ap-
pears at the outputs of the phase shifter, the decoding logic 
sets both signals scan enable and ~load/shift to 0, disabling in 
this way the scan chains so as the stop slice not to be loaded in 
them, and signaling the LFSR to load the next seed. When the 
next seed is loaded, the phase shifter generates the first test 
slice from that seed, which leads to the re-activation of the 
LFSR and the scan chains by the decoding logic. 

 An issue that should be discussed is how synchronization 
with the ATE is achieved. If the ATE has handshaking capa-
bilities, then the (inverted) output of the decoding logic can be 
used for notifying it to send the next seed.  Otherwise,  a  small 
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FIFO buffer can be used between the ATE and the LFSR [5]. 
Note that in either case there is no need to have equal system 
and ATE clocks, since the seeds of the proposed approach are 
self-stoppable and, as a result, no external synchronized in-
formation for controlling the LFSR operation is required. 

In Fig. 4 we demonstrate the generation of the test slices of 
the example of Fig. 2, and the operation of the corresponding 
decoding logic. Since the stop slice is equal to x1xxxxx0xx, the 
decoding logic has to recognize the coexistence of logic 1 and 
logic 0 in bit positions 2 and 8 respectively of the generated 
slices. Therefore, an inverter and a NAND2 gate are sufficient 
for implementing it. Suppose that two LFSR seeds are needed 
for the generation of the six test slices and the stop slice. The 
first seed encodes the first two slices of the first test cube and 
the stop slice, whereas the second seed encodes the last slice of 
the first cube and all three slices of the second cube. Note that 
all seeds should encode the stop slice as their final slice, except 
for the last one. That is why in our example the stop slice is not 
encoded by the second seed. Observe also that a seed can gen-
erate an arbitrary number of consecutive slices, irrespectively 
of the test cube they belong. This means that one seed may gen-
erate just a few (consecutive) slices of a single test cube, 
whereas another may generate the last slices of one cube, all 
slices of a second cube and the first slices of a third cube. We 
remind that this characteristic allows the proposed approach to 
better exploit the available binary variables. As shown in Fig. 4, 
the decoding logic distinguishes the test slices from the stop 
slice (the x values of the slices are randomly filled by the de-
compressor). When the stop slice is met, the decoding logic 
disables the scan chains and signals the loading of the next seed. 
We should note that, for simplicity, in Fig. 4 we do not present 
the full operation of the decompression architecture, but just the 
slice generation and the functionality of the decoding logic. 

If the usage of different stop slices for a single test set (see 
Section III.A) is desirable, then a separate decoding logic is 
needed for each different stop slice (i.e., for each test cube 
subset). The appropriate decoding logic will be selected by 
means of a Mux, which will be controlled by a subset counter. 
A vector counter and a small decoder will be also needed. The 
vector counter will indicate the end of a cube subset and the 
beginning of the next one, whereas the decoder will check the 
state of the vector counter and, when needed, it will update the 
state of the subset counter. The size of all these components is 
small and so is the hardware overhead they impose. 

 

IV. SEED-CALCULATION ALGORITHM 
The proposed algorithm comprises the following steps: 



TABLE II. RESULTS OF THE PROPOSED METHOD (# BITS) 
Nsc = 20 Nsc = 32 Nsc = 64 Nsc = 100 

Circuit Mintest 
(# bits) LFSR size 

6xNsc+Stop 
LFSR size 
7xNsc+Stop 

LFSR size 
8xNsc+Stop

LFSR size 
4xNsc+Stop 

LFSR size
5xNsc+Stop

LFSR size
6xNsc+Stop

LFSR size
2xNsc+Stop

LFSR size
3xNsc+Stop

LFSR size 
3.5xNsc+Stop

LFSR size 
1.5xNsc+Stop 

LFSR size
2xNsc+Stop

LFSR size 
2.5xNsc+Stop

s9234 39273 12750 12615 12705 12012 11972 12348 11837 11426 11679 11704 11514 11340 
s13207 165200 19625 19430 19470 17028 16892 17052 15065 14235 14528 14938 15300 13716 
s15850 76986 17000 16820 16830 15960 16005 15760 16506 14625 14528 17136 15428 14927 
s38417 164736 65772 63218 63412 62643 62370 61661 64505 61267 60685 69916 75480 61468 
s38584 199104 47124 46136 45816 43952 43160 43164 43624 41173 41907 46345 42230 43860 

 

Step 1. Partition the test cubes of the test set into slices, calcu-
late the stop slice, and select an initial test cube randomly. 
Step 2. Compress as many consecutive slices as possible by 
solving the corresponding systems of linear equations. If all 
slices of a cube have been encoded, then select as next cube 
the one for which the greatest number of consecutive slices 
can be encoded. 
Step 3. If no more test slices can be encoded in the current 
seed (i.e., if the linear system for a test slice cannot be solved), 
encode the stop slice as the last slice of the seed. 
Step 4. If there are any test slices that have not been encoded 
yet, go to Step 2. 

