
ABSTRACT
This paper uses under-approximation of unreachable states
of a design to derive incomplete specification of combina-
tional logic. The resulting incompletely-specified functions
are decomposed to enhance the quality of technology-
dependent synthesis. The decomposition choices are com-
puted implicitly using novel formulation of symbolic bi-
decomposition that is applied recursively to decompose
logic in terms of simple primitives. The ability of BDDs to
represent compactly certain exponentially large combinato-
rial sets helps us to implicitly enumerate and explore variety
of decomposition choices improving quality of synthesized
circuits. Benefits of the symbolic technique are demon-
strated in sequential synthesis of publicly available bench-
marks as well as on the realistic industrial designs. 

1. INTRODUCTION AND MOTIVATION

Due to recent advances in verification technology [2] circuit
synthesis of semiconductor designs no longer has to be lim-
ited to logic optimization of combinational blocks. Nowa-
days logic transformations may involve memory elements
which change design’s state encodings or its reachable state-
space, and still be verified against its original description. In
this paper we focus on a more conservative synthesis
approach that changes sequential behavior of a design only
in unreachable states, leaving its intended “reachable”
behavior unchanged. Unreachable states are used to extract
incomplete specification of combinational blocks, and are
applied as don’t cares during functional decomposition to
improve circuit quality. 

To implement combinational logic of a design we rely on
a very simple, yet complete, form of functional decomposi-
tion commonly referred to as bi-decomposition. In general,
for a given completely specified Boolean function  its
bi-decomposition has form 

where  is an arbitrary 2-input Boolean function. This
decomposition is not unique and its quality varies depending
on selected subsets  and  that form possibly overlap-
ping partition of . The problem of finding good bi-decom-

position has been studied in [1,8,18,19]. 

The main contribution of this paper is symbolic formula-
tion of bi-decomposition for incompletely specified func-
tions. The bi-decomposition is used as main computational
step in the prototype sequential synthesis tool, and is applied
recursively to implement logic of combinational blocks
whose incomplete specification is extracted from unreach-
able states of a design. Our symbolic formulation of bi-
decomposition finds all feasible solutions and picks the best
ones, without explicit enumeration.

Computation of variable partitions in our symbolic for-
mulation of bi-decomposition favors implicit enumeration
of decomposition subsets. They are represented compactly
with a binary decision diagram (BDD) [4], and are selected
based on optimization objective.  Unlike previous
approaches (e.g. [1,23]) that rely on BDDs, the decomposi-
tion is not checked explicitly for a variable partition, and is
solved implicitly for all feasible partitions simultaneously
utilizing fundamental property of BDDs to share partial
computations across subproblems. Thus, no costly enumera-
tion that requires separate and in independent decomposabil-
ity checks is needed. The technique was also used to tune
greedy bi-decomposition when handling larger functions. 

To overcome limitations of explicit techniques authors in
[15] proposed solution that uses a satisfiability solver [11].
Their approach is based on proving that a problem instance
is unsatisfied. The unsatisfiable core is then used to greedily
select partition of variables that induces bi-decomposition.
Authors demonstrate the approach to be efficient in runtime,
when determining existence of non-trivial decomposition.
The experimental results on a selected benchmark set how-
ever, are primarily focused on the existence of decomposi-
tion and do not offer a qualitative synthesis data. 

The problem of using unreachable states of a design to
improve synthesis and verification quality has been studied
before in various contexts. In general, these algorithms
either avoid explicit computation of unreachable states, or
first compute them in pre-optimization stage. Approaches
that do not explicitly compute unreachable states are mostly
limited to incremental structural changes of a circuit, and
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rely on ATPG environment or induction [12,7,9] to justify a
change. In contrast, approaches that pre-compute subsets of
unreachable states treat them as external don’t cares [20] for
resynthesis of combinational logic blocks [14,5]. In this
paper we adopt the later approach as it offers more flexibil-
ity in logic re-implementation through functional decompo-
sition.

The paper is organized as follows. In Section 2 we intro-
duce preliminary constructs. Section 3 describes bi-decom-
position existence requirements. They are used in Section 4
to formulate implicit computation of decomposition. Imple-
mentation details are described in Section 5. Experimental
results are given in Section 6. Section 7 gives conclusions
and possible directions for future work.

