
LFSR-Based Test-Data Compression with Self-Stoppable Seeds

M. Koutsoupia
Comp. Eng. & Inf. Dept.

University of Patras, Greece
koutsoup@ceid.upatras.gr

E. Kalligeros
Information & Comm. Systems Eng.
Dept., Univ. of the Aegean, Greece

kalliger@aegean.gr

X. Kavousianos
Computer Science Dept.

Univ. of Ioannina, Greece
kabousia@cs.uoi.gr

D. Nikolos
Comp. Eng. & Inf. Dept.

University of Patras, Greece
nikolosd@cti.gr

Abstract—The main disadvantage of LFSR-based compression is
that it should be usually combined with a constrained ATPG
process, and, as a result, it cannot be effectively applied to IP
cores of unknown structure. In this paper, a new LFSR-based
compression approach that overcomes this problem is proposed.
The proposed method allows each LFSR seed to encode as many
slices as possible. For achieving this, a special purpose slice,
called stop-slice, that indicates the end of a seed's usage is en-
coded as the last slice of each seed. Thus, the seeds include by
construction the information of where they should stop and, for
that reason, we call them self-stoppable. A stop-slice generation
procedure is proposed that exploits the inherent test set charac-
teristics and generates stop slices which impose minimum com-
pression overhead. Moreover, the architecture for implementing
the proposed technique requires negligible additional hardware
overhead compared to the standard LFSR-based architecture.
The proposed technique is also accompanied by a seed calculation
algorithm that tries to minimize the number of calculated seeds.

Ι. INTRODUCTION
The ever-increasing size of modern Systems-on-Chips

(SoCs), the extensive integration of pre-designed and pre-
verified modules (i.e., cores) in them, and the limited channel
volume, memory and speed of Automatic Test Equipment
(ATE) pose significant challenges to the test engineers; more
and more test data have to be delivered as fast as possible deep
into the chips. That is why embedded testing and test-data
compression have become an integral part of today's testing
methodology. According to the embedded testing approach, a
compressed version of a core's test set is stored in the ATE and
is then downloaded and decompressed on chip by means of an
embedded decompressor. In this way, the burden of testing is
moved from the ATEs to the on-chip structures.

Two of the most popular categories of test-data compres-
sion techniques are the code-based ones [1]-[4], [7]-[9], [13],
[14], [16]-[18], and the linear-decompressor-based [10]-[12],
[15], [20], [21]. The schemes belonging in the first category
employ data-compression codes for encoding the test sets of
the cores under test (CUTs), whereas those of the second cate-
gory use linear decompressors (which are, most of the times,
Linear Feedback Shift Registers – LFSRs). LFSR-based meth-
ods are very effective in exploiting the don't care bits (i.e., the
x's) of the test sets [19]. Since the test sets of large industrial
circuits include more than 95% don't cares [15], LFSR-based
methods generally offer greater compression than the code-
based ones [19], and hence are more preferable.

However, most of the times, LFSR-based techniques re-
quire constraints to be imposed in the ATPG process so as to
reach their potential efficiency [19]. For that reason, they are
not very effective for Intellectual Property (IP) cores for which
no structural information is available. Such cores are accom-
panied by test sets that have been precomputed by their ven-
dors. Although such test sets still contain many x's, the distri-

LF
S

R

P
ha

se
 S

hi
fte

r

...

...

... Te
st

 R
es

po
ns

e
C

om
pa

ct
or

slice: 0 1 2 ... r-1

Scan Chain 0

Scan Chain 1

Scan Chain Nsc-1 CUT

...A
TE

Fig. 1. Basic LFSR-reseeding architecture.

bution of the x's in the test vectors usually prevents the adop-
tion of LFSR-based compression methods.

To tackle this problem, a new LFSR-based compression
technique is proposed in this paper. The proposed approach
allows the compression of an arbitrary number of slices in an
LFSR seed by encoding a special-purpose slice, called stop
slice, as the final slice of each seed. Since a slice is the small-
est block of data that can be generated by an LFSR-based de-
compressor, by allowing each seed to compress as many slices
as possible, we fully exploit its encoding ability. The stop slice
is not applied to the CUT but is needed for indicating that the
slice generation from a seed is over. Thus, all seeds can mani-
fest the end of their usage on their own, and that is why we
call them self-stoppable. A stop-slice generation procedure is
proposed that takes advantage of the inherent characteristics of
a CUT's test set and generates stop slices that impose mini-
mum compression overhead. Moreover, the architecture that
implements the proposed approach is only slightly different
from the standard LFSR-based architecture and, as a result, its
additional hardware overhead is negligible.

