
On Decomposing Boolean Functions

via Extended Cofactoring

Anna Bernasconi

Department of Computer Science

University of Pisa, Italy

annab@di.unipi.it

Valentina Ciriani Gabriella Trucco

Department of Information Technologies

University of Milano, Italy

{ciriani, trucco}@dti.unimi.it

Tiziano Villa

Department of Computer Science

University of Verona, Italy

tiziano.villa@univr.it

Abstract—We investigate restructuring techniques based on
decomposition/factorization, with the objective to move critical
signals toward the output while minimizing area. A specific
application is synthesis for minimum switching activity (or high
performance), with minimum area penalty, where decompositions
with respect to specific critical variables are needed (the ones of
highest switching activity for example). In this paper we describe
new types of factorization that extend Shannon cofactoring and
are based on projection functions that change the Hamming
distance of the original minterms and on appropriate don’t care
sets, to favor logic minimization of the component blocks. We
define two new general forms of decomposition that are special
cases of the pattern F = G(H(X),Y). The related implementations,
called P-Circuits, show experimentally promising results in area
with respect to Shannon cofactoring.

I. INTRODUCTION

The design of CMOS digital circuits targets optimization

objectives like area, delay and power consumption. Achieving

low power-consumption is increasingly important due to the

spreading of portable electronic devices. In CMOS technology,

power consumption is characterized by three components: dy-

namic, short-circuit, and leakage power dissipation, of which

dynamic power dissipation is the predominant one. Dynamic

power dissipation is due to the charge and discharge of load

capacitances, when the logic value of a gate output toggles;

switching a gate may trigger a sequence of signal changes

in the gates of its output cone, increasing dynamic power

dissipation. So, reducing switching activity reduces dynamic

power consumption.

Previous work proposed various transformations to decrease

power consumption and delay (for instance [8], [11], [13]

for performance, and [1], [10], [12] for low power), whereby

the circuit is restructured in various ways, e.g., redeploying

signals to avoid critical areas, bypassing large portions of a

circuit. For instance, if we know the switching frequency of

the input signals, a viable strategy to reduce dynamic power

is to move the signals with the highest switching frequency

closer to the outputs, in order to reduce the part of the circuit

affected by the switching activity of these signals. Similarly

for performance, late-arriving signals are moved closer to the

outputs to decrease the worst-case delay.

The objective of our research is a systematic investigation of

restructuring techniques based on decomposition/factorization,

with the objective to move critical signals toward the output

and avoid losses in area. A specific application is synthesis

for minimum switching activity (or high performance), with

minimum area penalty.

Differently from factorization algorithms developed only for

area minimization, we look for decompositions with respect

to specific critical variables (the ones of highest switching

activity for example). This is exactly obtained by Shannon

cofactoring, which decomposes with respect to a chosen split-

ting variable; however, when applying Shannon, the drawback

is that too much area redundancy might be introduced because

large cubes are split between subspaces, whereas no new cube

merging will take place. So one should look for different

cofactors and expansions geared towards area minimization.

In this paper we study more general types of factorization

that extend straightforward Shannon cofactoring; instead of

cofactoring only with respect to single variables as Shannon

does, we will cofactor with respect to more complex functions,

expanding with respect to the orthogonal basis xi ⊕ p (i.e.,

xi = p), and xi ⊕ p (i.e., xi 6= p), where p(x) is a function

defined over all variables except xi. We will study different

functions p(x) trading-off quality vs. computation time. Our

new factorizations modify the Hamming distance of the onset

minterms, so that more logic minimization may be performed,

while signals are moved in the circuit closer to the outputs.

To favor minimization, the final expansion is defined in such

a way to avoid cube fragmentation (e.g., cube splitting for the

cubes intersecting both subspaces xi = p and xi 6= p), by the

introduction of appropriate don’t care sets for the blocks of

the decomposition. This can be seen as a form of generalized

cofactoring (that is based on expanding a function over an

orthogonal basis), augmented by appropriate don’t care sets.

