
Energy Minimization for Real-Time Systems with
Non-Convex and Discrete Operation Modes

Foad Dabiri, Alireza Vahdatpour, Miodrag Potkonjak and Majid Sarrafzadeh
Computer Science Department

University of California Los Angeles
email: {dabiri, alireza, miodrag, majid} @ cs.ucla.edu

Abstract—We present an optimal methodology for dynamic
voltage scheduling problem in the presence of realistic assumption
such as leakage-power and intra-task overheads. Our contri-
bution is an optimal algorithm for energy minimization that
concurrently assumes the presence of (1) non-convex energy-speed
models as opposed to previously studied convex models, (2) dis-
crete set of operational modes (voltages) and (3) intra-task energy
and delay overhead. We tested our algorithm on MediaBench
and task sets used in previous papers. Our simulation results
show an average of 22% improvement in energy reduction in
comparison with optimal algorithms for convex models without
switching overhead and on average of 24% with consideration for
energy and delay overheads. This analysis lays the groundwork
for improving functionality in CAD design through non-convex
techniques for discrete models.

I. INTRODUCTION

Energy consumption is recognized as one of the most
important parameters in designing modern portable electronic
and wireless systems in today’s VLSI circuit design. Among
the various low power techniques at different levels of ab-
straction, dynamic voltage scheduling (DVS) is a widely-used
technique for reducing power and energy consumption during
system operation. DVS aims at reducing the dynamic/static
power consumption by scaling down operational frequency
and circuit supply voltage. Traditionally, low power research
has focused on a power model where the relationship between
power consumption and processor speed is convex. Convexity
has a number of profound ramifications when energy is
minimized using variable voltage strategies. Several researches
have been performed to solve the task-scheduling problem
on DVS-enabled systems which focus on dynamic energy
reduction and ignore leakage energy [16][7]. In [5][17] energy
efficient scheduling of periodic real time tasks in a system with
DVS processor and multiple non-DVS devices is explored.
Heuristics such as [1] have been proposed for periodic tasks
in a multiprocessor.

As device sizes are decreasing due to advances in technolog-
ical manufacturablity, leakage energy dissipation is becoming
more and more important. While for the 70-nm process,
leakage power is smaller than dynamic power, for the 50-
nm process, they become comparable, while for the 35-nm
process, leakage power is larger than dynamic power [9].
Authors in [8] introduce techniques to model subthreshold
leakage current at device, circuit, and system levels.

The union of several technological, integrated circuits, ar-
chitectural, operating systems, and application factors increas-
ingly create systems where the mapping from the speed of
execution (that is the inverse of the time required to complete
one cycle and execute an operation) and energy consumption
per operation (ES) is non-convex.

For example, in heterogeneous multiprocessor multicore
system-on-chips, different cores have different ES functions
and the overall relationship between processor speed and en-
ergy per operation is not convex [8][10]. More importantly, the
feature scaling of CMOS devices has been and will increase
the relative importance of leakage power. It is often predicted
that in less than a decade, leakage power will dominate energy
consumption. Total leakage and dynamic energy does not
have a convex relationship with processor speed [8]. Energy
savings can be accomplished by simultaneously varying the
supply voltage (Vdd) and the threshold voltage (Vt) through
adaptive body biasing [6][14][2]. Figure 1 is selected from [19]
which illustrated the non convexity of energy consumption
with respect to supply voltage for a chain invertor. In the first

Fig. 1. Non-convexity of energy vs supply voltage. This graph appears in
[19]

order approximation lowering the threshold voltage increases
the processor speed at the expense of increasing the leakage
current. Hence, again the energy-speed dependency is a non-
convex function. The incorporation of new high bandwidth
on-chip interconnect technologies, such as nanowires, RF,
photonic crystals-based optical interconnect, and plasmonics
communication networks compounded with a need for thermal
management will have as one of ramifications a non-convex
ES relationship. The level of instruction level parallelism and
effective speed is a highly non-convex and non-continuous

978-3-9810801-5-5/DATE09 © 2009 EDAA

function. Hence, we expect non-convex energy-speed models
to dominate the wide spectrum of pending and future energy-
sensitive systems.