II. PREVIOUS WORK AND MOTIVATION
The basic LFSR-reseeding architecture is shown in Fig. 1.

The LFSR is fed (reseeded) by the ATE with compressed data,
which are expanded into test data (i.e., test vectors) by the
combined operation of the LFSR and the phase shifter (the
phase shifter is needed for reducing the linear dependencies of
the LFSR-generated bit sequences). A whole slice is generated
at every system-clock cycle. To determine the proper values of
the compressed data, we initially consider them as binary vari-
ables [10]. By simulating the LFSR and the phase shifter sym-
bolically, linear expressions of these variables are obtained.
Specifically, Nsc linear expressions are generated at the Nsc out-
puts of the phase shifter at each clock cycle, and consequently
every bit of the test set corresponds to one linear expression. If
a test-set bit is not a don't care (i.e., an x), the corresponding
linear expression is set equal to it, forming in this way a linear
equation. By gathering together all linear equations a system is
derived and, by solving this system, the values of the binary
variables (i.e., the compressed data) are specified.

The success of LFSR-reseeding schemes is due to the great
number of x's in the test sets of the CUTs; even if sophisticated

978-3-9810801-5-5/DATE09 © 2009 EDAA

dynamic compaction algorithms are used, the test-vector fill
rates are very low, especially for large designs (1% - 5%) [15].
Thus, the number of bits (variables) required for compressing
the test data is much smaller than the actual test data. The effi-
ciency of an LFSR reseeding scheme depends on the degree of
variable utilization. In other words, if most of the variables fed
to the LFSR do not remain free after the linear-system-solution
process, the achieved compression is high (because the non-
free variables are indeed needed for generating the specified
bits of the test set). Otherwise, the compression ratio is com-
promised. The degree of variable utilization of an LFSR re-
seeding architecture depends on the adopted reseeding scheme.

In the literature, there are two main approaches for reseeding
an LFSR: a) static reseeding and b) dynamic or continuous flow
reseeding. Static reseeding, in its simplest form, uses one new
initial LFSR state (seed) for encoding a single test cube (test
vector with x's) of the test set [10]. In this case, the LFSR size is
determined by the cube with the greatest defined-bit volume,
smax. Specifically, it has been shown in [10] that if the LFSR size
is equal to smax+20, then the probability of not being able to
solve the linear system for encoding a test cube is less than 10-6.
In practice though, smaller LFSRs can be used. If each seed is
used for encoding only one test cube, the achieved compression
is relatively low, since most of the cubes in a test set have fewer
specified bits than smax [15]. As a result, a lot of variables re-
main free when the corresponding systems are solved, and
therefore much of the LFSR compression potential is wasted.

For reducing the LFSR size when static reseeding is used,
the authors of [12] proposed the conceptual partitioning of the
scan chains into scan windows or, in other words, groups of
consecutive slices. All scan windows have the same size (i.e.,
the same number of slices). The number of defined bits in-
cluded in a scan window is much smaller than the defined-bit
volume of a whole test cube, and thus smaller LFSRs, com-
pared to the one-seed-for-one-cube case above, can be used.
The size of the utilized LFSRs is determined by the scan win-
dow with the maximum number of defined bits. Hence, the
smaller the scan windows, the greater is the variable utiliza-
tion. However, even if this reseeding method is adopted, there
is a significant waste of variables, since, in the test sets, there
are some scan windows that are almost fully specified and
many others that are only partially or slightly specified.

Another solution for improving the efficiency of static
LFSR reseeding is to use each seed for generating more than
one test vectors [20]. Although this approach improves the
degree of variable utilization and, as a result, the compression
ratios a lot, it also increases the test-application time signifi-
cantly, since many pseudorandom patterns are generated and
applied to the CUT along with the deterministic ones.

Test set manipulation can be also used to improve the per-
formance of static reseeding. There are the following alterna-
tives: a) Do not encode the test cubes with many defined bits,
b) perform ATPG with no or low-effort dynamic compaction,
and c) encode the test cubes with few defined bits first, fault-
simulate the corresponding decoded test patterns and then per-
form ATPG for the remaining undetected faults without dy-
namic compaction. However, option (a) either compromises
the fault coverage if the unencoded test cubes are not applied
to the CUT, or increases the test-application time and the test

complexity, if they are applied to the CUT by bypassing the
decompressor. Option (b) increases the test-set size considera-
bly and, as a result, the test-application time. Option (c) is a
good choice only when the structure of the CUT is known, and
consequently cannot be applied to IP cores that come with a
precomputed test set [the same also holds for option (b)].

Dynamic reseeding [11], [15] on the other hand modifies
the state of the LFSR continuously by inserting compressed
data (variables) at specific LFSR positions as test generation
proceeds (i.e., during normal LFSR operation). Although this
approach can cope with densely specified test cubes without
using large LFSRs, the number of variables that should be fed
to the LFSR at every clock cycle depends on the defined-bit
volumes of the more specified test cubes. Therefore, when
sparsely specified cubes have to be encoded, there are more
variables than needed in the related equations. To solve this
problem, the authors of [15] use a fixed number of variables
per test cube. Moreover, they integrate the ATPG tool with the
linear-system solver, so that dynamic compaction keeps in-
crementing a test cube as long as the solver can still compress
it. However, this approach cannot be applied to compression
methods that are not integrated with an ATPG tool and, surely,
it cannot be applied to IP cores with precomputed test sets.