The contribution of this paper is represented by two new

general forms of decomposition that are special cases of the

type F = G(H(X), Y ), with G fixed and X, Y disjoint

variables (X ∩ Y = ∅). The paper is organized as follows.

Sec. II describes a new theory of decomposition based on

generalized cofactoring, which is applied in Sec. III to the

synthesis of Boolean functions by a new structure called P-

circuits. Experiments and conclusions are reported in Sec. IV.

II. DECOMPOSITION METHODS

How to decompose Boolean functions is an on-going re-

search area to explore alternative logic implementations. A
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technique to decompose Boolean functions is based on ex-

panding them according to an orthogonal basis (see [6], Ch.

3.15), as in the following definition, where a function f is

decomposed according to the basis (g, g).

Definition 1: Let f = (fon, fdc, foff ) be an incompletely

specified function and g be a completely specified function, the

generalized cofactor of f with respect to g is the incompletely

specified function co(f, g) = (fon.g, fdc + g, foff .g).

This definition highlights that in expanding a Boolean function

we have two degrees of freedom: choosing the basis (in this

case, the function g), and choosing one completely speci-

fied function included in the incompletely specified function

co(f, g). This flexibility can be exploited according to the

purpose of the expansion. For instance, when g = xi, we

have co(f, xi) = (fon.xi, fdc + xi, foff .xi). Notice that

the well-known Shannon co-factor fxi
= f(x1, . . . , (xi =

1), . . . , xn) is a completely specified function contained in

co(f, xi) = (fon.xi, fdc + xi, foff .xi) (since fon.xi ⊆ fxi
⊆

fon.xi + fdc + xi = fon + fdc + xi); moreover, fxi
is the

unique cover of co(f, xi) independent of the variable xi.

We introduce now two types of expansion of a Boolean

function that yield decompositions with respect to a chosen

variable (as in Shannon cofactoring), but are also area-efficient

because they favor minimization in the obtained logic blocks.

Let f(X) = (fon(X), fdc(X), foff (X)) be an incom-

pletely specified Boolean function depending on the set X =
{x1, x2, . . . , xn} of n binary variables. Let X(i) be the subset

of X containing all variables but xi, i.e., X(i) = X \ {xi},
where xi ∈ X . Consider now a completely specified Boolean

function p(X(i)) depending only on the variables in X(i). We

introduce two Boolean functional decomposition techniques

based on the projections of the function f onto two comple-

mentary subsets of the Boolean space {0, 1}n defined by the

function p. More precisely, we note that the space {0, 1}n

can be partitioned into two sets: one containing the points for

which xi = p(X(i)) and the other containing the points for

which xi 6= p(X(i)). Observe that the characteristic functions

of these two subsets are (xi⊕p) and (xi⊕p), respectively, and

that these two sets have equal cardinality. We denote by f |xi=p

and f |xi 6=p the projections of the points of f(X) onto the two

subsets where xi = p(X(i)) and xi 6= p(X(i)), respectively.

Note that these two functions only depend on the variables

in X(i). The first decomposition technique, already described

in [9] and [4], is defined as follows.

Definition 2: Let f(X) be an incompletely specified

Boolean function, xi ∈ X , and p(X(i)) be a completely

specified Boolean function. The (xi, p)-decomposition of f

is the algebraic expression

f = (xi ⊕ p)f |xi=p + (xi ⊕ p)f |xi 6=p .

First of all we observe that each minterm of f is projected

onto one and only one subset. Indeed, let m = m1m2 · · ·mn

be a minterm of f ; if mi = p(m1, . . . ,mi−1,mi+1, . . . ,mn),

then m is projected onto the set where xi = p(X(i)),
otherwise m is projected onto the complementary set where
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Fig. 1. An example of projection of the incompletely specified
function f onto the spaces x1 = x2 and x1 6= x2.