2. PRELIMENARY CONSTRUCTS

Basic constructs used by synthesis algorithms of the paper
are introduced in this section.

2.1  “Less-than-or-equal” relation
Computational forms constructed in this paper rely on the
partial order relation between Boolean functions. Given
functions  and ,  indicates that 
precedes  in the order. This “less-than-or-equal” rela-
tion between the two functions can be expressed by one of
the following three equivalent forms:

The relation imposes consistency constraint on constructed
computational forms.

It allows us represent incompletely specified Boolean
functions in terms of intervals [3], defined as

. 
An interval represents a set of completely specified func-
tions using its two distinguished members  and ,
known as upper and lower bounds respectively. It is non-
empty (or consistent) if and only if  is satisfied.
Example 2.1    Consider interval  which repre-
sents an incompletely specified function. It is composed of
four completely specified functions: , , , and

. Each of them has a don’t care set represented by
function . ❑

Application of existential quantification  and universal
quantification  to lower and upper bounds of the interval
enables convenient selection of its member functions that
are vacuous, i.e. independent, in certain variables.
Example 2.2    Consider abstraction of x from the interval
in Example 2.1: . The abstraction
yields non-empty interval that is composed of a unique func-
tion that is vacuous in x: [y,y]. Abstraction of y however,
results into empty interval since the relation between its
lower and upper bounds is not satisfied:  is empty. ❑

2.2  Parameterized abstraction
To determine subsets of variables whose abstraction pre-
serves consistency of a symbolic statement (or a formula)
we use parameterized abstraction construct. It parameter-
izes computational form with a set of auxiliary variables 
that are used to guide variable abstraction decisions. An
assignment to  effects consistency of a computational
form, and thereby determines feasibility of abstracting a
corresponding variable subset.

We use the “if-then-else” operator  to encode
effect of quantifying variable subsets from a formula.
Defined as , the operator selects between variables

 and  depending on value of . As stated, it can be used
to parameterize signal dependencies in a Boolean function.
It can be also generalized to the selection between functions.
In particular,  encodes a decision of
universal quantification of  from ; similarly for the
existential quantification.
Example 2.3 We can parameterize effect of abstracting the

 interval variable x using the ITE operator and
auxiliary variable  as   

or equivalently . The parameter-
ization can be repeated for variable y in a similar way. ❑

3. BI-DECOMPOSITION OF INCOM-
PLETELY SPECIFIED FUNCTIONS

This sections gives formal statement of bi-decomposition
over 2-input decomposition primitives, namely or and xor.

3.1  Or decomposition 
For a completely specified function , the decomposi-
tion of this type is described in terms of equation below:

(1)
When function is incompletely specified with interval

 we need to make sure that or-composition
 is a member function of the interval. 

Let  and  be signal subsets in which decomposition
functions  and  are respectively vacuous, i.e. are func-
tionally independent. (The underscore in  indicates that
the computed  is independent in these variables.) Vacuous
in  function  must not exceed largest member  in
all its minterm points, independent of , i.e. relation

 must be satisfied. Otherwise  is either
not contained in the interval or it is not independent of .
Similarly,  must hold. Thus, 
and  give upper bounds on  and . To
ensure that the selection of  and  is “large enough” the
following must hold:

(2)

The or-composition does not exceed u universally due to
“reducing” effect of  on u. Thus, we can determine exist-
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ence of the bi-decomposition limiting check to relation in
(2). This check provides necessary and sufficient condition
for the existence of or decomposition, and is a re-statement
of the result from [16]. 

And Decomposition.  As indicated in [16], and decomposi-
tion of  can be obtained from  decomposition utilizing
dual property of the two gates. For an incompletely speci-
fied function  we can find complemented  and 
by establishing or decomposability of the interval comple-
ment, derived as .

3.2  Xor decomposition 
We first describe xor-decomposability condition for a com-
pletely specified function . The existence condition for
the xor decomposition 

(3)
requires partitioning of  and into finer subsets. Let

and  be subsets of variables in which  and  are
respectively vacuous; and let  be a set of variables on
which both decomposition functions are depending. We can
then state necessary and sufficient condition for the exist-
ence of xor decomposition as follows:
Proposition 3.1 Xor bi-decomposition

(4)

exists if and only if
(5)

. (6)

We derived conditions in the above proposition when ana-
lyzing library requirements for an advanced technology
[13]. In [15] authors recently and independently stated anal-
ogous proposition in terms of the unsatisfiability problem.
For that reason, we show correctness of the above proposi-
tion giving only an information-theoretical argument: For
(4) to hold, it must be that all onset/offset minterms in  that
cannot be distinguished by  (relation (5)) must be distin-
guished by  (relation (6)). 

