
GCS: High­Performance Gate­Level Simulation with GP­GPUs

Debapriya Chatterjee, Andrew DeOrio and Valeria Bertacco
Department of Computer Science and Engineering

University of Michigan
{dchatt, awdeorio, valeria}@umich.edu

ABSTRACT

In recent years, the verification of digital designs has become one of

the most challenging, time consuming and critical tasks in the en-

tire hardware development process. Within this area, the vast ma-

jority of the verification effort in industry relies on logic simulation

tools. However, logic simulators deliver limited performance when

faced with vastly complex modern systems, especially synthesized

netlists. The consequences are poor design coverage, delayed prod-

uct releases and bugs that escape into silicon. Thus, we developed

a novel GPU-accelerated logic simulator, called GCS, optimized

for large structural netlists. By leveraging the vast parallelism of-

fered by GP-GPUs and a novel netlist balancing algorithm tuned for

the target architecture, we can attain an order-of-magnitude perfor-

mance improvement on average over commercial logic simulators,

and simulate large industrial-size designs, such as the OpenSPARC

processor core design.

1. INTRODUCTION
Logic simulation of structural netlists is a notoriously time-consuming

process, yet essential to determine that a synthesized design matches

its specifications and behavioral description. Simulation farms con-

sisting of thousands of machines are used by design houses to ac-

complish the task of validation. The task of verifying the correct-

ness of a design is the most resource-consuming one in the entire

development effort [4, 7]. Despite this large scale effort, many ex-

ecution scenarios of a design often go unverified, particularly cor-

ner case situations that occur deep in a design’s state space. This

research addresses precisely this issue by proposing a novel solu-

tion that leverages inexpensive, off-the-shelf electronics, namely,

graphic processing units, to boost the performance of logic sim-

ulation for synthesized netlists by more than an order of magni-

tude. Such a performance boost has great potential to increase

the correctness of future released digital systems, while decreasing

their time to market. We developed our solution using commercial

NVIDIA graphic devices, which can be easily deployed on today’s

simulation farms.

Logic simulation pervades the verification effort in the digital de-

sign industry: it is relied upon to thoroughly validate the behavioral

description of a design (register-transfer level model) and to check

that the behavior corresponds to the original specification. After

synthesis, simulation is once again employed to check that a design

is synthesized correctly, that is, no timing errors have been intro-

duced, and no functional errors arose due to logic optimizations.

Finally, simulation is also the underlying engine for many power

estimation and timing analysis tools. In the past decade, several

solutions have been proposed to aid engineers in using logic simu-

lation effectively for design verification, including verification lan-

guages, coverage tools, constrained random generators, and regres-

sion suite management, etc. [25]. While these tools have greatly

contributed to improvements in verification productivity, the raw

performance of simulation engines has been closely following the

performance trends of the underlying hardware.

The logic simulation of a circuit’s netlist typically begins by lev-

elizing the circuit, determining a sequencing for gate simulation

compatible with the dependencies imposed by the netlist structure.

Gates in a same level do not have any input/output dependency on

each other and can be simulated concurrently, an unrealized poten-

tial in sequential simulators.

Simulators can be classified based on how they process individ-

ual gates: oblivious simulators evaluate each gate during each sim-

ulation cycle, while event-driven simulators only evaluate a gate if

a change occurs at its input nets. The former can leverage very sim-

ple scheduling, static data structures and better data locality; while

the latter require a dynamic analysis of which gates must be sched-

uled for re-evaluation. The static scheduling of gate evaluations

in oblivious simulation makes this approach an ideal candidate for

aggressive parallelism available in GPUs.

Evolving from the intense computation requirements imposed on

graphic processors, general purpose graphic processing units (GP-

GPUs) have recently become available. NVIDIA, a market leader

in graphic processors, has developed an architecture and program-

ming interface (called CUDA) [19] enabling end users to control

GPU activity directly and develop parallel applications. CUDA

provides an architecture amenable to logic simulation, providing

the opportunity for concurrent simulation.

1.1 Contributions
In this work we explore the inherent parallelism of netlist simu-

lation in developing a novel cycle-based, oblivious, compiled logic

simulator that executes on an NVIDIA CUDA GP-GPU. The sim-

ulator, called GCS – Gate-level Concurrent Simulator – enables a

specialized design compilation process, which partitions a netlist,

optimizes it, and maps gates to the CUDA architecture. Our solu-

tion includes novel clustering and gate balancing algorithms, op-

timized to strike a balance between the demands of large circuits

and the architectural resources available in the CUDA hardware. In

addition, we developed a clever organization of the data structures

to exploit the memory hierarchy characteristics of these devices.