xi 6= p(X(i)). The projection simply consists in elim-

inating mi from m. For example, consider the func-

tion f shown on the left side of Fig. 1 with fon =
{0000, 0001, 0010, 0101, 1001, 1010, 1100, 1101} and fdc =
{0111}. Let p be the simple Boolean function x2, and xi

be x1. The Boolean space {0, 1}4 can be partitioned in

the two sets: x1 = x2 and x1 6= x2 each containing

23 points. The projections of f onto these two sets are

fon|x1=x2
= {000, 001, 010, 100, 101} , fdc|x1=x2

= ∅, and

fon|x1 6=x2
= {101, 001, 010}, fdc|x1 6=x2

= {111}.
Secondly, observe that these projections do not preserve the

Hamming distances among minterms, since we eliminate the

variable xi from each minterm, and two minterms projected

onto the same subset could have different values for xi. The

Hamming distance is preserved only if the function p(X(i)) is

a constant, that is when the (xi, p)-decomposition corresponds

to the classical Shannon decomposition. The fact that the

Hamming distances may change could be useful when f is

represented in SOP form, as bigger cubes could be built in

the projection sets. For example, consider again the function

f shown on the left side of Fig. 1. The points 0000 and

1100 contained in fon have Hamming distance equal to 2,

and thus cannot be merged in a cube, while their projections

onto the space fon|x1=x2
(i.e., 000 and 100, respectively) have

Hamming distance equal to 1, and they form the cube x3x4.

On the other hand, the cubes intersecting both subsets

xi = p(X(i)) and xi 6= p(X(i)) are divided into two smaller

subcubes. For instance, in our running example, the cube x3x4

of function fon is split in the two sets x1 = x2 and x1 6= x2

forming a cube in fon|x1=x2 and one in fon|x1 6=x2 , as shown

on the right side of Fig. 1.

Observe that the cubes eventually split can contain pairs of

minterms, whose projections onto the two sets are identical.

In our example, x3x4 is the cube corresponding to the points

{0001, 0101, 1001, 1101}, where 0001 and 1101 are projected

onto fon|x1=x2 and become 001 and 101, respectively, and

0101 and 1001 are projected onto fon|x1 6=x2
and again become

101 and 001, respectively. Therefore, we can characterize

the set of these minterms as I = f |xi=p ∩ f |xi 6=p. Note

that the points in I do not depend on xi. In our example



Ion = fon|x1=x2
∩ fon|x1 6=x2

= {001, 010, 101}, and Idc = ∅.
In order to overcome some splitting cubes, we could

keep I unprojected, and project only the points in

f |xi=p \ I and f |xi 6=p \ I , obtaining the expression

f = (xi ⊕ p)(f |xi=p \ I) + (xi ⊕ p)(f |xi 6=p \ I) + I .

However, we are left with another possible drawback: some

points of I could also belong to cubes covering points of

f |xi=p and/or f |xi 6=p, and their elimination could cause the

fragmentation of these cubes. Thus, eliminating these points

from the projected subfunctions would not be always conve-

nient. On the other hand, some points of I are covered only

by cubes entirely belonging to I . Therefore keeping them both

in I and in the projected subfunctions would be useless and

expensive. In our example, since Ion = {001, 010, 101}, in

fon|x1=x2
001 and 101 are useful for forming, together with

000 and 100, the cube x3; instead the point 010 is useless

and must be covered with an additional cube. The solution

of this problem is to project the points belonging to I as

don’t cares for f |xi=p and f |xi 6=p, in order to choose only

the useful cubes. We therefore propose the following more

refined decomposition, using the notation h = (hon, hdc) for

an incompletely specified function h and its on-set hon and

don’t care set hdc.

Definition 3: Let f(X) be an incompletely specified

Boolean function, xi ∈ X , and p(X(i)) be a completely

specified Boolean function. The (xi, p)-decomposition with

intersection of f = (fon, fdc) is the algebraic expression

f = (xi ⊕ p)f̃ |xi=p + (xi ⊕ p)f̃ |xi 6=p + I ,

where

f̃ |xi=p = (fon|xi=p \ Ion, fdc|xi=p ∪ Ion) ,

f̃ |xi 6=p = (fon|xi 6=p \ Ion, fdc|xi 6=p ∪ Ion) ,

I = (Ion, Idc) ,

with Ion = fon|xi=p∩fon|xi 6=p and Idc = fdc|xi=p∩fdc|xi 6=p.