For an incompletely specified function  the
consistency constrain (5) (6) of Proposition 3.1
changes to:

The above statement extends containment relation
(5) (6) by reducing lower bound (5) and increasing
upper bound (6) as much as possible. The relation provides
the condition for xor bi-decomposition of incompletely
specified functions, previously unsolved problem [15].

4. PARAMETERIZED DECOMPOSITION

The Section 3 decomposition checks assume that the  and
 subsets are pre-determined. Finding such feasible sub-

sets however, may not be straight forward and depending on
the objectives could potentially require an exponential
search if performed explicitly. Our solution to the problem
is to perform the search implicitly, formulating the problem
symbolically and solving it by leveraging the capability of
binary-decision diagrams to compactly represent certain
combinatorial subsets. 

Or Parameterization.  To parameterize a set of variables the
operator is applied iteratively, one variable at a time:

This gives function . It encodes the effect of
abstracting all variable subsets from , where variable  is
abstracted iff . 

The parameterized function  can be used in equa-
tion (2) to encode possible supports to  and  in terms of
the decision variables  and :

(7)
For any feasible assignment to  and , the above rela-
tion must hold universally, irrespective of values on .
Thus, computational form

(8)
yields a characteristic function of all feasible supports for

 and . 

We illustrate potentially scalable nature of BDDs to han-
dle computation in (6) decomposing multiplexer function
for its various support sizes: 

The above table gives results of the computation in terms
multiplexer widths, BDD size and time required to compute

, and the best support sizes of  and . As the table
suggests, the amount of resources required in computation
grows moderately for smaller problem instances, and is tol-
erable even for a larger function. More detailed discussion
on selecting best  and  is given later, in Section 5.

Xor Parameterization.  To simplify presentation we com-
pute characteristic function of all feasible support partitions
for a completely specified function. As before, encoding of
possible supports for  and , is performed using two
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sets of auxiliary variables  and . Using , relation (5)
is transformed into , where  is derived
from  replacing each of i ts variables  with

. Similarly, part  from (6) is
parameterized with  to construct . It encodes
selection of vacuous variables for . The last component

 is transformed into , replac-
ing each variable in  with . Uni-
versally abstracting  and  variables gives representation
of all feasible supports for  and :

We compare implicit computation of decomposition
choices to a greedy algorithm for the xor decomposition,
used by authors in [16,22]. Starting from a seed partition, the
algorithm greedily extends support subsets calling xor
decomposability check in its inner loop. Although efficient
in general, the check has potentially formidable runtime.
The profile of its behavior on a 16-bit adder is given in the
table below; it is compared against our implicit computation: 

For a subset of sum-bit functions the table lists runtime
for both techniques. (The best part. column gives data gen-
erated by our implicit enumeration of feasible partitions.)
Although not typical, it is interesting that where a rather effi-
cient greedy check times out after an hour, an implicit
exhaustive computation takes only 0.42 sec. 

In general, we can use best partition produced by the
exhaustive implicit computation to evaluate and tune greedy
algorithm, or to improve some other approximate technique.

5. IMPLEMENTATION DETAILS OF 
SEQUENTIAL SYNTHESIS

This section describes a sequential synthesis flow that first
extracts incompletely specified logic accounting for
unreachable states in a design, and then uses bi-decomposi-
tion to synthesize technology-independent circuit. 

5.1  Extraction of incompletely specified logic
Unreachable states of a design form don’t cares for the com-
binational logic. Due to the complexity of computing
unreachable states even in designs of modest size, incom-
pletely specified combinational logic is extracted with
respect to an approximation of unreachable states. Unlike
other partitioning approaches that try to produce a good

approximation of unreachable states in reasonable time [10,
17], our objective is to compute a good approximation with
respect to support of individual functions. A similar
approach to approximate unreachable states using induction
was proposed in [6].