Our experimental results show that GCS can simulate designs of

industrial complexity while delivering an order of magnitude per-

formance speedup on average, when compared to state-of-the-art

commercial logic simulators. The performance boost delivered by

this simulation platform can be easily leveraged by digital design

houses with no change to their current verification methodology.

2. RELATED WORK
For several decades the majority of the verification effort in in-

dustry has revolved around logic simulators. Initial work from

the 1980s addressed several key algorithmic aspects that are still

utilized by modern solutions, including netlist compilation, man-

agement of event-driven simulators, propagation delays, etc. [5, 3,

14]. The exploration of parallel algorithms for simulation started

at approximately the same time [2, 17, 23], targeting both shared

memory multiprocessors [11] and distributed memory systems [16,

15]. In addition, much effort has been dedicated to parallelize sim-

ulation exploiting specialized architectures, also called emulation

systems, whose computational units are optimized for the simula-

978-3-9810801-5-5/DATE09 © 2009 EDAA

tion of a single logic gate or a small block of gates [1, 12, 13].

One of the very first emulation systems, the Yorktown Simulation

Engine [6], was developed at IBM and consisted of an array of

special purpose processors. Only recently has the effort of par-

allelizing simulation algorithms targeted data-streaming architec-

tures (single-instruction multiple-data), as the solution proposed by

Perinkulam, et al. [21]; however, the communication overhead of

this system had a high impact on the overall performance. Another

recent work parallelized a fault simulation solution for the CUDA

architecture [9]. This solution operates by partioning the problem

over the faults to be simulated and different test vectors on the same

circuit thus having each block of threads simulate the circuit mono-

lithically for a different fault. In contrast, GCS strives to deliver

fast simulation of complex designs, thus we developed a series of

circuit partioning and optimization techniques.

The algorithms for parallel simulation can be grouped into two

families: synchronous ones, as the solution proposed in this work,

where for each simulation clock cycle several parallel threads are

forked off and then joined at a barrier at the end of the step. In con-

trast, discrete event algorithms partition a circuit into non-overlapping

sub-circuits and assign each portion to a distinct thread.

A key aspect of all parallel simulation solutions lies in the choice

of netlist partitioning algorithm, because of its heavy impact on

communication overhead. Previous solutions include random [8],

activity-based partitioning [16], balanced workload [10], and cone

partitioning [22], where logic clusters are created by grouping the

cones of influence of circuit outputs with the goal of minimizing the

number of gates overlapping among multiple clusters. Our solution

relies on a variant of cone partitioning tailored to the constraints of

our target architecture.

3. NVIDIA CUDA ARCHITECTURE
General purpose computing on graphics processing units brings

new opportunities for parallel processing previously unavailable in

commodity hardware. NVIDIA’s Compute Unified Device Archi-

tecture (CUDA) is a new hardware architecture and software frame-

work for using the GPU as a data parallel computing device. In

CUDA, the GPU can be viewed as a co-processor capable of exe-

cuting many threads in parallel. Code is compiled by the host CPU

to a proprietary instruction set and the resulting program, called a

kernel, is executed on the GPU device, with each parallel thread

running the same kernel code on distinct data blocks.

D
e
v
ic
e
 M

e
m
o
ry

Shared Local Memory 16KB

T T

T T

T T

T

T T

T

T T T

T

T

1 cycle

away
300-400

cycles

away H
O
S
T

T T

T T

T T

T

T T

T TT T

T T

T T

T

T T

T

T T T

thread block

256 threads

CUDA

control

Figure 1: The NVIDIA CUDA architecture is organized as an
array of multiprocessors. Each multiprocessor can execute a block
of concurrent threads. A 16KB local shared memory block is
available at each multiprocessor, which also has access to a larger,
shared device memory.