For our example, the projections of f become

f̃ |x1=x2 = (fon|x1=x2 \ Ion, fdc|x1=x2 ∪ Ion)
= ({000, 100}, {001, 010, 101}) and f̃ |x1 6=x2

= (fon|x1 6=x2
\

Ion, fdc|x1 6=x2
∪ Ion) = (∅, {111} ∪ {001, 010, 101}). The

Karnaugh maps of this decomposition are show in Fig. 2.

Observe that, fixing the function p and a variable x,

these decompositions are canonical. We now study these

decomposition methods for some choices of the function p.
a) Case p = 0.: As we have already observed, if p is a

constant function, then the (xi, p)-decomposition is indeed the

classical Shannon decomposition: f = xif |xi=0 + xif |xi=1.

Recall that (xi ⊕ 0) is equivalent to xi, while (xi ⊕ 0) is

equivalent to xi. Also observe that choosing p = 1 we would

get exactly the same form. For the (xi, p)-decomposition with

intersection we have the following particular form:

f = xif̃ |xi=0 + xif̃ |xi=1 + I .

Observe that in this particular case, the set I is

I = f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

∩ f(x1, . . . , xi−1, 1, xi+1, . . . , xn) .
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Fig. 2. An example of projection with intersection of the function f
of Fig. 1 onto the spaces x1 = x2 and x1 6= x2.

This implies the following property.

Proposition 1: The characteristic function χI of I is the

biggest subfunction of f that does not depend on xi.

Proof: Let χ1, . . . , χk be the subfunctions of f that do

not depend on xi, and let χ be their union, i.e., χ = χ1+χ2+
. . .+χk. Observe that χ is still a subfunction of f and it does

not depend on xi. Therefore χ is the biggest subfunction that

does not depend on xi. We must show that χ = χI . First note

that χI is one of the functions χ1, . . . , χk. Suppose χI = χj ,

1 ≤ j ≤ k. By construction, χj is a subfunction of χ. On the

other hand, if χ(X) = 1, then there exists an index h such

that χh(X) = 1. Since χh does not depend on xi, we have

χh(x1, . . . , xi−1, 1, xi+1, . . . , xn) =

= χh(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 1 .

Moreover, since χh is a subfunction of f , on the same input

X we have that

f(x1, . . . , xi−1, 1, xi+1, . . . , xn) =

= f(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 1 .

This implies that

χj(X) = f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

∩ f(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 1 ,

which means that χ is a subfunction of χj . As χj = χI , we

finally have that χ = χI .

Note that if χI is equal to f , then f does not depend on xi.

We conclude the analysis of this special case observing how

the (xi, 0)-decomposition, i.e., the classical Shannon decom-

position, and the (xi, 0)-decomposition with intersection show

a different behavior when the subfunctions f |xi=0, f |xi=1,

f̃ |xi=0, f̃ |xi=1, and the intersection I are represented as sums

of products. Consider a minimal sum of products SOP (f) for

the function f . The number of products in SOP (f) is always

less or equal to the overall number of products in the minimal

SOP representations for f |xi=0 and f |xi=1. This easily follows

from the fact that each product in SOP (f) that does not

depend on xi is split into two products, one belonging to a

minimal SOP for f |xi=0 and the other belonging to a minimal

SOP for f |xi=1. On the other hand, the (xi, 0)-decomposition
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Fig. 3. P-circuit (left) and P-circuit with intersection (right).

with intersection contains the same number of products as

SOP (f), and its overall number of literals is less or equal to

the number of literals in SOP (f).

Theorem 1: An (xi, 0)-decomposition with intersection for

a function f , where f̃ |xi=0, f̃ |xi=1, and I are represented

as minimal sums of products, contains an overall number of

products equal to the number of products in a minimal SOP

for f , and an overall number of literals less or equal to the

number of literals in a minimal SOP forf .