From the above discussion it becomes clear that the various
LFSR reseeding schemes have drawbacks concerning either
their variable utilization or test-application time, when applied
to highly compacted precomputed test sets (i.e., test sets gener-
ated by unconstrained ATPG processes). That is why the vast
majority of LFSR reseeding techniques in the literature do not
report results for such test sets (e.g., dynamically compacted
Mintest [6]). A much more flexible approach would be to let
each seed generate as many slices as possible (a slice is gener-
ated in a single clock cycle, and therefore it is the smallest quan-
tity of data that can be produced by an LFSR-based decompres-
sor). Since there is no limitation in the slice volume generated
by each seed, a densely specified test cube can be generated by
multiple seeds, whereas a set of sparsely specified cubes may be
generated by just a single seed. In this way, the degree of vari-
able utilization is maximized. This practice is followed by the
authors of [21]. The main issue in such a scheme is how the end
of slice generation from a seed is indicated. In [21] an extra sig-
nal is fed to the decompressor by the ATE. In this way though,
an additional bit has to be stored in the ATE for every test-set
slice plus for every extra cycle needed for loading the next seed
in the Seed Buffer of [21]. This can be memory consuming,
especially for large test sets. Moreover, this approach requires
the ATE and the system clocks to be equal. This may lead to
increased test-application times. As a conclusion, a much more
flexible and effective approach is required that would also al-
low the decoupling of the system and the ATE clocks.

III. STOP SLICES AND PROPOSED ARCHITECTURE
A. Stop-Slice Calculation

The main idea of the proposed approach is to encode some
extra information in every seed that will indicate the conclusion
of slice generation from the seed. In this way, each seed will
manifest its end of usage on its own (hence the name self-
stoppable). This "stop generation from current seed" informa-
tion should have two characteristics: a) it should not consume

x
1
x
x
0
x

1
1

x

0
0
x
1
1
0

3
2

1

0
x
1
x
x
x

1
1

x

1
x
0
x
1
x

1
2

x

x
0
x
x
1
x

1
1

x

1
0
x
x
x
x

1
1

x

0
1
0
1
x
x

2
2

x

x
0
1
1
1
x

1
3

x

1
x
x
0
1
x

1
2

x

1
x
1
x
0
x

1
2

x

x
0

1
0

x

1
1

0
2

1

x
x

0
0

x

x
1

0
1

x

x
1

0
1

x

x
x

0
0

x

1
x

0
1

x

1
1

0
2

0

0
1

1
1

x

x
0

1
0

x

1st slice of 1st cube

2nd slice of 1st cube

3rd slice of 1st cube

1st slice of 2nd cube

2nd slice of 2nd cube

3rd slice of 2nd cube

0's volume:

1's volume:

stop slice:

1st Iteration 2nd Iteration

Fig. 2. An example of the stop-slice calculation process.
too many variables for its encoding so as the compression ratio
not to be affected, and b) it should take advantage of the inher-
ent characteristics of the test cubes. A single bit could be en-
coded along with each slice for indicating if the slice generation
should continue with the current seed or stop to load the next
seed, but such a solution would waste one variable per slice.
The approach proposed in this paper is to encode a stop slice as
the final slice generated by each seed. As stop slice we define a
special purpose slice that is not part of the test set (i.e., it should
be different in at least one bit position from all generated test-
set slices). More specifically, all the slices of the test set, which
are called hereafter test slices, contain test information and are
applied to the CUT, while the stop slice is used only for flow-
control purposes (it indicates the conclusion of slice generation
from the current seed) and is not applied to the CUT.

Thus, the stop slice should have two properties: a) it should
be different in at least one bit position from all test slices, and
b) it should have as few defined bits as possible, so as just a
few variables to be consumed for its encoding. The following
greedy stop-slice calculation process is therefore proposed:
Step 1. Partition all test cubes into test slices and set all bit
positions of the stop slice equal to x.
Step 2. Calculate the volumes of 0's and 1's in all bit positions
of the test slices.
Step 3. Select the bit position with the greatest volume of 0's or
1's and set the corresponding position of the stop slice equal to
the complement of the binary value with the greatest volume.
Step 4. Remove from the stop-slice calculation process all the
slices that have a complementary binary value or an x in the
bit position that has been set in the stop slice.
Step 5. If there are any remaining test slices go to Step 2.