The CUDA architecture [19] (Figure 1) is built around multi-

processors, whose number typically doubles with each new device

generation. Each multiprocessor can execute a thread block com-

prising up to 512 concurrent threads, all running identical kernel

code. Available in each multiprocessor, a fast local memory block

is accessible within 1 clock cycle and shared among all the threads

running on the same multiprocessor. An additional device memory

block, sized between 256MB to 1GB, is accessible by all multipro-

cessors with a latency of 300 to 400 clock cycles. Efficient memory

usage is key to good CUDA programs. For example, it is possible

to mask the latency of device memory by time-interleaving thread

execution within a multiprocessor: while a group of threads is exe-

cuting on local data, others are suspended, waiting for their data to

be transferred from the device memory. All execution takes place

on GPU hardware, the host CPU serves only to invoke the begin-

ning execution of a thread batch and waits for completion of one

cycle of netlist simulation.

4. GCS ARCHITECTURE
GCS operates as a compiled-code simulator, first performing a

compilation, where it considers a gate-level netlist as input, com-

piles it and maps it into CUDA. A simulation proper follows, where

GCS considers a CUDA-mapped design, simulating over a number

of several cycles, possibly reusing the same mapped design while

running with many distinct testbenches. The process of compila-

tion and simulation progresses in 5 steps (Figure 2). First, a be-

havioral netlist is synthesized to a gate-level netlist and mapped to

GCS’s internal representation. From here, the combinational ele-

ments are extracted, since the design will be simulated in a cycle-

based fashion. Next, GCS partitions the netlist into clusters, that

is, logic blocks of appropriate size to fit within the constraints of

the CUDA architecture. In this phase, the compiler prepares rough

clusters, based on size estimates quickly computed on the fly. The

following step, balancing, is an optimization phase, where each

cluster is carefully restructured to maximize compute efficiency

during simulation. Finally, all the required data structures are com-

piled into the CUDA kernel and transferred to the GP-GPU device.

4.1 Synthesis
The GCS compiler requires a gate-level netlist as input. This can

either be a synthesized version of a design under verification, or a

behavioral description to which we can apply a relaxed synthesis

step. In our experimental evaluation, we consider a broad range of

designs, including a pool of behavioral descriptions that we syn-

thesized using Synopsys Design Compiler targeting the GTECH

library. We selected GTECH because of its broad availability and

simplicity of use in an experimental environment. Note, however,

that the GCS compiler could easily target any other technology li-

brary and, depending on the pool of cells available in the library of

choice, this could also bring forward additional performance bene-

fits compared to what we report in this work. Within the GTECH

library we excluded non-clocked latches (but not flip-flops), since a

cycle-based simulator cannot properly handle the sub-cycle delays

involved in the simulation of a non-clocked latch. Multiple clock

designs can still be handled by using a logical clock that generates

all other clock signals.

When the netlist is read into GCS, an internal representation

based on GTECH is created. In GCS we represent each gate’s func-

tionality by a 4-valued (0,1,X,Z) truth table. Since each execution

thread must execute the same CUDA code, all gates must be speci-

fied in the same format. Note that this information is accessed every

time a gate is simulated, thus quick accessibility is important.

4.2 Combinational Netlist Extraction
During the compilation phase, GCS extracts the combinational

balance and levelizeclusterextract combinational netlist

RTL

Source

simulate

...

...

synthesize

Figure 2: The GCS compiler considers a gate­level netlist or synthesizes a behavioral netlist. It then extracts the combinational logic block
and partitions it into clusters, that is portions of the circuit that approximately fit within the resources of a single CUDA multiprocessor. The
balancing step then optimizes each cluster to satisfy CUDA resource constraints. Finally, balanced clusters are transferred to the GP­GPU
device and the simulation commences.

portion of the gate-level netlist and maps it to CUDA, creating data

structures to represent the gates, as well as their input and outputs.

The netlist can be viewed as a directed graph, where vertices cor-

respond to logic gates and edges correspond to interconnect wires.

Moreover, the graph has multiple outputs (a forest), which may

connect to one of the storage elements or primary netlist outputs.

Multiple inputs are also present: either primary inputs or com-

ing from storage elements. Finally, during simulation, dedicated

data structures store the simulated values for the storage elements

(the input and output buffer vectors) and specialized testbench code

feeds primary input values and extracts primary output values at

each simulation cycle.

Because of the memory hierarchy of CUDA, an optimal memory

layout can lead to significant improvements in the performance of a

GP-GPU simulator. GCS places the most frequently accessed data

structures in local shared memory (Figure 3). Here, we store inter-

mediate net values (called the value matrix), which are computed

for each internal netlist node during simulation. Each net requires

2 bits of storage in a 4-valued simulator. Also in local shared mem-

ory the gate-type truth tables are stored, which are consulted for

the evaluation of each gate.