Scaling the supply voltage, in order to reduce the power con-
sumption, has a side-effect on the circuit delay and hence the
operational frequency [3][14]. In addition, transition overhead
is another important issue, which often is ignored in previous
voltage scaling techniques. Each time the processor’s supply
voltage is switched, the change requires a certain amount of
extra energy and time. Consequently, simplified convex energy
models assumed in [18][12] for tackling DVS problem cannot
be utilized to achieve the best energy reduction anymore.
Authors in [12] present an optimal technique for DVS in the
presence of discrete voltage levels for quadratics power models
without overhead consideration. Authors in [15] have studied
a non-convex method but their approach is not optimal nor
polynomial time.

In this paper we study DVS problem where energy-speed is
a non-convex function with discrete set of operation modes
Furthermore, we include the intra-task delay and energy
overhead caused by voltage switching. Although intra-task
overheads and discrete operation modes has been studied, our
approach is the first one that concurrently addresses them all
in non-convex models.

II. PRELIMINARIES

In this section we study models we use for power, energy,
delay and switching overheads in CMOS based processors and
state the scheduling problem accordingly.

A. Power and Energy Model

Power dissipation of digital CMOS based processors is
composed of I) dynamic power which is dissipated whenever
the processor is active, and II) static power which is consumed
regardless of the activity and as long as the device is on as
shown in Equation 1.

P = Pdynamic + Pleakage (1)

Dynamic power consumption during execution of a given task
corresponds to the power dissipated in charging and recharging
internal capacitors in every gate, given by Equation 2:

Pdynamic = C × ΦV 2
DD (2)

where C is the average switching capacitance per clock cycle
for a given task. VDD is the power supply voltage and Φ
represents technology dependant factors. Leakage power is
modeled according to Equation 3:

Pleakage = VDD.Isub (3)

where Isub is the subthreshold current which according to [4]
can be stated as:

Isub = A.e
vgs−vth0

−γvs+ηvds

nkT/q × [1− e
−vds
kT/q] (4)

This equation can be re-written as:

Isub = K1e
K2VDDeK3Vbs = ΨeK2VDD (5)

where Kis are constant fitting parameters and Vbs is the bias
voltage [14] and finally Ψ represents the constants in Equation
5. The total power consumption as a function of supply voltage
can be stated as:

P = ΦV 2
DD + ΨVDDeK2VDD (6)

Assuming R is the number of clock cycles required for a given
task and fclock is the clock frequency for the corresponding
given supply voltage, total energy consumption during the
execution of a task is:

E = R× (C × ΦV 2
DD + ΨVDDeK2VDD)fclock (7)

In this paper, we use energy per clock cycle (E
R) vs speed

curves in our optimization process.

B. Speed Model

The delay of CMOS based processors can be stated as:

di = Ki ×
VDD

(VDD − Vt)α
(8)

where Ki and α are technology dependent parameters for the
ith unit. Discarding Vt in the above equation is no longer
a reasonable assumption since with the current low voltage
technologies, VDD and Vt are in the same order of magnitude.

C. Problem Statement

The problem of dynamic voltage scheduling can be stated
as follows:

We are given a set of tasks J = {τ1, ..., τn} where each
task is represented by a tuple τi = (ai, bi, Ri, Ci):

• ai is the arrival time of task i
• bi is the deadline of task i
• Ri is the required clock cycles to process task i
• Ci is the average switching capacity of task i

Also, we assume that the target processor operates under a
finite set of modes 1, Ξ = {m1, ...,mk}, where each mode is
a pair mj = (ej , sj):

• ei is the energy consumption per clock cycle in the jth

mode
• si is the processor speed when running in the jth mode
The objective of this scheduling problem is to find mapping

functions ξ(t) and χ(t) which define the processor mode
and the scheduled task at time t such that the total energy
consumption during the [0, T] period is minimized and all task
meet their deadlines. The objective can be stated as:

minimze

∫ T

0

P (ξ(t))dt =
R∑
0

e(si)∆R (9)

We make no assumptions about power and speed relation.
In other words, we are assuming a non-convex model and
therefore any (ej , sj) can be used in our algorithm.