Proof: First observe how we can build minimal SOP rep-

resentations for f̃ |xi=0, f̃ |xi=1, and I starting from a minimal

SOP SOP (f) for f . Indeed, the sum of the projections of all

products in SOP (f) containing the literal xi gives a minimal

SOP for f̃ |xi=1, the sum of the projections of all products in

SOP (f) containing the literal xi gives a minimal SOP for

f̃ |xi=0, while all remaining products, that do not depend on

xi or xi, give a minimal SOP covering exactly the points in

the intersection I . The minimality of these SOPs follows from

the fact that the (xi, 0)-decomposition with intersection does

not change the Hamming distances among the minterms, so

that no bigger cubes could be built in the projection sets.

Let us now analyze the overall number of literals in the

(xi, 0)-decomposition with intersection built from SOP (f).
Let `SOP denote the number of literals in SOP (f). The

products in the SOP for I are left unchanged, so that their

overall number of literals `I is preserved. Suppose that r

products in SOP (f) contain xi, and let `xi
denote their overall

number of literals. The projection of these r products forms a

SOP for f̃ |xi=1, whose number of literals is equal to `xi
− r,

as projecting a product simply consists in eliminating xi from

it. Analogously, if s products in SOP (f) contain xi, and

`xi
is their overall number of literals, the SOP for f̃ |xi=0

contains `xi
− s literals. Thus, the (xi, 0)-decomposition with

intersection contains exactly `I + `xi
− r + `xi

− s + 2 =

`SOP − r − s + 2 literals, where the two additional literals

represent the characteristic functions of the projection sets.

b) Case p = xj .: For p = xj , with j 6= i, the two

decomposition techniques are based on the projection of f

onto the two complementary subspaces of {0, 1}n where xi =
xj and xi 6= xj . For the (xi, xj)-decomposition we get the

following expression f = (xi⊕xj)f |xi=xj
+(xi⊕xj)f |xi 6=xj

,

while the (xi, xj)-decomposition with intersection is given by

f = (xi ⊕ xj)f̃ |xi=xj
+ (xi ⊕ xj)f̃ |xi 6=xj

+ I , where

f̃ |xi=xj
= (fon|xi=xj

\ Ion, fdc|xi=xj
∪ Ion) ,

f̃ |xi 6=xj
= (fon|xi 6=xj

\ Ion, fdc|xi 6=xj
∪ Ion) ,

with Ion = fon|xi=xj
∩ fon|xi 6=xj

and Idc = fdc|xi=xj
∩

fdc|xi 6=xj
. These expressions share some similarities with the

EXOR Projected Sum of Products studied in [3]. In particular,

if we represent the subfunctions as sums of products, the

(xi, xj)-decomposition corresponds to an EP-SOP form, while

the (xi, xj)-decomposition with intersection is only partially

similar to an EP-SOP with remainder form [3]. The differences

between the two expressions are due to the presence of

don’t cares in f̃ |xi=xj
and f̃ |xi 6=xj

, and to the fact that the

intersection I does not depend on the variable xi, while the

remainder in an EP-SOP may depend on all the n input

variables. Also observe that, thanks to the presence of don’t

cares, the (xi, xj)-decomposition with intersection has a cost

less or equal to that of an EP-SOP with remainder.

c) Cases p = xj ⊕ xk and p = xjxk.: In general the

function p used to split the Boolean space {0, 1}n may depend

on all input variables, but xi. In this paper we consider only

two special cases, based on the use of two simple functions:

an EXOR and an AND of two literals. The partition of {0, 1}n

induced by the EXOR function does not depend on the choice

of the variable complementations. Indeed, since xj ⊕ xk =
xj ⊕ xk, and (xj ⊕ xk) = xj ⊕ xk = xj ⊕ xk, the choices

p = xj ⊕ xk and p = xj ⊕ xk give the same partition of

the Boolean space. On the contrary, the partition of {0, 1}n

induced by the AND function changes depending on the choice

of the variable complementations, so that four different cases

must be considered:
1) p = xjxk, corresponding to the partition into the sets

where xi = xjxk and xi 6= xjxk, i.e., xi = xj + xk;
2) p = xjxk, corresponding to the partition into the sets

where xi = xjxk and xi 6= xjxk, i.e., xi = xj + xk;
3) p = xjxk, corresponding to the partition into the sets