We perform state-space exploration with forward reach-
ability analysis for overlapping subsets of registers. These
subsets are selected using structural dependence of next-
state and primary outputs on the design latches. The selec-
tion tries to create partitions maximizing accuracy of reach-
ability analysis for present-state signals  output
function . In particular, the partitioning tries to meet fol-
lowing goals:

• for each function , present-state inputs 
are represented in at least one partition

• each partition selects additional logic to maximize accu-
racy of reachability analysis.

After completing reachability analysis for a partition,
incomplete specification of signals that depend on its latches
becomes available in the form of a function interval. 

5.2  Exploring decomposition choices
The characteristic function  gives all feasible supports for
decomposition functions. Since the provided variety of
choices could be very large, we restrict them to a subset of
desired solutions. The restriction targets minimization and
balanced selection of supports in decomposition functions.
It is achieved symbolically, as described below.

Let  be a function representing combinatorial subsets
. This function has compact representation in terms of

BDDs. Assume that  and  denotes support size of a
function. For a desired support size  of , and

 of  we can then determine existence of a par-
ticular decomposition constraining  with a corresponding
solution space:

If the resulting function is not empty, then desired decompo-
sition exists. To target balanced decomposition of a function
we seek feasible  and  minimizing . Min-
imization of both  and  balances supports  and ,
and favors their disjoint selection. (This is in contrast to
[15], where different cost measures are used for each of the
objectives.)

To complete decomposition of a function we need to find
decomposition functions  and . For the or decomposi-
tion possible functions  and  can be deduced directly
from the corresponding existence condition (2), universally
quantifying our variables in which  and  are vacuous.
To construct xor decomposition functions we use algorithm
from [16].

5.3  Synthesis algorithm
Our synthesis algorithm selectively re-implements functions
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of circuit signals relying on bi-decomposition of extracted
incompletely specified logic. The pseudocode code in Fig-
ure 1 captures general flow of the algorithm; it is described
below.

The algorithm first creates overlapping partitions of a
design. These partitions are formed according to Section 5.1,
and are typically limited to 100 latches. Additional connec-
tivity cost measures are used to control size of a partition.
For each partition computation of unreachable states is
delayed until being requested by a function that depends on
its present-state signals. BDDs for computed reachable
states are then stored in a separate node-space for each parti-
tion. When retrieving unreachable states for a given support,
their conjunctive approximation is brought together to a
common node-space. 

To re-decompose logic of a design the algorithm first cre-
ates functional representation for selected signals in terms of
their cone inputs, or in terms of other intermediate signals.
The decision on whether to select a signal is driven by an
assessed impact of bi-decomposition on circuit quality: if it
has potential to improve variable partition, logic sharing, or
timing over existing circuit structure, then signal is added to
a list of re-decomposition candidates. 

The logic of candidate signals is processed in topological
order until it is fully implemented with simple primitives.
This processing constitutes main loop of the algorithm.
After a signal and its function  in the loop is selected, a
set of unreachable states  is retrieved. This set is
derived from reachability information of partitions that

 depends on. 

Before applying bi-decomposition to the incompletely
specified function , the algo-
rithm tries to abstract some of the interval variables while
keeping it consistent; this eliminates redundant inputs. The
bi-decomposition is then applied targeting potential logic
sharing and balanced partition of , as described in Section
5.2. From a generated set of choices, partition that best-
improves timing and logic sharing is selected. Figure 2 illus-
trates bi-decomposition that benefits from logic sharing. The
transformation re-uses logic of  which was present in the
network but was not in the fanin of .

6. EXPERIMENTAL EVALUATION

From a suite of publicly available benchmarks we selected a
subset of sequential circuits and assessed effect of unreach-
able states on bi-decomposition. Three types of bi-decom-
position were applied to functions of their output and next-
state logic: or, and, and xor. They are evaluated in terms of
their ability to reduce maximum support of functions 
and . Experiments with and without reachable state-space
analysis were performed.

The experimental results are given in Table 1. The table
first lists circuit name, along with its corresponding number
of inputs/outputs and latches. Each circuit was structurally
pre-processed to remove cloned, dead and constant latches.
The #dec column gives number of functions for which non-
trivial decomposition was identified. The average ratio
between maximum support sizes of  and , and support
size of the function being decomposed is given in avg.
reduct. column. Note that the reduction of less than 0.5 (as in
s713 and s838) indicates that both  and  tend to be vac-
uous in some of the variables. 