1In this paper we use the term ’operation mode’ rather than ’supply voltage’ or ’speed’.
The reason being the fact that current technologies can reduce energy dissipation not by
only changing supply voltage but with also reducing bias-voltage etc.

D. Switching Overhead

An important overhead caused by dynamic scheduling tech-
niques is delay and energy overheads. Specially when the
operation mode of a processor is changing while a task is under
execution, this overhead becomes more significant because
of the delay and energy dissipations resulting from memory
access and recovery. Therefore, for each pair of operation
modes, there are two overhead measures associated with: εij

and δij where εij is the energy overhead when switching from
mode i to j. δij is the delay caused by this operation in which
the scheduled task becomes idle. When the mode switching is
a result of supply (Vdd) and body-bias voltage (Vbs) change,
the delay and energy overheads can be stated as [2][14]

εij = Cr|Vddi
− Vddj

|2 + Cs|Vbsi
− Vbsi

|2 (10)

δij = max(pVdd
|Vddi

− Vddj
|, pVbs

|Vbsi
− Vbsi

|) (11)

where Cr represents power rail capacitance, and Cs is the
total substrate and well capacitance. Since transition times for
Vdd and Vbs are different, the two constants pVdd

and pVbs
are

used to calculate both time overheads independently. Finally,
if there exists any other overhead in state switching, additional
terms can be added to equations 10 and 11.

III. OPTIMAL DYNAMIC SPEED SELECTION ALGORITHM

In this section we cover the preprocessing phases of our
method along with the optimal scheduling algorithm. Through-
out different steps of our developed algorithm, we use similar
definitions and terms as used in [18].

Definition Intensity of the interval [a, b] is defined to be:

g(I) =
∑

Ri

b− a
∀i : [ai, bi] ⊆ I (12)

which is the average speed required to execute all the tasks
which are completely dominated by I .

2 g(I) is the lower bound on the average speed in the
interval I . In order to find an optimal scheduling, we need
to set the processor such that in runs at the average speed no
less that g(I) with an energy consumption which would yield
to an optimal solution.

Our approach to solve this scheduling problem is to make a
virtual surjective mapping of speed to energy in the [0, smax]
without compromising (smax is the maximum possible speed
that the processor can run at). Using such a curve we can
virtually run at any speed.

A. Virtually Continuous Speed Operation

The DVS problem where the target processor runs at dis-
crete speeds is well known to be NP-hard in general. In order
to show how a processor with discrete operation speed can
virtually run at any speed, we give a simple example. Assume
our processor has two operation modes as shown in Figure 2.
In order to run the processor at speed s∗ (s1 ≤ s∗ ≤ s2) for a

2This is for uniform switching capacity, for non-uniform, g(I) should be modified
accordingly

given interval [a, b], we run the processor at s1 for t1 seconds
and s2 for t2 seconds where for t1 and t2 we have:

Fig. 2. A processor with discrete speeds can virtually run at any speed by
partially running at different pre-set speeds

t1 =
s2 − s∗

s2 − s1
× (b− a) (13)

t2 =
s∗ − s1

s2 − s1
× (b− a) (14)

The average speed using these two speeds is equal to s∗.
Therefore, we have been able to run the the processor at
the virtual speed s∗. Now, considering the intra-task delay
overhead caused by switching processor operation, the target
speed would be s∗δ = b−a

b−a−δij
s∗ and we can re-drive t1 and

t2 as follows:

if s∗δ = b−a
b−a−δij

s∗ < s2

t1 =
s2 − s∗δ
s2 − s1

× (b− a)

t2 =
s∗δ − s1

s2 − s1
× (b− a) (15)

else if s∗δ ≥ s2

t1 = 0

t2 =
s∗

s2
× (b− a) (16)

Equation 16 shows the case where due to switching delay
overhead, the virtual speed is larger than s2 and therefore the
processor only runs at s2 for the portion of time.