All other data structures reside in the higher-latency device mem-

ory: the input and output buffers and the netlist topology informa-

tion. Note that the netlist topology information is required just as

often as the data that we store in the local memory. However, the

latter is data that is shared among several threads (gates) and thus

its locality can benefit multiple threads.

4.3 Clustering
GCS’s clustering algorithm (Figure 4) divides a netlist into clus-

ters, each to be executed as a distinct thread block on the CUDA

hardware. Since CUDA does not allow information transfer among

thread blocks within a simulation cycle, all thread blocks must be

independent. The central goals of the clustering algorithm are (i)

minimizing redundant computation, (ii) data structure organization

and (iii) maximizing data locality.

The requirement of creating netlist clusters that are self-contained

and do not communicate to other clusters within a simulation cycle

led us to choose a cone partitioning approach. In cone partition-

ing, a netlist is viewed as a set of logic cones, one for each of the

netlist’s outputs; each cone includes all the gates that contribute to

the evaluation of that output. Due to the lack of inter-cluster com-

munication capability, each cluster must include one or more cones

of logic, and each cone must be fully contained within a cluster.

As a result, once a cluster has been completely simulated, one or

more output values have been computed and can be stored directly

into the output buffer vector. Cone overlap necessarily requires that

Primary Inputs Previous State

PI0 PS0 PI1 PS4 PI3 PS1

n0 n1 n2

n3 NS3

PO1 NS5

0

1

2

3

0 1 2 3 4 5
NS5NS3

PS0 PS4 PS1

n0 n1 n2

n3

Input Buffer (device)

Primary Outputs Next StateOutput Buffer (device)

Netlist Topology (device)
Output Map

(device)

Value Matrix
(shared memory)

G
at
e-
ty
pe
 tr
ut
h
ta
bl
e

(s
h
ar
ed
 m
em
o
ry

)

PI1 PI3PI0

PO1

Input Map
(device)

Figure 3: GCS’s compiled­netlist data structures. The picture
shows the data structures required for the simulation of a small
netlist. Thread blocks store and retrieve intermediate net values
from the value matrix in the local shared memory. Note that there is
a one­to­one correspondence between a row of intermediate values
and a netlist’s logic level.

some gates are duplicated, because they belong to multiple cones.

However, as we show in the experimental section, the incidence of

this extra computation is small in practice.

During the simulation of a cluster, several data blocks must be

readily available. Because each thread block has fast access only to

the small local shared memory, the size of this structure becomes

the constraining parameter in our clustering algorithm.

With the goal of minimizing cluster overlap, the clustering algo-

rithm proceeds by assigning one cone of logic – we start from the

one with the most gates – to a cluster. Additional cones are sub-

sequently added to this cluster until memory resources have been

exhausted. The criteria for adding a cones is the maximal num-

ber of overlapping gates; for example, the second logic cone is the

cone that overlaps the most with the first one already included in

the cluster. Upon completion of the clustering algorithm, GCS has

mapped all gates to a set of clusters, minimizing logic overlap while

satisfying the constraints of shared memory resources.

4.4 Cluster Balancing
The cluster balancing algorithm minimizes the critical execution

path of thread blocks (clusters) on the CUDA hardware. It consid-

ers each cluster individually and optimizes the scheduling of each

clustering (netlist){
sort(output_cones)

for each (output_cone) {
new cluster = output_cone;

while (size(cluster) < MAX SIZE) do {
cluster += max overlap(

output cones, cluster);

} append (cluster, clusters);

}
return clusters;

}

Figure 4: Pseudo­code for the clustering algorithm. Combi­
national logic cones are grouped into clusters, netlist blocks that
are estimated to fulfill CUDA’s resource constraints, with minimal
logic overlap.

gate simulation so that the number of logic levels (the limiting fac-

tor for execution speed) is minimized. The simulation latency of

a single cycle is limited by the cluster with the most logic levels,

since each additional level requires another access to device mem-

ory 300-400 cycles away. Considering the number of logics levels

(cluster height) and the number of concurrent threads simulating

distinct gates (cluster width), the algorithm balances these within

the constraints of the CUDA architecture: a maximum of 256 con-

current threads. Since this is a functional simulaton, intra-cycle

timing can be safely ignored and thus the transformation is guaran-

teed to generate equivalent simulation results.

