
A Novel LDPC Decoder for DVB-S2 IP

Stefan Müller, Manuel Schreger, Marten Kabutz

THOMSON

- System Architecture Group -

Herman-Schwer-Str. 3

78048 Villingen-Schwenningen, Germany

Email: {Stefan.Mueller, Manuel.Schreger, Marten.Kabutz}@thomson.net

Matthias Alles, Frank Kienle, Norbert Wehn

University of Kaiserslautern

- Microelectronic Systems Design Research Group -

Erwin-Schroedinger-Str.

67663 Kaiserslautern, Germany

Email: {alles, kienle, wehn}@eit.uni-kl.de

Abstract—In this paper a programmable Forward Error Cor-
rection (FEC) IP for a DVB-S2 receiver is presented. It is com-
posed of a Low-Density Parity Check (LDPC), a Bose-Chaudhuri-
Hoquenghem (BCH) decoder, and pre- and postprocessing units.
Special emphasis is put on LDPC decoding, since it accounts for
the most complexity of the IP core by far.

We propose a highly efficient LDPC decoder which applies
Gauss-Seidel decoding. In contrast to previous publications,
we show in detail how to solve the well known problem of
superpositions of permutation matrices. The enhanced conver-
gence speed of Gauss-Seidel decoding is used to reduce area
and power consumption. Furthermore, we propose a modified
version of the λ-Min algorithm which allows to further decrease
the memory requirements of the decoder by compressing the
extrinsic information.

Compared to the latest published DVB-S2 LDPC decoders,
we could reduce the clock frequency by 40% and the memory
consumption by 16%, yielding large energy and area savings
while offering the same throughput.

Index Terms—Forward Error Correction, Soft Decision De-
coding, LDPC, DVB-S2, Check Node approximation.

I. INTRODUCTION

The DVB-S2 specification [1], [2] is the world’s first

standard using LDPC codes for the FEC. Together with an

outer BCH decoder, it allows for outstanding communications

performance. Because of the long codewords of 64 800 bits,

the implementation complexity of the LDPC decoder is very

challenging. It accounts by far for the most complexity in

a DVB-S2 FEC. Therefore, a highly efficient LDPC decoder

implementation is mandatory.

LDPC decoding is an iterative process. Two sets of compu-

tations have to be performed per iteration: check node updates

and bit/symbol node updates. Decoding architectures based on

the Gallager algorithm [3] execute these computations in two

distinct steps or phases (so called Two Phase Message Passing

algorithm). By means of the Gauss-Seidel algorithm, which

is also known as “staggered decoding”, “Turbo Decoding

Message Passing” (TDMP), “shuffled decoding” or “layered

decoding” [4]–[6], intermediate results are used within the

same iteration for the same computation type. This technique

is applicable to partially parallel decoder architectures, where

not all computations of one node type are executed in parallel.

Gauss-Seidel decoding improves the convergence behavior and

it is possible to reduce the number of required iterations by

up to 50% at the same bit error rate (BER) performance. Due

to the increased efficiency the latency, the parallelism of the

decoder or the clock frequency can be reduced, saving both

power and area. For highly efficient decoder implementations

it is furthermore necessary to use suboptimal check node

approximations of low complexity, e.g., the λ-Min algorithm

[7].

Unfortunately, there is a special case in the parity check

matrix of DVB-S2 that raises difficulties when applying the

Gauss-Seidel algorithm in partially parallel decoder archi-

tectures. DVB-S2 LDPC codes are based on submatrices

(permuted identity matrices) and superpositions of these sub-

matrices (called superposed submatrices hereafter), cf. Section

III. The Gauss-Seidel algorithm cannot be applied for these

superposed submatrices. DVB-S2 LDPC architecture publi-

cations applying the Gauss-Seidel algorithm [8]–[13] do not

address this problem.

In this paper, we present a new LDPC decoder that applies

a novel method for Gauss-Seidel decoding of the DVB-S2

codes. A two phase message passing is used only for the su-

perposed submatrices. For all other submatrices, Gauss-Seidel

decoding is applied resulting to increase decoder efficiency.

The superposed submatrix problem is solved without any

additional processing delay, see Section IV. Furthermore, we

propose a modified version of the λ-Min algorithm [7] that

further reduces the size of the extrinsic memory compared

to the latest published DVB-S2 decoders, cf. Section VI. Bit

accurate simulations show the communications performance

of our approach.