B. Generation of the Optimal Surjective Energy-Speed Curve

Phase I: Continuous Convex Curve Fit. Given a set of
operation modes, the first step of our methodology is to find
a lower convex curve on the energy-speed points as illustrated
in Figure 3 and extend the curve on lower-left side to cover
all the speed axis.

Let the points in this curve be M = {(e′1, s′1), ..., (e′q, s′q)}
sorted in non-decreasing order with respect to s′is. The result-
ing energy-speed curve can be stated as:

Ec(s) =

{
s′1 if 0 < s ≤ s′1

e′i−e′i−1
s′i−s′i−1

(s− s′i−1) + e′i−1 s′i−1 < s < s′i ∀1 < i ≤ q

(17)
Phase II: Energy Overhead Insertion. In the second phase

of our algorithm, we will include the intra-task energy
overhead caused by mode switching. Each line segment

Fig. 3. Continuous Convex Curve Fit: A lower bound convex curve for
energy vs speed

[(ei, si), (ej , sj)] in the Ec(s) is replaced by [(ei, si), (ej , sj)+
εij] where εij is the normalized switching overhead, we call
this function E ′c(s). Finally we find a monotone curve fit of
E ′c(s) as follows:

EV(s) =
{

e′1 if 0 < s ≤ s′1
min(E ′c(s), e

′
i) s′i−1 < s < s′i ∀1 < i ≤ q

(18)
Figure 4 illustrates phase II and the final curve is drawn in

bold line.

Fig. 4. Result of preprocessing phases: Final energy vs. speed curve: EV (s)

Phase III:Refinement Process. EV(s) can potentially intro-
duce new points in the energy-speed domain which where
disregarded as a result of phase I. For example, m′ is a
point where as a result of energy overhead consideration, it
can be used to achieve better performance. As the last step
of energy-speed curve generation, we repeat phase II with
M = M

⋃
{m∗} (considering new points such as m∗). In

the rest of the paper, we will refer to the final virtual energy-
speed curve resulted from phase III as EV(s).

C. Proposed Energy Optimization Algorithm

In this section we present our scheduling algorithm.

Definition Interval I∗ is said to be critical if g(I∗) is maxi-
mum for all feasible intervals in [0, T]. R∗ is the number of
clock cycles required to execute all tasks that lie inside I∗. It
is easy to verify that I∗ = [ai, bj] for some tasks i and j.

Lemma 3.1: Let s∗ = g(I∗) = R∗

(bj ,ai)
. Assume that in order

to achieve minimum energy consumption during I∗, task(s) in

I∗ is (are) run at S = {s∗1, ..., s∗p} for the time percentages of
(α1, ..., αp) respectively (

∑
αi = 100%). Then the operation

modes are consecutive in EV(s).
Proof: Let the duration of |I∗| = T and assume sq ∈ S

where s∗i < sq < s∗j and (j−i) is minimum. In other words sq

lies between two operation speeds in S and all the intermediate
speeds are not in S. Now, we will show that adding sq to S
can decrease the total energy consumption during I . Since
s∗i < sq < s∗j , there exist βandγ such that:

sq = βs∗i + γs∗j (19)

Without the loss of generality, assume αi ≤ αj . Therefore,
the normalized energy consumption (i.e. per clock cycle)
during s∗i and s∗j can be stated as:

Ei,j = αie
∗
i + αje

∗
j = αie

∗
i +

γαi

β
e∗j +

αjβ − γαi

β
e∗j + εij ≥

αieq +
αjβ − γαi

β
e∗j + εqj (20)

Which means that if the processor is run at sq it can reduces
the energy consumption during virtual speed of sq when the
processor is sun at s∗i and s∗j . Therefore we conclude that S
contains consecutive operation modes in EV(s).