From a visual standpoint, cluster balancing attempts to reshape

the natural triangular clusters to a rectangle with a 256-wide base.

In this analogy, each gate occupies one entry in a bi-dimensional

matrix. Clusters tend to be triangular shapes because they are a col-

lection of cones of logic, which are usually triangular: a wide set of

inputs computes one output through several stages of gates. In Fig-

ure 6, we show the cluster generated during the GCS compilation of

a JPEG decompressor design. The original cluster has a base width

of 3,160 gates and a height of 67 levels of logic, where most of

the deeper levels require significantly less than 3,000 threads. Af-

ter balancing, we reshaped the cluster to a rectangular shape with a

base width of 256 gates, fitting perfectly on a single thread block,

and a height of 81 levels. As a result, it will take 81 subsequent

gate simulations per thread to completely simulate this cluster.

6
7

3160

cluster bounding box before balancing

3160 256

8
1

a
fte
r b
a
la
n
c
in
g14156 nets

Figure 5: Cluster balancing. Example of balancing of one cluster
in the JPEG decompressor design. Height represents the number of
logic levels and width the number of gates. The cluster balancing
algorithm takes clusters and reshapes them to a maximum 256 gates
wide (limited by CUDA resources), while minimizing the height,
which is the limiting factor in simulation latency.

Figure 6 shows the pseudocode for the balancing algorithm. It is

adapted from a variant of list scheduling algorithm [18] to CUDA

data structure constraints, using the slack available at each gate in

attempting to minimize the balanced clusters’ height.

4.5 Simulation
After the balancing step, the GCS compiler has generated a finite

number of clusters, optimized them and generated all the support

data structures necessary for the kernel code to simulate all gates

balance_cluster() {
for each level in height

for each column in width

balanced_cluster[level][column] =

select_gate()

}
}
return balanced_cluster

}
select_gate() {

sort gates in cluster by height

for each gate in cluster {
if not assigned_to_balanced_cluster(gate)

return gate

}
}

Figure 6: Pseudo­code for the balancing algorithm. Clusters are
considered one at a time and reshaped to fit into a thread block with
a maximum of 256 threads, while minimizing the number logic
levels. The algorithm proceeds in a bottom­up fashion, filling the
cluster with gates, minimizing the level of each gate and maintaining
a maximum width restriction.

PI0 PS0 PI1 PS4

n0 n1 n2

n3 NS3

PO1 NS5

NS5NS3

PS0 PS4 PS1

n0 n1 n2

n3

PI1 PI3PI0

PO1

L
ev

el
 1

L
ev

el
 2

L
ev

el
 0

L
ev

el
 3

Execution threads

Thread 0 Thread 2 Thread 3

Sync
Barrier

Sync
Barrier

Sync
Barrier

Sync
Barrier

...

...

...

...

Thread 1

Figure 7: GCS simulation on CUDA. Simulation of the small
netlist of Figure 3. Each thread is responsible for computing the
output of one gate at a time, vertical waved lines connect the set
of value matrix slots for which a single thread is responsible at
subsequent time intervals. Note also how each level is followed by
a synchronization.

in a netlist with a high level of parallelism while respecting data

dependencies. At this point, cluster data and kernel code can be

transferred to the GP-GPU device and simulated cycle by cycle.

Simulation begins with the host CPU, which transfers the kernel

code and data structures to the GPU and starts the simulation of

each cycle. The GPU hardware now takes over without the assis-

tance of the CPU, scheduling clusters for parallel execution. When

all clusters have executed, one simulation step is complete and con-

trol returns to the host CPU. The host reads primary outputs, eval-

uates the testbench, sets primary inputs and invokes the next cycle.

Cluster execution on the GPU proceeds in three phases: scatter-

ing, logic evaluation and gathering. During scattering, the cluster’s

primary input data is retrieved from the device memory and copied

to the value matrix (Figure 3). Next, logic evaluation progresses

when each thread begins execution. The threads, each simulating

one gate, retrieve the relevant portion of the netlist from device

memory, as well as gate truth tables and net matrices from local

shared memory. With this information, the threads evaluate their

gates by consulting the truth table. During the gather step, com-

puted results are copied from the value matrix to the output buffer

vectors in device memory. Finally, the threads synchronize after

simulating their respective gates and the process is repeated for all

the subsequent logic levels in the cluster. Figure 7 shows an exam-

ple of cluster execution for the sample netlist of Figure 3.