The above described process is illustrated with an example
(Fig. 2); suppose that we have a circuit with 30 scan cells,
which are distributed in 10 scan chains (i.e., each scan chain has
3 scan cells). Assume now that this circuit is tested by two test
cubes, whose partitioning into slices is shown in Fig. 2. Initially
all the bits of the stop slice are set equal to x. During the first
algorithm's iteration, the volumes of 0's and 1's for all bit posi-
tions of the six test slices are calculated. These volumes are
shown below the dashed line in Fig. 2. The greatest among them
are the 0's volume in the second bit position (column) and the
1's volume in the eighth column of the slices (there are three 0's
and three 1's in these two columns, respectively). The first of
these two bit positions is selected (i.e., the second column with
the 0's) and hence, the second bit position of the stop slice is set
equal to the complement of 0 (i.e., 1). This is shown at the bot-
tom of Fig. 2. Next, all the test slices that have 0 or x in the sec-
ond bit position (i.e., all the slices of the first cube and the third
slice of the second cube) are removed and are not further con-

sidered by the stop-slice calculation algorithm. Since there are
two test slices remaining, the same process is repeated just for
them in a second iteration. The greatest defined-bit volumes per
bit position are the 1's volumes in the second and the eighth col-
umn. However, since the second bit position of the stop slice is
already set, the eighth one is selected and is set to 0. This leads
to the exclusion of both considered test slices from the stop-
slice calculation process, which is consequently concluded. The
calculated stop slice is the x1xxxxx0xx. Observe that this stop
slice differs from all the test slices in at least one of the two se-
lected defined-bit positions. Thus, by encoding the stop slice as
the last slice generated by all seeds and by using a very small
decoding logic that decodes state {1, 0} in bit positions 2, 8 of
each generated slice, we can identify the stop slice and conse-
quently the conclusion of slice generation from a seed.

Practically, the above described process can always generate
a stop slice. Theoretically though, the generated stop slice may
be identical in all bit positions, including the x bits, with a test
slice. Note that this is an extremely rare case. If it occurs, one of
the stop-slice's x values can be randomly specified to solve it.

The stop slices calculated by the proposed procedure have
two main advantages. The first one concerns the selection of
the bit positions of the stop slice that will be specified. As
shown above, these specified bit-positions are chosen so as to
be complementary to the corresponding bits of as many test
slices as possible. In this way, many test slices have at least one
bit that is complementary to the corresponding bit of the stop
slice, which means that they inherently include the information
that the slice generation from the current seed should continue
(or, equivalently, they are inherently not recognized by the
decoding logic as the stop slice). Thus, apart from such a test
slice itself, no extra information needs to be encoded for denot-
ing this "continue to generate from current seed" information.
However, there may also be test slices, whose bits are compati-
ble (but never equal) with the corresponding specified bits of
the stop slice. For example, if the third slice of the first cube in
Fig. 2 was xx10xx00x1 instead of xx10xx01x1, then the stop-
slice calculation process would produce the same stop slice as
in Fig. 2 (i.e., x1xxxxx0xx), which is though compatible in the
bit positions of interest (the second and the eighth) with the
hypothetical test slice xx10xx00x1. In this case, the second x
bit of the test slice should be set to 0, so as the generated test
slice not to be interpreted as the stop slice by the decoding
logic. However, since the combination of the LFSR and the
phase shifter constitutes a pseudorandom generator, there is a
50% probability that this x bit will fortuitously acquire the 0
value. This probability increases with the number of x's. For
example, it becomes 75% when a test slice has x's in two of the
bit positions that correspond to the defined bits of the stop
slice, since only one of them should be complementary to the
respective specified bit of the stop slice. Only when the pseu-
dorandom operation of the decompressor does not set at least
one of the test slice's x bits to the desired value, we have to
force the appropriate value assignment by solving one addi-
tional linear equation and, thus, by wasting one binary variable.
However, it should be now clear that this is a rather rare case.

The second advantage of the calculated stop slices is that
they should contain very few defined bits. This is due to the
great number of x's in the cores' test sets and the locality of the

TABLE I. NUMBER OF DEFINED BITS IN THE STOP SLICES
Circuit Nsc = 20 Nsc = 32 Nsc = 64 Nsc = 100
s9234 5 4 5 2

s13207 5 4 3 4
s15850 5 5 3 3
s38417 6 5 5 4
s38584 6 6 5 5

hard faults, which results in the majority of the test cubes to be
biased towards either 0 or 1 in certain bit positions. For demon-
strating this characteristic, in Table I we present the number of
defined bits included in the stop slices of the largest ISCAS '89
benchmark circuits, for various scan-chain volumes (Nsc de-
notes the number of scan chains). As input, we utilized the dy-
namically compacted test sets generated by Mintest [6]. We
observe that, as expected, due to the aforementioned test set
characteristics, the defined-bit volumes of the stop slices are
quite small for all examined scan-chain volumes.