Lemma 3.2: Let s∗ = g(I∗). Assume minimum energy
consumption during I∗, requires running the task in I∗ at
consecutive speeds: S = {s∗1, ..., s∗p} for the time percentages
(α1, ..., αp) respectively then p ≤ 2.

Proof: The proof is very similar to the proof of Lemma
3.1. Assume s∗i < sq < s∗i+1. For all s∗j < s∗i we can follow
the proof in Lemma 3.1 and eliminate operation at s∗j by
increasing αi and αi+1 accordingly and reduce total power
consumption during I .

Theorem 3.3: In the optimal scheduling, the critical interval
I∗ is run at virtual mode of e(g(I∗)), g(I∗).

Proof: If EV(s) was a convex curve the optimality would
be followed [18]. Although EV(s) is not convex in principle
but we show that it has the convexity property. The reason
why EV(s) is not visually convex is the fact that EV(s) is a
conditional graph. In other words EV(s) is minimum energy
consumption at different speeds when each speed is virtually
achieved through one or two operation modes.

EV(αs1 + (1− α)s2) ≤ αEV(s1) + (1− α)EV(s2) (21)

The important point here is the fact that, the right hand side
of the Equation 21 is missing the energy overhead term. The
interpretation of Equation 21 is that energy consumption at
speed αs1+(1−α)s2 is less the weighted energy consumption
if the processor is running at αs1 and (1 − α)s2. Therefore
we need to take into account the overhead energy ε12 as well.
According to Equation 18 in Phase II:

EV(αs1 + (1− α)s2) =
min(αEV(s1) + (1− α)EV(s2) + ε12, EV(s2))

≤ αEV(s1) + (1− α)EV(s2) + ε12 (22)

Equation 22 proves the correctness of our claim and the
convexity of EV in use.

Finally, according to Theorem 3.3 the recursive algorithm
in 1 yields the optimal solution.

Algorithm 1 Optimal Dynamic Voltage Scheduling Algorithm
1: Find critical interval I∗ = [ai, bj], assume si ≥ g(I∗) ≤

si+1.
2: Order the tasks in I∗ according to the earliest deadline

first (EDF).
3: If g(I∗) results in using Equation 16 or e(g(I∗)) = ei+1 ,

execute each task in I∗ at (ei+1, si+1) else if g(I∗) results
in using Equation 15 run each task at virtual mode of
(e(g(I∗)), g(I∗)).

4: Remove I∗ and modify arrival and deadline of remaining
task accordingly

5: Recursively repeat the above procedure.

1) Time Complexity: The preprocessing steps of the algo-
rithm which include the three phases have polynomial running
time. Convex curve fit in Phase I can be done in O(nlogn)
using Skiena’s convex hull algorithms where n is the number
of operation modes. Phase II is a linear procedure which takes
O(n) and therefore, the worst-case runtime of Phase III where
only one point is added to M can be done in O(n2logn). The
straight forward implementation of the scheduling algorithm
itself requires O(n2) and therefore our proposed methodology
can be implemented with O(n2logn) complexity.

IV. SIMULATION RESULTS

We implemented our algorithm in Matlab and tested its
effectiveness using both randomly generated task sets and real-
life benchmarks. Our methodology results in optimal energy
reduction and simulations are carried out to compare the
effectiveness of our algorithms. We compared our simulation
with Kim’s optimal voltage allocation technique [11] which
is an optimal methodology for DVS enabled processors with
discrete set of voltages. Their method assumes quadratic
power model and therefore convex energy vs speed curve.
Furthermore, in Kim’s algorithms, they don’t take into account
energy and delay overheads. Therefore, first we compared our
results with their assuming no overhead so that we could
illustrate the effects of non-convexity in energy-speed curves.

The randomly generated tasks are selected from [11] and
we added four more task sets with the same characteristics.
As for the real-life benchmarks, we applied our optimization
techniques on the processes from MediaBench test cases [13].