In general, the seed-calculation algorithm selects a test cube 
and encodes all of its slices, one after the other, by using as 
many seeds as needed. When all the slices of a cube have been 
encoded, another cube is selected and so on. This process is 
repeated until the slices of all test cubes in the test set have been 
encoded. Always, the last slice that is encoded in a seed is the 
stop slice (except for the last seed, as explained in Section III). 

There are a few points that should be discussed about the 
seed-calculation algorithm. The first one concerns the selection 
of the next cube, the slices of which will be encoded. The first 
cube of the seed-calculation process is selected randomly. How-
ever, when the algorithm finishes the encoding of the slices of 
one cube, there are usually unspecified variables in the current 
seed that can be used for the encoding of the first slices of the 
next cube. For that reason, as next cube, we select the one for 
which the greatest number of consecutive slices can be encoded 
by the current seed. This greedy selection criterion targets the 
minimization of the volume of the calculated seeds (and hence, 
of the compressed data) by maximizing the number of test slices 
that seeds which "start in one cube and end in another" encode. 

Another issue concerns the test slices that are compatible 
with the stop slice. For such slices, one of the x values that cor-
respond to the specified bit-positions of the stop slice should be 
set equal to the complement of the respective stop-slice bit. 
This can happen randomly with great probability, as explained 
in Section III.A. One way to exploit this probability would be 
to generate (symbolically) every test slice exactly after its en-
coding, and examine its bit positions that correspond to the 
specified bits of the stop slice. If one of these bit positions is set 
to the required value then we are done and we move on to the 
next slice. Otherwise, an extra linear equation should be solved 
for that purpose. In our implementation, we adopted the more 
simplified approach of initially setting one of the appropriate 
test-slice's x-bits to the required value, by solving the addi-
tional linear equation along with the normal system. This 
method though, does not fully exploit the potential offered by 
the pseudorandom operation of the decompressor. 

Finally, Step 3 of the algorithm should be explained further: 
how can we guarantee that the stop slice can be always encoded 

as the last slice of every seed? This can be done by examining if 
the stop slice can be encoded after the encoding of every test 
slice. If this is true then we continue with the next test slice. 
Otherwise, we return to the previous test slice (which is already 
encoded), we encode the stop slice after it (we have already 
examined that this can be done) and we restart the encoding 
process with a new seed. This approach avoids very deep back-
tracking whenever the stop slice cannot be encoded. Also, it 
imposes minimum run-time penalty, due to the very small com-
plexity of solving a linear system for encoding the stop slice. 

 

V. EVALUATION AND COMPARISONS 
For evaluating the effectiveness of LFSR reseeding with 

self-stoppable seeds, we implemented the proposed approach 
in the C programming language and we performed simulations 
on a Pentium PC for the largest ISCAS '89 benchmark circuits. 
The densely specified Mintest [6] test sets with dynamic com-
paction were used in our experiments. The run-time of the 
proposed method is just a few seconds. 

In Table II, we present the compressed-data-volume results 
of the proposed technique, for various numbers of scan-chains 
(Nsc) and LFSR sizes. In the second column of this table we 
also provide the size of the uncompressed Mintest test sets. 
The utilized LFSR sizes were selected to be equal to a multiple 
of the slice size (i.e., Nsc) plus the number of defined bits of 
the stop slice for the corresponding circuit and scan-chain vol-
ume. Thus, the "6xNsc+Stop" in the third column means that 
the LFSR size is equal to 6 times the slice size plus the number 
of defined bits of the stop slice for Nsc=20. Such an LFSR size 
allows 6 fully specified test slices plus the stop slice to be en-
coded together in the same seed. However, since very few (if 
any) slices in a test set are fully specified, the LFSR size does 
not necessarily have to be equal to "i x Nsc+Stop" (where i is a 
positive integer). Actually, experiments with different LFSR 
sizes yielded similar results to those in Table II. This can be also 
verified by the best results of Table II (boldfaced), which, for 4 
out of 5 circuits, were achieved with i equal to 3.5 and 2.5. 

As far as the compression results are concerned, we ob-
serve that, except for the case of s13207, they are not signifi-
cantly affected by the scan-chain volume. This is an expected 
behavior, since the number of defined bits in the stop slices is 
only slightly modified as the number of scan chains changes. 

In Table III we compare the proposed method with other 
compression techniques in the literature, in terms of com-
pressed-data reduction percentages. These percentages are cal-
culated by the relation: Red. % = [1 - (compressed bits of pro-
posed / compressed bits of compared)] · 100. We note that we do 
not compare against techniques that present results for test sets 
different from the dynamically compacted Mintest that we used 
in our experiments. Also, we do not consider methods that use 
dictionaries, since they suffer from high hardware overhead. 