The presented IP comprises all needed pre- and postprocess-

ing units of a DVB-S2 FEC system, such as log-likelihood

ratio (LLR) computation, deinterleaving, LDPC decoding,

BCH decoding, physical and baseband descrambling and data

preparation for the backend MPEG decoder. The overall area

after place and route is 13.1mm2 in a 90nm CMOS technology.

Compared to the latest published DVB-S2 decoder [13] we

could reduce the clock frequency by 40% while the memory

consumption is reduced by 16%, see Section VII.

II. SYSTEM OVERVIEW

Figure 1 shows an overview of the presented FEC design.

Three modulation constellations (QPSK, 8PSK and H8PSK)

and all eleven code configurations are supported for the code-

word length of 64 800 bits. The FEC is capable of decoding

978-3-9810801-5-5/DATE09 © 2009 EDAA

Fig. 1. DVB-S2 FEC Decoding System

two independent DVB-S2 data streams at 30 MBaud each.

The “Inphase” and “Quadrature” (I/Q) signals are received

by the LDPC preprocessing unit, which computes the LLRs,

deinterleaves the data and saves the LLRs in internal memory.

The saved frames are iteratively decoded by the LDPC core

unit and transmitted to the BCH decoder. The postprocessing

blocks perform descrambling, packetizing and a cyclic redun-

dancy check (CRC). Because the decoded data is processed

in a burst wise manner, the packets must be smoothed in

time so that they are transmitted at regular intervals. This then

corresponds to the timing of the packets as they were received

at the transmitter. This is performed by the Export Oscillator

in Figure 1 using a FIFO of size 16 kBytes along with a

numerical controlled oscillator. The output data stream is then

passed to the MPEG decoder.

III. DVB-S2 LDPC CODES

An LDPC code is defined by a sparse parity check matrix

H of size M ×N . It can be represented by a bipartite graph,

the so called Tanner graph [14]. The Tanner graph consists of

two types of nodes, variable and check nodes. The check node

j is connected to variable node i whenever element hij in H
is 1, with j ∈ {0, . . . ,M − 1} and i ∈ {0, . . . , N − 1}. No

connection exists when hij is 0.

The parity check matrices in DVB-S2 are architecture-

aware, which means that the codes are suitable for partially

parallel decoder architectures with a parallelism of up to

S = 360. Therefore the parity check matrix is divided into

submatrices of size S × S, which means that the variable

nodes and check nodes are divided into groups of size S.

The submatrix itself defines the permutation π between the

node groups. Figure 2 shows an example of an architecture-

aware irregular repeat accumulate code as used in the DVB-

S2 standard. The bits in the codeword, represented by variable

nodes, are separated into information nodes and parity nodes.

Furthermore S information nodes ui and S parity nodes yi are

grouped together, forming the information node group INGi

and parity node group PNGi, respectively. The parity nodes

are of degree two for all code rates R. The information nodes

consist of two subsets, one with degree of wc(R) and one with

degree three. The check equations are represented by check

nodes and grouped together as well. They all are of degree

0
u

1−Su

1
π

2
π

0
ING 1−gKING

1−gMPNG
0

PNG

xπ

0
CNG

1−rw
CNG

Fig. 2. Architecture-aware irregular repeat accumulate code used in DVB-S2

wr(R). The check node groups are connected to information

node groups and parity node groups via permutations π, where

the permutation varies between the groups. The connection

between information node groups and the check node groups

are semi-random defined according to the DVB-S2 encoding

rules [1], [2]. The connection of the parity node group and the

check node group is a fixed zigzag pattern, which is the result

of the accumulator encoding procedure [15]. The permutation

in DVB-S2 can be represented by a S × S cyclic shift of the

identity matrix I denoted as Ix, where x is the number of left

cyclic shifts. For all DVB-S2 LDPC codes there are three types

of submatrices of size S × S in their parity check matrices:

• The submatrix 0
• Submatrices Ix with x ∈ {0, . . . , S − 1}
• Submatrices composed of superpositions, e.g. Ix + Iy

with x 6= y, and x, y ∈ {0, . . . , S − 1}.