where xi = xjxk and xi 6= xjxk, i.e., xi = xj + xk;
4) p = xjxk, corresponding to the partition into the sets

where xi = xjxk and xi 6= xjxk, i.e., xi = xj + xk.
When the subfunctions are represented as SOPs, the resulting

decomposition forms share some similarities with the Pro-

jected Sum of Products (P-SOP) introduced in [2]. Again, the



Synthesis of P -Circuits

INPUT: Functions f and p, and a variable xi

OUTPUT: An optimal P -circuit for the (xi, p)-decomposition of f

NOTATION: let f = (fon, fdc), i.e., fon is the on-set of f ,

and fdc is the don’t care-set of f ,

f(=)
on = fon|xi=p;

f(6=)
on = fon|xi 6=p;

f
(=)
dc

= fdc|xi=p;

f
(6=)
dc

= fdc|xi 6=p;

MinSOP (=) = OptSOP (f(=)
on , f

(=)
dc

); // optimal SOP for f(=)

MinSOP (6=) = OptSOP (f(6=)
on , f

(6=)
dc

); // optimal SOP for f(6=)

MinSOP p = OptSOP (p, ∅); // optimal SOP for p

P -circuit = (xi ⊕MinSOP p)MinSOP (=)+

(xi ⊕MinSOP p)MinSOP (6=)

return P -circuit

Fig. 4. Algorithm for the optimization of P-circuits.

two forms are different thanks to the presence of don’t cares

in the subfunctions, and to the fact that the intersection I does

not depend on xi.

III. P-CIRCUITS

We now show how the decomposition methods described

in Section II can be applied to the logic synthesis of Boolean

functions. The synthesis idea is simply that of constructing a

network for f using networks for the projection function p,

for the subfunctions f |xi=p, f |xi 6=p, f̃ |xi=p, and f̃ |xi 6=p, and

a network for the intersection I as building blocks. Observe

that the overall network for f will require an EXOR gate

for computing the characteristic functions of the projection

subsets, two AND gates for the projections and a final OR

gate (see Fig. 3).

The function p, the projected subfunctions, and the in-

tersection can be synthesized in any framework of logic

minimization. In our experiments we focused on the standard

Sum of Products synthesis, i.e., we represented p, f |xi=p,

f |xi 6=p, f̃ |xi=p, f̃ |xi 6=p, and I as sums of products. In this

way we derived networks for f which we called Projected

Circuit and Projected Circuit with Intersection, in short P-

Circuits, see Fig. 3. If the SOPs representing p, f |xi=p, f |xi 6=p,

f̃ |xi=p, f̃ |xi 6=p, and I are minimal, the corresponding circuits

are called Optimal P-Circuits. For instance, the function in

Figures 1 and 2 has minimal SOP form x1x2x3 + x1x2x3 +
x3x4 + x2x3x4, while its corresponding optimal P-circuit is

(x1⊕x2)x3 +x3x4 +x2x3x4. The number of logic levels in a

P-circuit varies from four to five: it is equal to four whenever

the SOP for p consists in just one product, and it is equal to

five otherwise.

If we consider now the power consumption, we can observe

in Fig. 3 that xi, i.e., the variable with the highest switching

frequency, is connected near the output of the overall logic

network, thus triggering a sequence of switching events only

for the last four gates. In this way, the contribution of xi to the

total power consumption is limited. Finally, we observe that it

is possible to apply recursively this decomposition when more

than one variable switches with high frequency.