A last issue that should be discussed in this section concerns
the case in which the stop slice of a test set has many defined
bits. If this happens, we can divide the test-set cubes in two or
more subsets and use a different stop slice for each subset. The
different stop slices are again determined by using the above
described stop-slice calculation procedure, but they are calcu-
lated separately for each cube subset. This approach reduces
the defined-bit volumes of the stop slices, improving in this
way the compression ratio, at the expense of some small hard-
ware overhead, as will be explained in the following section.
B. Proposed Architecture

The architecture that implements the proposed approach is
shown in Fig. 3. Compared to the basic LFSR reseeding archi-
tecture of Fig. 1 it requires minimum extra hardware overhead,
since just a NAND gate plus some inverters (not shown in Fig.
3) are needed for decoding the required outputs of the phase
shifter. Observe that not all the phase-shifter outputs but only
those that correspond to the specified bit-positions of the stop
slice are fed to the decoding logic. As test slices are generated
by the LFSR and the phase shifter, the NAND gate generates a
logic 1 that keeps the scan chains enabled and the LFSR run-
ning (scan enable=1, ~load/shift=1). When the stop slice ap-
pears at the outputs of the phase shifter, the decoding logic
sets both signals scan enable and ~load/shift to 0, disabling in
this way the scan chains so as the stop slice not to be loaded in
them, and signaling the LFSR to load the next seed. When the
next seed is loaded, the phase shifter generates the first test
slice from that seed, which leads to the re-activation of the
LFSR and the scan chains by the decoding logic.

 An issue that should be discussed is how synchronization
with the ATE is achieved. If the ATE has handshaking capa-
bilities, then the (inverted) output of the decoding logic can be
used for notifying it to send the next seed. Otherwise, a small

LF
SR

P
ha

se
 S

hi
fte

r

...

...

...

...

Scan Chain 0

Scan Chain 1

Scan Chain 2

Scan Chain Nsc-1 CUT

... ...
Scan Chain 3

...

...

scan enable

~load/
shift

Seeds
from ATE

or FIFO

Fig. 3. Proposed architecture.

0

P
ha

se
 S

hi
fte

r

...

1
0
0
1
0
1
0
0
1
1

1
0
1
1
0
0
1
0
1
0

0
0
1
0
0
1
0
1
0
1

1
1
0
0
1
0
1
0
0
0

1
1
0
0
1
0
1
1
0
1

1
0
0
0
0
1
0
1
1
0

0
1
0
1
1
1
0
1
1
0

1s
t s

lic
e,

1s
t c

ub
e

2n
d

sli
ce

,
1s

t c
ub

e

st
op

sl
ic

e

3r
d

sli
ce

,
1s

t c
ub

e

1s
t s

lic
e,

2n
d

cu
be

2n
d

sli
ce

,
2n

d
cu

be

3r
d

sl
ice

,
2n

d
cu

be

LF
S

R

1 1 1 1 1 1
1st seed2nd seed end of

1st seed
Fig. 4. Example of slice generation and decoding logic functionality.

FIFO buffer can be used between the ATE and the LFSR [5].
Note that in either case there is no need to have equal system
and ATE clocks, since the seeds of the proposed approach are
self-stoppable and, as a result, no external synchronized in-
formation for controlling the LFSR operation is required.

In Fig. 4 we demonstrate the generation of the test slices of
the example of Fig. 2, and the operation of the corresponding
decoding logic. Since the stop slice is equal to x1xxxxx0xx, the
decoding logic has to recognize the coexistence of logic 1 and
logic 0 in bit positions 2 and 8 respectively of the generated
slices. Therefore, an inverter and a NAND2 gate are sufficient
for implementing it. Suppose that two LFSR seeds are needed
for the generation of the six test slices and the stop slice. The
first seed encodes the first two slices of the first test cube and
the stop slice, whereas the second seed encodes the last slice of
the first cube and all three slices of the second cube. Note that
all seeds should encode the stop slice as their final slice, except
for the last one. That is why in our example the stop slice is not
encoded by the second seed. Observe also that a seed can gen-
erate an arbitrary number of consecutive slices, irrespectively
of the test cube they belong. This means that one seed may gen-
erate just a few (consecutive) slices of a single test cube,
whereas another may generate the last slices of one cube, all
slices of a second cube and the first slices of a third cube. We
remind that this characteristic allows the proposed approach to
better exploit the available binary variables. As shown in Fig. 4,
the decoding logic distinguishes the test slices from the stop
slice (the x values of the slices are randomly filled by the de-
compressor). When the stop slice is met, the decoding logic
disables the scan chains and signals the loading of the next seed.
We should note that, for simplicity, in Fig. 4 we do not present
the full operation of the decompression architecture, but just the
slice generation and the functionality of the decoding logic.

If the usage of different stop slices for a single test set (see
Section III.A) is desirable, then a separate decoding logic is
needed for each different stop slice (i.e., for each test cube
subset). The appropriate decoding logic will be selected by
means of a Mux, which will be controlled by a subset counter.
A vector counter and a small decoder will be also needed. The
vector counter will indicate the end of a cube subset and the
beginning of the next one, whereas the decoder will check the
state of the vector counter and, when needed, it will update the
state of the subset counter. The size of all these components is
small and so is the hardware overhead they impose.