H ′(m, n) denotes the submatrix of the parity check matrix

corresponding to check node group m ∈ {0, . . . , M
S

− 1} and

variable node group n ∈ {0, . . . , N
S
− 1}. So, the parity check

matrix can be written as

H ′ =

I0 I1 ... 0

I2 I3 + I4 ... I5

: : : :

0 I9 ... I2

I7 0 ... I1

︸ ︷︷ ︸

A

I0 0 ... 0 I1∗

I0 I0 ... 0 0

: : : : :

0 0 ... I0 0

0 0 ... I0 I0

︸ ︷︷ ︸

T

(1)

Matrix part A describes the semi-random part of information

node groups and matrix part T the zigzag pattern or stair-case

part of the parity node groups. The matrix entry I1∗

denotes

the dotted connection between the last parity node group and

the first check node group of Figure 2, that must not to be

processed.

IV. MODIFIED GAUSS-SEIDEL DECODING

The Gauss-Seidel method is a technique used to solve a

linear system of equations in an efficient way. The fundamental

principle is to use intermediate results directly in the next

computation in order to accelerate the convergence behaviour.

The increased convergence speed allows a reduction in the

number of LDPC iterations by up to 50%, giving a much

higher decoder efficiency.

One problem of applying Gauss-Seidel to the DVB-S2

code is the handling of superposed submatrices. In a partially

parallel decoder architecture with a parallelism degree of S,

the S check nodes of each check node group in H ′ are

computed in parallel. Each check node group uses the results

of previously computed groups. If the check node group

contains superposed submatrices it is not possible to apply the

Gauss-Seidel principle inside that submatrix, e.g., in H ′(1, 1)
of equation (1) it is not possible to use the intermediate results

of I3 in I4 and vice versa. The updated results are not yet

available when actually needed.

The architecture presented in [8] avoids the problem by

applying the Gauss-Seidel technique only on the staircase part

T of the parity check matrix H . The architecture in [10]

applies Gauss-Seidel to all variable nodes, but does not show

the treatment of superposed submatrices. In the following, we

show how to solve the problem of superposed submatrices

without any latency penalty.

For each variable node i, an accumulator Ai is introduced.

It is initialized with the received channel reliabilities Li

ch
,

expressed in LLRs,

Ai = Li

ch. (2)

For the variable node group n, we define the accumulator

group An

VNG
that contains the accumulators of all variable

nodes contained in the variable node group n. During decod-

ing, the accumulators always contain the a-posteriori value.

As mentioned before, partially parallel decoder architectures

only work on the node groups.

For each decoding iteration, M
S

decoding sub-iterations have

to be performed, corresponding to the number of check node

groups. For each check node group m, new extrinsic reliabil-

ities are computed using the a-posteriori value saved in the

accumulator groups and the extrinsic information. Let C(m)
be the set of permuted identity matrices that are contributing

to the check node group m. Furthermore, let f(k) give the

corresponding variable node group n for the permuted identity

matrix k ∈ C(m). New a-posteriori values and extrinsic

information are computed as follows:

• For each permuted identity matrix k ∈ C(m) read the

corresponding accumulator values A
f(k)

VNG
and perform

the permutation:

Ak∗
VNG = π

(

A
f(k)

VNG

)

(3)

• For each k ∈ C(m) compute the intrinsic reliability by

subtracting the extrinsic information group Lk
extr from

the temporary saved accumulator value. For the first

iteration Lk
extr is zero for all k.

Lk

int = Ak∗
VNG − Lk

extr (4)

• For each k ∈ C(m) compute new extrinsic reliability

information:

Lk∗
extr = 2 tanh−1

∏

l∈C(m)\k

tanh

(
Ll

int
2

)

 (5)

• Compute new a-posteriori information for each k ∈
C(m):

Ak∗
VNG = Ak

int + Lk∗
extr (6)

• Permute back the a-posteriori information for each k ∈
C(m):

Ak′

VNG = π−1
(

Ak∗
VNG

)

(7)

• Distinguish now between normal case and superposition:

– In case variable node group f(k) is unique for all

k ∈ C(m) (no superposed submatrices):

A
f(k)

VNG
= Ak′

VNG (8)