5. OPTIMIZATIONS AND TESTBENCHES
GCS employs a number of optimizations to speed simulation,

including running testbenches as kernel threads, as well as using

the GPU’s texture memory to speed memory accesses.

Testbenches. In GCS we implemented the testbench in a separate

kernel so that, during each simulation cycle, the netlist-kernel and

lightweight testbench-kernel alternate execution on the GP-GPU

device. Microprocessor test kernels are very simple kernels that

can be used when simulating a processor design. These designs

are usually simulated by executing an assembly program, thus we

upload the program to device memory and include a specialized

kernel whose job is simply to serve memory requests from the pro-

cessor. When possible, synthesizable test kernels can deliver high

performance, since they can themselves be mapped to a netlist, and

thus the simulation can be viewed as a co-simulation between two

digital circuits. Another approach we explored uses a trace play-

back test kernel, where the input stimuli are captured while running

the test generator on a separate system and later uploaded to device

memory. The kernel then transfers these inputs to the simulated de-

sign. Hybrid or altogether different solutions are also viable, for in-

stance, in the case of our JPEG decompressor design, the testbench

was an image to be decompressed and resided in device memory.

Complex testbenches involving constructs that can not be repre-

sented as a kernel in CUDA still be executed on the host CPU, but

an additonal communication penalty will be incurred with every

cycle. Debugging support can also be implemented at the cost of

storing internal values in device memory and incurring the related

latency penalty.

Optimizations. Several optimizations in GCS take advantage of

the raw performance of the GP-GPU. First, we leveraged the texture

memory to reduce the access latency when loading the netlist topol-

ogy from device memory. The texture memory block acts similarly

to a direct memory access device, launching monolithic requests

for large, consecutive data reads. Thus, with proper data layout,

once the first thread receives the required information, a number of

other threads will receive their data as well. The result is an overall

reduction in cluster simulation latency.

Another optimization focuses on minimizing cluster latency. We

observed that if we mapped two clusters to the same multiproces-

sor, then CUDA could interleave their execution and mask most of

the time spent while waiting for data from device memory. How-

ever, in order to fit two clusters in a multiprocessor, we had to ac-

commodate the value matrices for both clusters in the shared lo-

cal memory. We found that this option delivered valuable perfor-

mance improvements, hence the GCS compiler uses an 8KB mem-

ory bound (instead of 16KB) when estimating the number of logic

cones that can fit within one cluster. Additionally, the physical

GPU’s limit on the number of threads for each multiprocessor is

512, but we used 256 so that we could fit two clusters executing at

the same time. We found that reducing clusters to smaller sizes did

not bring a further performance advantage.

6. EXPERIMENTAL EVALUATION
We evaluated the performance of GCS on a set of Verilog designs

ranging from a combinational LDPC (Low-Density Parity Check)

encoder to an industrial microprocessor core from the OpenSPARC

T1. Designs were obtained from OpenCores [20] and from the Sun

OpenSPARC project [24]; the 5 stage processors and NoC designs

were designed by student teams.

Table 1 shows the key characteristics of the designs. We re-

port the number of gates and flip-flops in the corresponding syn-

thesized netlist for each design and indicate the testbench used for

simulation. The first two designs, 5 stage in-order and pipelined

Design Testbench # Gates # Flops

5 stage in-order recursive Fibonacci program 17546 2795

5 stage pipeline recursive Fibonacci program 18222 2804

LDPC encoder random stimulus 62515 0

JPEG decompressor 1920x1080 image 93278 20741

3x3 NoC routers random legal traffic 64432 13698

4x4 NoC routers random legal traffic 167973 23875

SPARC core
v9allinst.s 262201 62001
lsu mbar.s
lsu stbar.s

Table 1: Designs used for evaluating GCS.

processors, implement a subset of the Alpha instruction set and

simulated a recursive Fibonacci program. The LDPC encoder is a

combinational design simulated with random stimulus. The JPEG

decompressor reads a 1920x1080 pixel image and decompresses

it. The NoC designs are torus networks of 5-channel routers con-

nected to a random stimulus generator, which sends legal packets

over the network. Finally, the SPARC core is a single processor

from the OpenSPARC T1 multi-core chip (excluding caches) and

runs test programs provided with Sun’s open-source distribution.