IV. SEED-CALCULATION ALGORITHM
The proposed algorithm comprises the following steps:

TABLE II. RESULTS OF THE PROPOSED METHOD (# BITS)
Nsc = 20 Nsc = 32 Nsc = 64 Nsc = 100

Circuit Mintest
(# bits) LFSR size

6xNsc+Stop
LFSR size
7xNsc+Stop

LFSR size
8xNsc+Stop

LFSR size
4xNsc+Stop

LFSR size
5xNsc+Stop

LFSR size
6xNsc+Stop

LFSR size
2xNsc+Stop

LFSR size
3xNsc+Stop

LFSR size
3.5xNsc+Stop

LFSR size
1.5xNsc+Stop

LFSR size
2xNsc+Stop

LFSR size
2.5xNsc+Stop

s9234 39273 12750 12615 12705 12012 11972 12348 11837 11426 11679 11704 11514 11340
s13207 165200 19625 19430 19470 17028 16892 17052 15065 14235 14528 14938 15300 13716
s15850 76986 17000 16820 16830 15960 16005 15760 16506 14625 14528 17136 15428 14927
s38417 164736 65772 63218 63412 62643 62370 61661 64505 61267 60685 69916 75480 61468
s38584 199104 47124 46136 45816 43952 43160 43164 43624 41173 41907 46345 42230 43860

Step 1. Partition the test cubes of the test set into slices, calcu-
late the stop slice, and select an initial test cube randomly.
Step 2. Compress as many consecutive slices as possible by
solving the corresponding systems of linear equations. If all
slices of a cube have been encoded, then select as next cube
the one for which the greatest number of consecutive slices
can be encoded.
Step 3. If no more test slices can be encoded in the current
seed (i.e., if the linear system for a test slice cannot be solved),
encode the stop slice as the last slice of the seed.
Step 4. If there are any test slices that have not been encoded
yet, go to Step 2.

In general, the seed-calculation algorithm selects a test cube
and encodes all of its slices, one after the other, by using as
many seeds as needed. When all the slices of a cube have been
encoded, another cube is selected and so on. This process is
repeated until the slices of all test cubes in the test set have been
encoded. Always, the last slice that is encoded in a seed is the
stop slice (except for the last seed, as explained in Section III).

There are a few points that should be discussed about the
seed-calculation algorithm. The first one concerns the selection
of the next cube, the slices of which will be encoded. The first
cube of the seed-calculation process is selected randomly. How-
ever, when the algorithm finishes the encoding of the slices of
one cube, there are usually unspecified variables in the current
seed that can be used for the encoding of the first slices of the
next cube. For that reason, as next cube, we select the one for
which the greatest number of consecutive slices can be encoded
by the current seed. This greedy selection criterion targets the
minimization of the volume of the calculated seeds (and hence,
of the compressed data) by maximizing the number of test slices
that seeds which "start in one cube and end in another" encode.

Another issue concerns the test slices that are compatible
with the stop slice. For such slices, one of the x values that cor-
respond to the specified bit-positions of the stop slice should be
set equal to the complement of the respective stop-slice bit.
This can happen randomly with great probability, as explained
in Section III.A. One way to exploit this probability would be
to generate (symbolically) every test slice exactly after its en-
coding, and examine its bit positions that correspond to the
specified bits of the stop slice. If one of these bit positions is set
to the required value then we are done and we move on to the
next slice. Otherwise, an extra linear equation should be solved
for that purpose. In our implementation, we adopted the more
simplified approach of initially setting one of the appropriate
test-slice's x-bits to the required value, by solving the addi-
tional linear equation along with the normal system. This
method though, does not fully exploit the potential offered by
the pseudorandom operation of the decompressor.

Finally, Step 3 of the algorithm should be explained further:
how can we guarantee that the stop slice can be always encoded

as the last slice of every seed? This can be done by examining if
the stop slice can be encoded after the encoding of every test
slice. If this is true then we continue with the next test slice.
Otherwise, we return to the previous test slice (which is already
encoded), we encode the stop slice after it (we have already
examined that this can be done) and we restart the encoding
process with a new seed. This approach avoids very deep back-
tracking whenever the stop slice cannot be encoded. Also, it
imposes minimum run-time penalty, due to the very small com-
plexity of solving a linear system for encoding the stop slice.

V. EVALUATION AND COMPARISONS
For evaluating the effectiveness of LFSR reseeding with

self-stoppable seeds, we implemented the proposed approach
in the C programming language and we performed simulations
on a Pentium PC for the largest ISCAS '89 benchmark circuits.
The densely specified Mintest [6] test sets with dynamic com-
paction were used in our experiments. The run-time of the
proposed method is just a few seconds.