– In case variable node group f(k) is used multiple

times for k ∈ C(m) (superposed submatrices), up-

date the partially calculated a-posteriori information

Ak′

VNG
with missing extrinsic differences caused by

superposition of multiple permutations j ∈ C(m):

A
f(k)

VNG
= Ak′

VNG

+
∑

j|f(j)=f(k),
j 6=k

π−1
(

Lj∗

extr − Lj

extr

)

(9)

• Overwrite the old extrinsic reliabilities:

Lk
extr = Lk∗

extr (10)

The a-posteriori reliability is available after each sub-iteration

and corresponds to the accumulator group values Ak

VNG
. Due

to the fact that the a-posteriori sum is updated during each sub

iteration, the decoding process can be stopped at any time. The

hard decisions of a variable node group is done by evaluating

the sign of Ak

VNG
.

V. LDPC DECODER ARCHITECTURE

Figure 3 shows the decoder architecture based on the

algorithm described in Section IV. The accumulator memory

contains the a-posteriori sum and is initialized with the re-

ceived channel LLRs according to equation (2). These values

are updated at each subiteration. Therefore the accumulator

values are loaded to the shifter and shifted according to the

permutation matrices. The corresponding extrinsic information

is loaded from the edge memory. In case the edge memory is

compressed as explained in Section VI, it is first necessary

to decompress the RAM content. For the first iteration, the

extrinsic information is set to zero. The extrinsic information

is subtracted from the shifted a-posteriori value, see equation

(4). The resulting intrinsic value is fed to the check node pro-

cessing unit (CNU) unit and to a multiplexer. If the submatrix

is defined over only one permutation matrix, the intrinsic value

is fed to the FIFO, i.e., the result of the addition is used. If

Input Memory

used as

Accumulator

Memory

Shifter or Permuter/Interleaver

Shifter or Permuter/Interleaver

only needed for

submatrices defined via

more than one

permutation matrices
A-posterior

Register

+
0

Mux

Bit Decision
Sx10Bit Output

Input

Edge

Memory

for

CNU0

CNU

0

Mux

FIFO

+

-1

+

Core Subunit 0

6 Bit

Decompress

Compress

Fig. 3. Hardware architecture for modified Gauss-Seidel decoder

the submatrix is defined via more than one permutation matrix,

the first intrinsic value is fed to the FIFO and afterwards the

FIFO is fed with the missing negative extrinsic values of other

permutations for that submatrix. This prepares the computation

inside the brackets of equation (9).

Now the CNU computes new extrinsic values according to

equation (5). These values are compressed and saved in the

edge memory. At the output of the CNU, the new extrinsic

value is added to the output of the FIFO and passed to the

shifter, compare equation (6) and (7). The output of the shifter

is fed to an adder. Again it is distinguished between one or

more permutation matrices in one submatrix. If the submatrix

is defined via one permutation matrix, the output value of the

shifter is directly stored in the a-posteriori register (no adding),

as shown in equation (8). If the submatrix is defined via more

than one permutation matrix, the first value is loaded to the

a-posteriori register and the following extrinsic differences are

added to that value according to equation (9). This requires

that multiple permutations in one submatrix are processed

in consecutive order. Finally, the old a-posteriori value in

the accumulator memory is overwritten with the updated a-

posteriori register value.

VI. EXTRINSIC MEMORY COMPRESSION

A key unit of the LDPC decoder is the computation of

the extrinsic values in the CNUs according to equation (5).

Due to the high implementation complexity of this equation,

suboptimal algorithms are used, which still yield good com-

munications performance. A good approximation is the λ-

Min approximation [7]. Where only the λ smallest incoming

magnitudes are used to compute the extrinsic information.

The DVB-S2 LDPC decoder has to store up to 285 120
LLRs for the extrinsic information. With a quantization of 6

bits for each LLR, a total memory size of 1 710 720 bits is

required for the extrinsic information.

One advantage of the λ-Min algorithm is that only λ + 1
different magnitudes are computed. As proposed in [7], it is

hence possible to compress the extrinsic memory. To store the

output of the CNU, it is only necessary to store wr sign bits,

λ + 1 magnitudes, and λ indices defining where the first λ
magnitudes are to be found in the serial output stream of the

CNU. The (λ + 1)th magnitude is used on all other positions

in the output stream.