Synthesis of P -Circuits with intersection

INPUT: Functions f and p, and a variable xi

OUTPUT: An optimal P -circuit for the (xi, p)-decomposition with intersection of f

NOTATION: let f = (fon, fdc), i.e., fon is the on-set of f ,

and fdc is the don’t care-set of f ,

Ion = fon|xi=p ∩ fon|xi 6=p;

Idc = fdc|xi=p ∩ fdc|xi 6=p;

f(=)
on = fon|xi=p \ Ion;

f(6=)
on = fon|xi 6=p \ Ion;

f
(=)
dc

= fdc|xi=p ∪ Ion;

f
(6=)
dc

= fdc|xi 6=p ∪ Ion;

MinSOP (=) = OptSOP (f(=)
on , f

(=)
dc

); // optimal SOP for f(=)

MinSOP (6=) = OptSOP (f(6=)
on , f

(6=)
dc

); // optimal SOP for f(6=)

MinSOP I = OptSOP (Ion, Idc); // optimal SOP for I = (Ion, Idc)
MinSOP p = OptSOP (p, ∅); // optimal SOP for p

P -circuit = (xi ⊕MinSOP p)MinSOP (=)+

(xi ⊕MinSOP p)MinSOP (6=) + MinSOP I

return P -circuit

Fig. 5. Algorithm for the optimization of P-circuits with intersection.

Without Intersection With Intersection

VAR XOR AND Constant VAR XOR AND

32% 22% 28% 79% 59% 50% 58%

TABLE I
PERCENTAGE OF P-CIRCUITS, OVER ALL THE BENCHMARKS,

HAVING SMALLER AREA THAN THE P-CIRCUITS BASED ON

SHANNON DECOMPOSITION.

A. Synthesis Algorithms

We now describe two algorithms for computing optimal P-

circuits, without and with intersection. Both algorithms can

be implemented using OBDD data structures [7] for Boolean

function manipulation, and a classical SOP minimization

procedure (e.g., ESPRESSO [5]). Figures 4 and 5 show the

algorithms for the optimization of a P-circuit without and with

intersection, respectively. The complexity of the algorithms de-

pends from two factors: the complexity of OBDD operations,

which is polynomial in the size of the OBDDs for the operands

f and p, and the complexity of SOP minimization. Exact SOP

minimization is exponential in time, but efficient heuristics are

available (i.e., ESPRESSO in the heuristic mode).

IV. EXPERIMENTAL RESULTS

In this section we report experimental results for the two

decomposition methods described in the previous sections.

The methods have been implemented in C, using the CUDD

library for OBDDs to represent Boolean functions. The ex-

periments have been run on a Pentium 1.6GHz CPU with

1 GByte of main memory. The benchmarks are taken from

LGSynth93 [14]. We report in the following a significant

subset of the functions as representative indicators of our

experiments. In order to evaluate the performances of these

new synthesis methods, we compare the area of different

versions of P-circuits with P-circuits based on the classical

Shannon decomposition, i.e., P-circuits representing (xi, 0)-
decomposition without intersection (referred as Shannon in

Table II). In particular we report P-circuits for the following

choices of the projection function p: 1) p = 0, decomposi-



Without Intersection With Intersection

Shannon VAR XOR AND Constant VAR XOR AND

Bench Area Time Area Time Area Time Area Time Area Time Area Time Area Time Area Time

add6 908 0.65 507 5.19 669 24.58 524 90.84 672 0.51 814 4.44 759 23.70 651 80.93

alu2 355 0.45 382 0.79 416 3.60 356 12.93 283 0.18 308 1.03 310 4.72 298 16.79

amd 1620 0.17 1694 1.24 1800 8.65 1747 30.31 1012 0.12 1085 1.55 1202 10.88 1180 37.65

b12 227 0.11 306 0.55 401 4.27 340 15.90 199 0.18 248 0.65 367 5.25 292 18.13

dk17 263 0.10 250 0.38 291 1.82 230 6.85 263 0.06 250 0.46 291 1.99 230 7.21

ex7 436 0.12 463 1.04 492 8.30 472 29.07 327 0.09 360 1.56 393 10.39 364 38.51

f51m 497 0.09 706 0.21 640 0.64 528 2.24 277 0.09 290 0.28 314 0.85 323 4.11

m181 227 0.42 308 0.58 404 4.44 341 16.39 199 0.08 252 0.68 341 6.65 288 29.20

max1024 2534 0.34 2511 1.97 2973 8.74 2642 30.72 2980 0.25 3043 2.12 2977 10.13 2829 34.28