In Table II, we present the compressed-data-volume results
of the proposed technique, for various numbers of scan-chains
(Nsc) and LFSR sizes. In the second column of this table we
also provide the size of the uncompressed Mintest test sets.
The utilized LFSR sizes were selected to be equal to a multiple
of the slice size (i.e., Nsc) plus the number of defined bits of
the stop slice for the corresponding circuit and scan-chain vol-
ume. Thus, the "6xNsc+Stop" in the third column means that
the LFSR size is equal to 6 times the slice size plus the number
of defined bits of the stop slice for Nsc=20. Such an LFSR size
allows 6 fully specified test slices plus the stop slice to be en-
coded together in the same seed. However, since very few (if
any) slices in a test set are fully specified, the LFSR size does
not necessarily have to be equal to "i x Nsc+Stop" (where i is a
positive integer). Actually, experiments with different LFSR
sizes yielded similar results to those in Table II. This can be also
verified by the best results of Table II (boldfaced), which, for 4
out of 5 circuits, were achieved with i equal to 3.5 and 2.5.

As far as the compression results are concerned, we ob-
serve that, except for the case of s13207, they are not signifi-
cantly affected by the scan-chain volume. This is an expected
behavior, since the number of defined bits in the stop slices is
only slightly modified as the number of scan chains changes.

In Table III we compare the proposed method with other
compression techniques in the literature, in terms of com-
pressed-data reduction percentages. These percentages are cal-
culated by the relation: Red. % = [1 - (compressed bits of pro-
posed / compressed bits of compared)] · 100. We note that we do
not compare against techniques that present results for test sets
different from the dynamically compacted Mintest that we used
in our experiments. Also, we do not consider methods that use
dictionaries, since they suffer from high hardware overhead.

TABLE III. COMPRESSED DATA REDUCTION % OVER OTHER METHODS
Circuit [1] [2] [3] [4] [7] [8] [12] [13] [14] [16] [17] [18] [21]
s9234 49.6 47.5 48.8 45.3 37.0 11.2 39.4 46.6 44.9 - 52.6 36.2 16.8

s13207 60.9 58.0 55.6 49.7 63.9 5.9 71.1 54.3 52.5 81.6 63.9 43.9 11.7
s15850 52.5 44.8 44.1 41.1 44.5 12.3 51.6 41.0 42.2 44.2 53.6 34.3 14.7
s38417 33.4 6.6 35.1 21.0 10.2 -3.4 35.0 6.6 -2.8 -34.8 17.4 0.7 10.9
s38584 54.2 46.8 47.1 45.2 42.4 25.6 49.4 44.3 45.0 44.0 52.3 33.1 12.2

It is worth noting that from the techniques reported in Ta-
ble III, only [12] and [21] are based on LFSR reseeding. As
explained earlier, this is due to the fact that most of the LFSR
reseeding works do not report results for highly compacted
precomputed test sets. This is also the case for [12]. However,
in [9], we implemented the technique of [12] and we provided
results for it using the dynamically compacted Mintest test
sets. To these results we compare in Table III. On the other
hand, the authors of [21] do not present results for benchmark
circuits. For that reason, we implemented their technique and
we compare against the obtained results.

As can be seen in Table III, for the reasons explained in Sec-
tion II, the performance of [12] is much worse than that of the
proposed method. Furthermore, the proposed technique clearly
outperforms the approach of [21]. Although both methods al-
low each seed to encode as many slices as possible, that of [21]
requires an additional bit for every generated slice plus for
every extra cycle needed for loading the next seed in its Seed
Buffer. As shown in Table III, this overhead is significant com-
pared to the one imposed by the proposed stop slices. As com-
pared to the rest of the techniques, the proposed one demon-
strates better performance in nearly all cases. This is a signifi-
cant achievement, since, as already explained, precomputed test
sets do not suit LFSR-based techniques very well [19]. Only
[8], [14] and [16] provide better compression for s38417 ([8]
and [14] marginally). However, [8] cannot fully exploit the par-
allelism of the multiple scan chains of a core, whereas [14] is
applicable to cores with a single scan chain. Therefore, their
test-application time is longer than that of the proposed method.
In [16] on the other hand, an additional significant amount of
control data that is required has not been reported. Hence, those
data have not been included in the comparisons of Table III.

The efficiency of the proposed technique depends mainly
on the defined-bit volume of the stop slices. The dynamically
compacted Mintest test sets, although densely specified (their
fill rates are much greater than those reported in [15]), are
relatively small. For that reason, we used a commercial ATPG
tool for generating dynamically compacted N-detect test sets
(with N=3, 6 and 9) for the examined benchmark circuits.
Then, we applied the stop-slice calculation process to these
test sets and the defined-bit volumes of the resulting stop
slices, for 32 and 100 scan chains, are presented in Table IV.
As can be seen, although the N-detect test sets are 2 to 9 times
larger than the Mintest, the number of defined bits in the stop
slices increases only marginally (1 - 2 bits). Thus, we expect
that, for larger circuits, their volume will be also kept small.
We should remind though that if we end up with a stop slice
with many defined bits, the partitioning of the test set into test-
cube subsets will solve the problem.