The statistical behavior of tasks determine the effectiveness
of energy managements techniques not justin addition to the
number of task. Task set can easily be scaled up or down
without effecting the performance. Table I summarizes the
characteristics of the benchmarks. First column is the task
number where J1, J2, J3 and J4 are random task sets from
[11] and J5, J6, J7 and J8 are generated in a similar fashion.
Later rows are for 6 different benchmarks from Media bench.

TABLE I
STATISTICAL CHARACTERISTICS OF THE TASK SET: FIRST TWO COLUMNS
SHOW THE MEAD AND STD OF AVERAGE RATE OF ALL TASKS WHERE THE

THIRD AND FORTH COLUMN ARE THE MEAN AND STD OF INTENSITY OVER
TIME

Per Task Over Time # of tasks
Mean Std Mean Std

J1 160.5 40.9 393.3 198.1 10
J2 147.1 39.8 558.3 330.8 15
J3 111.7 24.5 556.2 293.0 20
J4 93.3 19.2 619.1 341.2 30
J5 101.7 42.1 395.9 288.4 35
J6 136.2 58.3 442.3 210.0 40
J7 181.5 38.1 588.7 171.7 45
J8 174.6 126.6 238.5 272.8 50

JPEG 221.2 95.5 281.9 242.3 12
MPEG 110.3 48.6 344.2 113.2 14
GSM 189.8 99.1 427.7 341.7 11
G721 174.6 126.6 238.5 272.8 15
PGP 91.5 79.5 82.4 148.9 14
EPIC 138.6 98.7 513.9 284.6 17

TABLE II
ENERGY REDUCTION COMPARISON WITH RESPECT TO KIM’S ALGORITHM

AND SINGLE SPEED PROCESSOR FOR P1 AND P2

P1: 2 modes P2: 3 modes
Task No O.H. w/ Overhead No Overhead w/ Overhead
Set SS Kim SS Kim SS Kim SS
J1 28.6 13.4 25.6 26.6 54.4 30.1 50.2
J2 11.7 6.4 9.5 5.1 30.1 9.3 20.8
J3 14 4.5 13.3 3 42.7 5.5 31.4
J4 7.8 5.2 7 3.8 18.2 6 9.3
J5 12.8 9.7 8.5 14.4 34.6 18.1 30.1
J6 23.5 12 17.3 21.9 48.6 25.5 45.4
J7 19.3 7.8 15.3 9.5 52.3 12.3 48.7
J8 17.7 13.9 17.1 13.9 26.4 17.3 22.1

JPEG 31.9 28 27.4 33.1 57.2 33.1 52.5
MPEG 34.9 23.4 26.9 38.1 35.2 38.1 31.1
GSM 17.2 6.3 15.3 6.7 48.9 5.9 40.9
G721 26.7 18 22.2 22 44.2 22 39.4
PGP 28.32 32.9 21.9 44.4 44.4 44.4 44.4
EPIC 13.8 27.4 12.1 22.6 46.4 28.7 33.2
Mean 19.9 14.9 16.4 18.3 40.7 20.4 34.5

The second and third column represent the mean and standard
deviation of the average speed (Ri

bi−ai
) per task where the third

and forth column represent the mean and standard deviation
of intensity per time unit over the duration of the whole task
set.

We considered four different processors in term of number
of operation modes. The speed ranges from 300Mz to 700Mz
and modes are equidistantly separated for different cases.
Number of modes are 2, 3, 5 and 13 for P1, P2, P3 and
P4 respectively. Our simulation results are carried out to
illustrated two aspects: First, to show the improvement of
our algorithm in comparison to Kim’s method and second to
show the effectiveness of our algorithm in energy reduction
in comparison with single speed processors. Tables II and III
summarize the simulation results. Tables are divided into two
separate columns representing different processors. For each
processor, we have included four different results: First column
shows the percentage of energy reduction in percentage in
comparison with Kim’s algorithms without considering any
overhead. Second column shows power reduction percentage
in comparison with a single speed processor (SS) where task
are executed at the minimum speed such that all deadlines are