TABLE III. COMPRESSED DATA REDUCTION % OVER OTHER METHODS 
Circuit [1] [2] [3] [4] [7] [8] [12] [13] [14] [16] [17] [18] [21]
s9234 49.6 47.5 48.8 45.3 37.0 11.2 39.4 46.6 44.9 - 52.6 36.2 16.8

s13207 60.9 58.0 55.6 49.7 63.9 5.9 71.1 54.3 52.5 81.6 63.9 43.9 11.7
s15850 52.5 44.8 44.1 41.1 44.5 12.3 51.6 41.0 42.2 44.2 53.6 34.3 14.7
s38417 33.4 6.6 35.1 21.0 10.2 -3.4 35.0 6.6 -2.8 -34.8 17.4 0.7 10.9
s38584 54.2 46.8 47.1 45.2 42.4 25.6 49.4 44.3 45.0 44.0 52.3 33.1 12.2

 

It is worth noting that from the techniques reported in Ta-
ble III, only [12] and [21] are based on LFSR reseeding. As 
explained earlier, this is due to the fact that most of the LFSR 
reseeding works do not report results for highly compacted 
precomputed test sets. This is also the case for [12]. However, 
in [9], we implemented the technique of [12] and we provided 
results for it using the dynamically compacted Mintest test 
sets. To these results we compare in Table III. On the other 
hand, the authors of [21] do not present results for benchmark 
circuits. For that reason, we implemented their technique and 
we compare against the obtained results. 

As can be seen in Table III, for the reasons explained in Sec-
tion II, the performance of [12] is much worse than that of the 
proposed method. Furthermore, the proposed technique clearly 
outperforms the approach of [21]. Although both methods al-
low each seed to encode as many slices as possible, that of [21] 
requires an additional bit for every generated slice plus for 
every extra cycle needed for loading the next seed in its Seed 
Buffer. As shown in Table III, this overhead is significant com-
pared to the one imposed by the proposed stop slices. As com-
pared to the rest of the techniques, the proposed one demon-
strates better performance in nearly all cases. This is a signifi-
cant achievement, since, as already explained, precomputed test 
sets do not suit LFSR-based techniques very well [19]. Only 
[8], [14] and [16] provide better compression for s38417 ([8] 
and [14] marginally). However, [8] cannot fully exploit the par-
allelism of the multiple scan chains of a core, whereas [14] is 
applicable to cores with a single scan chain. Therefore, their 
test-application time is longer than that of the proposed method. 
In [16] on the other hand, an additional significant amount of 
control data that is required has not been reported. Hence, those 
data have not been included in the comparisons of Table III. 

The efficiency of the proposed technique depends mainly 
on the defined-bit volume of the stop slices. The dynamically 
compacted Mintest test sets, although densely specified (their 
fill rates are much greater than those reported in [15]), are 
relatively small. For that reason, we used a commercial ATPG 
tool for generating dynamically compacted N-detect test sets 
(with N=3, 6 and 9) for the examined benchmark circuits. 
Then, we applied the stop-slice calculation process to these 
test sets and the defined-bit volumes of the resulting stop 
slices, for 32 and 100 scan chains, are presented in Table IV. 
As can be seen, although the N-detect test sets are 2 to 9 times 
larger than the Mintest, the number of defined bits in the stop 
slices increases only marginally (1 - 2 bits). Thus, we expect 
that, for larger circuits, their volume will be also kept small. 
We should remind though that if we end up with a stop slice 
with many defined bits, the partitioning of the test set into test-
cube subsets will solve the problem. 

 

VI. CONCLUSIONS 
To improve the efficiency of LFSR-based test-data com-

pression when the latter is applied to precomputed test sets,  self- 

TABLE IV. DEFINED-BIT VOLUMES IN THE STOP SLICES FOR N-DETECT TEST SETS 
N = 3 N = 6 N = 9 

Circuit Test-set 
size (# bits)

Nsc=
32 

Nsc=
100

Test-set 
size (# bits) 

Nsc= 
32 

Nsc= 
100 

Test-set 
size (# bits)

Nsc=
32 

Nsc=
100

s9234 118560 6 4 216372 7 4 310479 7 3 
s13207 298900 6 4 462000 6 5 618800 6 4 
s15850 190632 5 4 309166 6 4 425256 6 5 
s38417 495872 7 5 818688 7 6 1033344 7 5 
s38584 923784 6 5 1386408 7 5 1841712 7 6 

stoppable seeds were presented in this paper. Each seed is al-
lowed to encode as many slices as possible. This is achieved by 

means of a stop-slice that is encoded as the final slice of each 

seed to mark its end of usage. The stop slices are generated in 

such a way so as to impose minimum compression overhead, 
whereas the proposed decompression architecture is very small. 
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