In our evaluation, we did not run into the theoretical maximum

design size limit imposed by the GP-GPU hardware, indeed it is

possible to run much larger designs. The design size limit is gov-

erned by the amount of shared memory available as well at the

number of multiprocessors and is given by shared memory bits

2
∗

num multiprocessors, about 1 million gates with our GPU de-

vice. Note that simulations of over 6 million gated designs would

be possible with the largest available NVIDIA system today.

Seq GCS Speed
design cycles Sim(s) time(s) up

5 stage in-order 12,889,495 40,427 9,942 4.07x

5 stage pipeline 13,423,608 67,560 10,688 6.32x

LDPC encoder
100,000 12,014 193 62.25x

1,000,000 120,257 1,993 60.34x
10,000,000 >48h 19,859

JPEG decompressor 2,983,674 14,740 929 15.87x

3x3 NoC routers
111,823 386 50 7.72x

1,225,245 2,819 324 8.7x
1,967,155 4,258 504 8.45x

4x4 NoC routers

120,791 561 82 6.84x
1,298,438 3,263 424 7.7x
2,018,450 5,061 659 7.68x

10,000,001 34,503 4,656 7.41x

SPARC - v9allinst.s 119,017 3,221 756 4.26x
- lsu mbar.s 137,497 3,726 880 4.23x
- lsu stbar.s 101,720 2,762 640 4.32x

Table 2: GCS performance. Comparison of GCS simulation
performance against a state­of­the­art event­driven simulator. GCS
outperforms the sequential simulator by 14.4x on average.

6.1 Performance
We evaluated GCS’s performance by comparing it to a state-of-

the-art, event-driven, compiled code simulator, considered among

the fastest available today. GCS simulations were run on a CUDA-

enabled 8800GT GPU with 14 multiprocessors and 512MB of de-

vice memory, running the cores at 600 MHz and the memory at 900

MHz. The sequential simulations were run on a 3.4GHz Pentium

4 workstation with 2GB of memory. Both were configured to sim-

ulate without monitoring values of internal nets. All our testbench

circuits were synchronous designs with latches driven by a single

clock, hence the commercial simulator and GCS both worked on a

single clock boundary. Table 2 reports the number of cycles, run-

times for both GCS and the commercial simulator, and the relative

speedup. Times are in seconds and reflect total simulation runtime,

excluding compilation for both solutions. It can be noted that GCS

always outperforms the commercial simulator by a factor of 4 to

60, averaging 14.4 times speedup. The speedup was most signif-

icant for the LDPC design because high switching activity in this

experiment affected the performance of the event-driven commer-

cial simulator, but not that of GCS.

78.0

15.4

3.6 1.0 1.4 0.6

0

20

40

60

80

100

1 2 3 4 5-14 15+

Number of Clusters

G
a

te
s

(%
)

Figure 8: Gate duplication due to cluster overlap. Percentage
of gates present in multiple clusters is shown; the first bar indicates
no duplication.

6.2 Clustering Efficiency
In the next experiment, we evaluated the impact of cluster over-

lap, as discussed in Section 4.4. Figure 8 reports the percentage of

gates present in multiple clusters, averaged over all designs. We

found that nearly 80% of the gates were not duplicated, 15% were

present in two clusters and less than 7% were present in more than

two clusters. We conclude that the cone-based clustering algorithm

is both effective in removing inter-cluster dependencies and does

not introduce a relevant increase in the required computation.

0

20

40

60

80

100

in
-o

rd
er

pip
elin

e

LD
PC

JP
EG

3x3
 N

oC

4x4
 N

oC

SP
ARC

R
e

so
u

rc
e

 U
ti

li
za

ti
o

n
 (

%
)

after balancing before balancing

6

<1m
7

<1m

25

3m 13

9m

13

8m

24

22m
17

79mclusters

balance time

Figure 9: Cluster balancing. Resource utilization averaged over
all clusters in each design, before and after balancing.

6.3 Cluster Balancing Efficiency
Finally, we evaluated GCS’s ability to effectively optimize indi-

vidual clusters with its cluster balancing algorithm. An example of

balancing for a cluster in the JPEG decompressor design is shown

in Figure 5. Figure 9 reports the average utilization ratio for all

clusters in each design, before and after the balancing step. The

utilization ratio is computed as the ratio of the area covered by the

scheduled netlist in a cluster over the cluster bounding box. For

example, with reference to Figure 5, the utilization of the cluster

before balancing is 14156

67·3160
, while the utilization after balancing is

14156

256·81
. Figure 9 also reports the total number of clusters in each

design and the total compilation time. We observed that the total

number of clusters in each design was relatively low despite large

latch counts, due to the aggregation of a large number of cones, all

balanced to run simultaneously on the same multiprocessor. It can

be easily noted that balancing brings a sharp boost in the clusters’

utilization factors across all designs.