TABLE III
ENERGY REDUCTION COMPARISON WITH RESPECT TO KIM’S ALGORITHM

AND SINGLE SPEED PROCESSOR FOR P3 AND P4

P3: 5 modes P4: 13 modes
Task No Overhead w/ Overhead No Overhead w/ Overhead
Set Kim SS Kim SS Kim SS Kim SS
J1 26.6 57.5 25.1 52.4 43.3 61.4 55.2 58.4
J2 3.4 33.2 13.7 22.5 16.6 34.1 28.2 25.4
J3 9 12.2 22 9.8 20.1 25.2 24.2 9.9
J4 2.3 20.8 16 10.5 16.2 18.9 33.7 10.5
J5 10.1 39.5 10.9 32.4 14.2 39.5 16.3 32.4
J6 22.2 53.4 25.4 50.2 33.7 61.5 38.7 57.9
J7 7.3 57.3 11.4 49.2 12.5 65.3 17.4 60.2
J8 18.3 35.4 23.8 28.9 13.2 44.5 21 41.3

JPEG 37.3 61 36.1 58.9 46 30.9 45.8 26.93
MPEG 28.2 29.3 28.2 23.9 50.2 44.6 50.5 44.62
GSM 12.3 21.8 20.8 17.4 24.3 34.8 27.3 22.97
G721 40.9 53.6 39.4 50.6 29.3 13 35.2 8.88
PGP 41.9 41.9 41.9 41.9 57.7 57.7 57.7 57.79
EPIC 20 11.6 29 6.2 31.6 30.8 30.7 14.56
Mean 19.4 36.2 24.5 30.9 28.1 38.5 32.8 31.7

met. Third and forth columns are similar scenarios but with
consideration for intra-task energy and delay overhead. Since
Kim’s algorithm does not consider any overhead, we modified
their method to include delay overhead in order to make more
fair comparison.

Since P1 has only two operation modes, our results without
overhead consideration are identical to Kim’s because the
energy-speed domain is convex for any two point. Therefore
we have removed the corresponding column. Our simulation
results show an average of 22% improvement in energy reduc-
tion in comparison with Kim’s algorithms without switching
overhead and on average of 24% with consideration for intra-
task energy and delay overheads. An important observation
is that energy reduction improvements with respect to Kim’s
algorithm can vary from 3% to 58%. The reason lies in the task
characteristics and the speed values in the optimal scheduling.
If the optimal speed is near an operation mode in M, both
techniques are close together. However if the optimal speeds
vary from points in M, our technique performs much better.

V. CONCLUSION

In this paper we present a polynomial time optimal method-
ology for dynamic voltage scheduling problem for energy
minimization in the presence of realistic assumption. We have
developed an optimal methodology for energy minimization in
the presence of non-convex energy-speed models as opposed
to previously studied convex models. Our methodology results
in minimum energy consumption for arbitrary energy vs speed
models and therefore can be utilized to consider dynamic and
static energy dissipation. Our developed algorithm is designed
for processors with discrete set of operational modes and we
make no continuity assumption on supply voltage and prove
the optimality of the result. Further more, we extend our results
to include intra-task energy and delay overhead caused by
the scheduling algorithms. We simulated our algorithm on
randomly generated task sets from previous papers as well
as real-life MediaBench benchmarks for different processor
scenarios. Our simulation results show an average of 22%
improvement in energy reduction without intra-task switching
overheads and an average of 24% with consideration for
overheads in comparison with the optimal algorithms for
convex models .

REFERENCES

[1] T. A. AlEnawy and H. Aydin. Energy-aware task allocation for rate
monotonic scheduling. In RTAS ’05: Proceedings of the 11th IEEE,
pages 213–223, Washington, DC, USA, 2005. IEEE Computer Society.