VI. CONCLUSIONS
To improve the efficiency of LFSR-based test-data com-

pression when the latter is applied to precomputed test sets, self-

TABLE IV. DEFINED-BIT VOLUMES IN THE STOP SLICES FOR N-DETECT TEST SETS
N = 3 N = 6 N = 9

Circuit Test-set
size (# bits)

Nsc=
32

Nsc=
100

Test-set
size (# bits)

Nsc=
32

Nsc=
100

Test-set
size (# bits)

Nsc=
32

Nsc=
100

s9234 118560 6 4 216372 7 4 310479 7 3
s13207 298900 6 4 462000 6 5 618800 6 4
s15850 190632 5 4 309166 6 4 425256 6 5
s38417 495872 7 5 818688 7 6 1033344 7 5
s38584 923784 6 5 1386408 7 5 1841712 7 6

stoppable seeds were presented in this paper. Each seed is al-
lowed to encode as many slices as possible. This is achieved by

means of a stop-slice that is encoded as the final slice of each

seed to mark its end of usage. The stop slices are generated in

such a way so as to impose minimum compression overhead,
whereas the proposed decompression architecture is very small.

REFERENCES
[1] A. Chandra and K. Chakrabarty, "Test data compression and decompres-

sion based on internal scan chains and Golomb coding," IEEE Trans.
CAD, vol. 21, pp. 715-722, June 2002.

[2] A. Chandra and K. Chakrabarty, "A unified approach to reduce SOC test
data volume, scan power and testing time," IEEE Trans. CAD, vol. 22,
pp. 352-363, March 2003.

[3] A. Chandra and K. Chakrabarty, "Test data compression and test re-
source partitioning for system-on-a-chip using frequency-directed run-
length (FDR) codes," IEEE Trans. Comput., vol. 52, pp. 1076-1088,
Aug. 2003.

[4] P. T. Gonciari, B. Al-Hashimi, and N. Nicolici, "Variable-length input
Huffman coding for system-on-a-chip test," IEEE Trans. CAD, vol. 22,
pp. 783-796, June 2003.

[5] P. T. Gonciari et al., "Synchronization overhead in SOC compressed
test," IEEE Trans. VLSI Syst., vol. 13, pp. 140-152, Jan. 2005.

[6] I. Hamzaoglu and J. Patel, "Test set compaction algorithms for combina-
tional circuits," IEEE Trans. CAD, vol. 19, pp. 957-963, Aug. 2000.

[7] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. A. Touba, "An efficient test
vector compression scheme using selective Huffman coding," IEEE
Trans. CAD, vol. 22, pp. 797-806, June 2003.

[8] X. Kavousianos, E. Kalligeros, and D. Nikolos, "Test data compression
based on variable-to-variable Huffman encoding with codeword reus-
ability," IEEE Trans. CAD, vol. 27, pp. 1333-1338, July 2008.

[9] X. Kavousianos, E. Kalligeros, and D. Nikolos, "Multilevel-Huffman
test-data compression for IP cores with multiple scan chains," IEEE
Trans. VLSI Syst., vol. 16, pp. 926-931, July 2008.

[10] B. Koenemann, "LFSR-coded test patterns for scan design," in Proc.
ETC, 1991, pp. 237-242.

[11] C. V. Krishna, A. Jas, and N. A. Touba, "Test vector encoding using
partial LFSR reseeding," in Proc. ITC, 2001, pp. 885-893.

[12] C. V. Krishna and N. A. Touba, "Reducing test data volume using LFSR
reseeding with seed compression," in Proc. ITC, 2002, pp. 321-330.

[13] A. El-Maleh and R. Al-Abaji, "Extended frequency-directed run-length
code with improved application to system-on-a-chip test data compres-
sion," in Proc. ICECS, 2002, vol. 2, pp. 449-452.

[14] M. Nourani and M. H. Tehranipour, "RL-Huffman encoding for test
compression and power reduction in scan applications," ACM Trans.
Des. Autom. of Electr. Syst., vol. 10, pp. 91-115, Jan. 2005.

[15] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, "Embedded determi-
nistic test," IEEE Trans. CAD, vol. 23, pp. 776-792, May 2004.

[16] S. Reda and A. Orailoglu, "Reducing test application time through test
data mutation encoding," in Proc. DATE 2002, pp. 387-393.

[17] P. Rosinger et al., "Simultaneous reduction in volume of test data and
power dissipation for systems-on-a-chip," Electronics Letters, vol. 37,
no. 24, pp. 1434-1436, 2001.

[18] M. Tehranipour, M. Nourani, and K. Chakrabarty, "Nine-coded com-
pression technique for testing embedded cores in SoCs," IEEE Trans.
VLSI Systems, vol. 13, pp. 719-731, June 2005.

[19] N. A. Touba, "Survey of test vector compression techniques," IEEE
Design Test Comput., pp. 294-303, July-Aug. 2006.

[20] V. Tenentes, X. Kavousianos, and E. Kalligeros, "State skip LFSRs:
bridging the gap between test data compression and test set embedding
for IP cores," in Proc. DATE 2008, pp. 474-479.

[21] E. Volkerink and S. Mitra, "Efficient seed utilization for reseeding based
compression," in Proc. VTS, 2003, pp. 232-237.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