max46 297 0.03 301 0.14 291 0.41 286 1.75 307 0.02 289 0.10 294 0.46 293 2.14

mp2d 355 0.09 435 0.61 508 4.47 455 16.49 276 0.16 357 0.75 411 6.82 359 22.56

p1 724 0.18 781 0.96 821 3.07 842 10.77 711 0.20 777 1.18 847 3.74 818 13.66

root 416 0.05 594 0.14 393 0.50 385 1.91 417 0.02 536 0.17 602 0.55 446 1.94

spla 2239 0.79 2570 7.88 3142 74.99 2886 273.75 2428 0.73 2761 8.82 3249 84.11 3107 336.30

sym10 559 0.30 414 0.64 309 2.92 416 14.31 568 0.27 529 0.96 551 3.90 554 16.81

t1 905 0.83 951 3.52 1186 41.02 982 155.28 463 0.61 510 6.06 655 78.07 585 277.38

t2 501 0.06 589 0.65 686 6.37 618 22.95 358 0.05 406 0.88 469 9.80 416 22.33

test1 1465 0.34 1488 1.06 1565 3.13 1510 11.43 1535 0.25 1645 1.18 1583 3.66 1484 13.50

tial 3430 5.33 3337 23.68 4062 159.84 3823 557.19 3368 3.29 3319 31.12 3952 215.08 3827 741.85

vtx1 430 0.09 445 1.89 501 32.57 585 107.74 390 0.14 499 3.03 486 50.57 524 171.45

x9dn 530 0.22 528 2.23 595 30.62 548 116.64 412 0.19 401 4.26 457 57.18 418 217.77

Z5xp1 479 0.08 593 0.12 743 0.33 547 1.24 324 0.03 369 0.19 441 0.41 302 1.29

Z9sym 464 0.17 288 0.33 267 1.15 371 6.07 379 0.17 391 0.64 395 1.68 393 9.28

TABLE II
COMPARISON OF AREA AND SYNTHESIS TIME OF P-CIRCUITS REPRESENTING (x0, p)-DECOMPOSITION FORMS FOR DIFFERENT

CHOICES OF THE PROJECTION FUNCTION p.

tion with intersection (referred as Constant in Table II); 2)

p = xj , decomposition without and with intersection (VAR in

Table II); 3) p = xj ⊕ xk, decomposition without and with

intersection (XOR in Table II); 4) p = xjxk, decomposition

without and with intersection, choosing the complementations

of variables giving the best area (AND in Table II). After the

projection, all SOP components of the P -circuits have been

synthesized with multi-output synthesis using ESPRESSO in

the heuristic mode. Finally, to evaluate the obtained circuits,

we ran our benchmarks using the SIS system with the MCNC

library for technology mapping and the SIS command map

-W -f 3 -s. In Table II we compare mapped area and

synthesis time (in seconds) of P -circuits representing decom-

position forms without and with intersection for a subset of

the benchmarks. Due to space limitation, the results shown

refer only to decompositions with respect to the first input

variable, x0, of each benchmark. In all the experiments we

considered decompositions with respect to each input vari-

able of each benchmark. The results, summarized in Tab. I,

are quite promising. These results support the conclusion

that decompositions with intersection provide better results,

and that the best choice for the projection function p is

the simplest: p = 0. Moreover synthesis for p = 0 with

intersection is very efficient in computational time. When p

is not constant, the synthesis is time-consuming, since the

algorithm must choose the best combination of variables to be

utilized for p. Altogether, only 14% of the P-circuits achieve

the smallest area when implemented based on the classical

Shannon decomposition.

V. CONCLUSION

In conclusion, we presented a new method to decompose

Boolean functions via complex cofactoring. Experimental

results show that this decomposition yields more compact

circuits than those obtained with Shannon decomposition.

This decomposition has the advantage to minimize the dy-

namic power dissipation with respect to a known input signal

switching with high frequency. In future work, we plan to

verify this property with a transistor level simulation of the

circuits. Widely used data structures (i.e., OBDDs) are based

on Shannon decomposition. Thus a future development of this

work could be the definition of new data structures based on

the proposed decomposition.
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