[2] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi.
Overhead-conscious voltage selection for dynamic and leakage energy
reduction of time-constrained systems. In DATE ’04: Proceedings of
the conference on Design, automation and test in Europe, pages 28–
38, Washington, DC, USA, 2004. IEEE Computer Society.

[3] A. P. Chandrakasan and R. W. Brodersen. Low Power Digital CMOS
Design. Kluwer Academic Publishers, Norwell, MA, USA, 1995.

[4] F. Farbiz, M. Farazian, M. Emadi, and K. Sadeghi. Sizing consideration
for leakage control transistor. In VLSID ’04: Proceedings of the 17th,
page 639, Washington, DC, USA, 2004. IEEE Computer Society.

[5] C.-M. Hung, J.-J. Chen, and T.-W. Kuo. Energy-efficient real-time
task scheduling for a dvs system with a non-dvs processing element.
In RTSS ’06: Proceedings of the 27th IEEE International Real-Time
Systems Symposium, pages 303–312, Washington, DC, USA, 2006. IEEE
Computer Society.

[6] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically
variable voltage processors. In ISLPED ’98: Proceedings of the 1998
international symposium on Low power electronics and design, pages
197–202, New York, NY, USA, 1998. ACM.

[7] R. Jejurikar and R. Gupta. Energy aware task scheduling with task
synchronization for embedded real time systems. In CASES ’02:
Proceedings of the 2002 international conference on Compilers, archi-
tecture, and synthesis for embedded systems, pages 164–169, New York,
NY, USA, 2002. ACM.

[8] J. Kao, S. Narendra, and A. Chandrakasan. Subthreshold leakage
modeling and reduction techniques. In ICCAD ’02: Proceedings of,
pages 141–148. ACM, 2002.

[9] H.-S. Kim. Impact of scaling on the effectiveness of dynamic power
reduction schemes. In ICCD ’02: Proceedings of the IEEE Int. Conf. on
Computer Design: VLSI in Computers and Processors, page 382. IEEE
Computer Society, 2002.

[10] D. J. N. Kumar, R. Tullsen and P. Ranganathan. Heterogeneous chip
multiprocessors. Computer, 38(11):32–38, 2005.

[11] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for
dynamically variable voltage processors. pages 125–130, 2003.

[12] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for dy-
namically variable voltage processors. Trans. on Embedded Computing
Sys., 4(1):211–230, 2005.

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: a tool
for evaluating and synthesizing multimedia and communicatons systems.
In MICRO: Proceedings of the 30th, pages 330–335. IEEE Computer
Society, 1997.

[14] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined
dynamic voltage scaling and adaptive body biasing for lower power
microprocessors under dynamic workloads. In ICCAD ’02: Proceedings
of the, pages 721–725. ACM, 2002.

[15] A. Nahapetian, F. Dabiri, M. Potkonjak, and M. Sarrafzadeh. Optimiza-
tion for real-time systems with non-convex power versus speed models.
In Integrated Circuit and System Design: PATMOS, pages 443–452,
2007.

[16] P. Rong and M. Pedram. Power-aware scheduling and dynamic voltage
setting for tasks running on a hard real-time system. In ASP-DAC
’06: Proceedings of the 2006 conference on Asia South Pacific design
automation, pages 473–478, Piscataway, NJ, USA, 2006. IEEE Press.

[17] T. Wei, P. Mishra, K. Wu, and H. Liang. Online task-scheduling for fault-
tolerant low-energy real-time systems. In ICCAD ’06: Proceedings of the
2006 IEEE/ACM international conference on Computer-aided design,
pages 522–527, New York, NY, USA, 2006. ACM.

[18] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu
energy. In FOCS ’95: Proceedings of the 36th Annual Symposium on
Foundations of Computer Science (FOCS’95), page 374. IEEE Computer
Society, 1995.

[19] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner. Theoretical and
practical limits of dynamic voltage scaling. In DAC ’04: Proceedings
of the 41st annual conference on Design automation, pages 868–873,
New York, NY, USA, 2004. ACM.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