The results are collected for two experiments: with and
without state-space information. The log2 of computed
reachable states is also listed in the table. Computed average
reduction ratios suggest that decomposability of a function
improves as the number of unreachable states gets larger.
The unreachable states did not contribute much to s5378

create latch partitions of a design;

selectively collapse logic;

while (more logic to decompose) {

select a signal and its function f(x);
retrieve unreachable states u(x);
abstract vars from interval ;

apply bi-decomposition to interval;

}

f u⋅ f u+,[ ]

Fig. 1. Logic re-decomposition loop.

f x( )
u x( )

f x( )

f x( ) u x( )⋅ f x( ) u x( )+,[ ]

x

g1
f

Fig. 2. Bi-decomposition of logic which benefits from re-us-
ing existing for  logic.g1

a b c d
e

f

a b d

g2

g1
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Table 1: Application of bi-decomposition to functions of next-
state and output logic (without and with state 
analysis). 

Name
Original circuit No states With states

inp/outp latches #dec. avg. 
reduct

log2 
states #dec. avg. 

reduct
s344 10/11 15 18 0.781 12 18 0.634
s526 3/6 21 21 0.775 14 21 0.556
s713 36/23 19 40 0.652 11 40 0.453
s838 36/2 32 33 0.540 5 33 0.088
s953 17/23 29 29 0.607 13 29 0.565

s1269 18/10 37 39 0.672 31 39 0.671
s5378 36/49 163 145 0.609 125 145 0.603
s9234 36/39 145 97 0.754 141 97 0.774

Average reduction: 0.673 0.54

g1 g2

g1 g2



largely because its logic is highly decomposable even in the
absence of state-space information. The runtime to compute
reachable states for each of the circuits did not exceed one
minute, requiring at most few seconds for circuits with 32 or
less latches. Computation of bi-decomposition for was lim-
ited to one minute per circuit. 

We evaluate our Figure 1 algorithm synthesizing technol-
ogy-independent netlists for a set of macro-blocks of a high-
performance industrial design. Results of the netlists opti-
mized with bi-decomposition are given in Table 2. First four
columns list general parameters of each circuit, including
number of gates it has in its and/inv expansion. The cir-
cuits were first pre-processed using our in-house tool, by
optimizing it against publicly available mcnc.genlib library. 

An implementation of the Figure 1 algorithm was then
applied to improve each of the circuits. Columns Pre-pro-
cessed and Fig. 1 algor. compare area (which corresponds to
the number of literals) and delay (estimated with a load-
dependent model) of mapped netlists before and after run-
ning our algorithm. The additional area and timing savings
are due to the algorithm, with the average area and delay
reductions of 0.88 and 0.94 respectively. We attribute these
gains to the algorithm’s ability implicitly explore reach arse-
nal of decomposition choices during bi-decomposition.
Optimization of each circuit was completed within four min-
utes of runtime.

7. CONCLUSIONS AND FUTURE WORK

Extraction of incompletely specified logic using under-
approximation of unreachable states in sequential designs
offers valuable opportunity for reducing the circuit com-
plexity. We developed a novel formulation of symbolic bi-
decomposition and showed that the extracted logic has bet-
ter implementation, with substantial area and delay
improvements. The introduced symbolic bi-decomposition
computes decomposition choices implicitly, and enables
their efficient subsetting using BDDs. Selecting best decom-
position patterns during synthesis, we improved circuit
quality of publicly available and realistic industrial design.
We are currently working on ways to further maximize logic
sharing through bi-decomposition, and to apply it in a re-

synthesis loop of well-optimized designs.
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Table 2: Results of applying bi-decomposition in synthesis of 
industrial circuits. 

Name
Original circuit Pre-processed Fig. 1 algor.

inp/outp latches ands area delay area delay
seq4 108/202 253 1845 3638 44.8 2921 41.9
seq5 66/12 93 925 1951 47.2 1807 41.6
seq6 183/74 142 811 1578 34.9 1487 36.0
seq7 173/116 423 3173 6435 52.4 5348 48.3
seq8 140/23 201 2922 6183 50.1 5427 48.8
seq9 212/124 353 3896 8250 56.0 6938 45.2

Average reduction: 0.88 0.94
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