7. CONCLUSIONS
We have presented GCS, a high-performance, concurrent simu-

lator for gate-level netlists on parallel GP-GPU architectures. GCS

maps complex netlists to NVIDIA GPUs by employing a novel

clustering and balancing algorithm. The algorithm cleverly orches-

trates the use of GPU resources to convert their high computing

power into simulation performance. In our experimental results,

we show that GCS is capable of order-of-magnitude speed-ups over

state-of-the-art commercial simulators. GCS opens new horizons

in the performance of logic simulators, which are the workhorse of

verification in the industry. In the near future, we plan to explore

possible solutions for an event-driven, timing-aware simulation so-

lution for CUDA able to handle arbitrarily large designs.

8. REFERENCES
[1] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agarwal.

Logic emulation with virtual wires. IEEE Trans. on CAD, 1997.

[2] W. Baker, A. Mahmood, and B. Carlson. Parallel event-driven logic
simulation algorithms: Tutorial and comparative evaluation. IEEE

Journal on Circuits, Devices and Systems, 1996.

[3] Z. Barzilai, J. Carter, B. Rosen, and J. Rutledge. HSS–a high-speed
simulator. IEEE Trans. on CAD, 1987.

[4] J. Bergeron. Writing testbenches: functional verification of HDL

models. Kluwer Academic Publishers, 2000.

[5] R. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler. COSMOS: a
compiled simulator for MOS circuits. In Proc. DAC, 1987.

[6] M. Denneau. The Yorktown simulation engine. Proc. DAC, 1982.

[7] D. Edenfeld, A. B. Kahng, M. Rodgers, and Y. Zorian. 2003
technology roadmap for semiconductors. IEEE Computer, 2004.

[8] E. Frank. Exploiting parallelism in a switch-level simulation
machine. Proc. DAC, 1986.

[9] K. Gulati and S. Khatri. Towards acceleration of fault simulation
using graphics processing units. Proc. DAC, 2008.

[10] S. Karthik and J. A. Abraham. Distributed VLSI simulation on a
network of workstations. In Proc. ICCD, 1992.

[11] H. Kim and S. Chung. Parallel logic simulation using time warp on
shared-memory multiprocessors. Proc. IPPS, 1994.

[12] Y.-I. Kim, W. Yang, Y.-S. Kwon, and C.-M. Kyung.
Communication-efficient hardware acceleration for fast functional
simulation. Proc. DAC, 2004.

[13] H. Kohler, J. Kayser, H. Pape, and H. Ruffner. Code verification by
hardware acceleration. ASIC/SOC Conference, 2001. Proceedings.

14th Annual IEEE International, pages 65–69, 2001.

[14] D. Lewis. A hierarchical compiled code event-driven logic simulator.
IEEE Trans. on CAD, 1991.

[15] N. Manjikian and W. Loucks. High performance parallel logic
simulations on a network of workstations. Proc. of workshop on

Parallel and distributed simulation, 1993.

[16] Y. Matsumoto and K. Taki. Parallel logic simulation on a distributed
memory machine. Proc. EDAC, 1992.

[17] G. Meister. A survey on parallel logic simulation. Technical report,
University of Saarland, Dept. of Computer Science, Misra J, 1993.

[18] G. D. Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill Higher Education, 1994.

[19] NVIDIA. CUDA Complete Unified Device Architecture, 2007.

[20] Opencores. http://www.opencores.org/.

[21] A. Perinkulam and S. Kundu. Logic simulation using graphics
processors. In Proc. ITSW, 2007.

[22] S. Smith, W. Underwood, and M. R. Mercer. An analysis of several
approaches to circuit partitioning for parallel logic simulation. In
Proc. ICCD, 1987.

[23] L. Soulé and T. Blank. Parallel logic simulation on general purpose
machines. In Proc. DAC, 1988.

[24] Sun microsystems OpenSPARC. http://opensparc.net/.

[25] B. Wile, J. Goss, and W. Roesner. Comprehensive Functional

Verification. Morgan Kaufmann Publishers Inc., 2005.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