The memory reduction depends on the row weight wr and

on the bit width of the LLRs. Let us assume that the bit width

of one LLR value is 6 bit and wr = 30; the memory size

of one uncompressed LLR vector is 180 bits, the compressed

vector for 3-Min decoding requires only 65 bits (30 sign bits,

4*5 magnitude bits, 3*5 index bits).

For low code rates however, wr can be as low as four. Using

the compressed storage method with the 3-Min algorithm

as proposed in [7] would result in an increased memory

consumption. In order to achieve a maximum reduction of

memory, we therefore modified the 3-Min algorithm to obtain

less different magnitudes.

Let the input to the check node processing unit be Li

int
and the extrinsic output be Li

extr, i = 0, 1, ..., wr(R) − 1.

The three smallest values in the set of |Li

int
| are selected and

let their corresponding indices be j0, j1, j2, where |Lj0

int
| <

|Lj1

int
| < |Lj2

int
|. Furthermore, let si = sign(Li

int
) and S =

∏wr(R)−1
i=0 si. Four magnitudes are to be calculated for the 3-

Min algorithm but we only calculate three different extrinsic

output values L′i
extr. The fourth value, conventionally obtained

by combination of all three minimas, is approximated by

|L′j2
extr|, therefore the extrinsic output is calculated by

Li
extr = si × S ×

|L′j0
extr| for i = j0

|L′j1
extr| for i = j1

|L′j2
extr| for i 6= j0, j1

. (11)

To exploit the compression logic only two magnitudes are

selected for low code rates (R < 1/2),

Li
extr = si × S ×

{

|L′j0
extr| for i = j0

|L′j1

intr
| for i 6= j0

. (12)

Without any compression 1 710 720 bits (100%) are required

for the extrinsic LLRs with a 6 bit quantization. When

computing three magnitudes for all code rates only 1 123 200
bits (66%) would be required. By employing our new mixed

approximation approach the memory requirement can be even

further reduced to 972 000 bits (53%).

VII. RESULTS

A. Simulation Results

This section shows simulation results of the forward error

correction decoder according to Figure 1. Figure 4 and Figure

5 show the bit accurate BER performance vs. the signal-to-

noise ratio (SNR) for the two supported modulation schemes

-3 -2 -1 0 1 2 3 4 5 6 7
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Es/No [dB]

B
E
R

(QPSK)

C=1/4
(QPSK)

C=1/3

(QPSK)

C=2/5
(QPSK)

C=1/2

(QPSK)

C=3/5

(QPSK)

C=2/3

(QPSK)

C=3/4

(QPSK)

C=4/5

(QPSK)

C=5/6

(QPSK)

C=8/9 (QPSK)

C=9/10

Fig. 4. BER simulation results of all code rates using QPSK modulation

5 6 7 8 9 10 11
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Es/No [dB]

B
E
R

(8PSK)

C=3/5

(8PSK)

C=2/3

(8PSK)

C=3/4

(8PSK)

C=5/6
(8PSK)

C=8/9

(8PSK)

C=9/10

Fig. 5. BER simulation results of all code rates using 8PSK modulation

(QPSK, 8PSK) at a constant block size of N = 64 800. In our

simulation model, we add white Gaussian Noise (AWGN) to

the I/Q signals. These signals are sampled at ideal time and

quantized to 10 bit. The sampled values are then passed to the

forward error correction, where they are mapped to 6 bit LLRs

and decoded as presented in Section IV. Our investigations

showed, that 6 bit is the minimum required bit quantization in

order to achieve the required bit error performance.

Figure 6 shows the bit error rate for R = 1/2 and

QPSK modulation using our modified calculation scheme (at

50 iterations). The performance loss is about 0.3 dB when

computing two magnitudes instead of three. The error floor is

eliminated by the BCH decoder at −2.55 dB still satisfying the

DVB-S2 specification. The code rate R = 3/5 in 8PSK mode

is the most time-critical configuration in the presented system,

since this code has the largest number of edges in the Tanner

graph. Figure 7 depicts the BER performance with and without

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

-3 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3
Es/No [dB]

B
E

R

DVB-S2 Spec. Boundary

3 Magnitudes after BCH

3 Magnitudes after LDPC

2 Magnitudes after BCH

2 Magnitudes after LDPC

Fig. 6. BER simulation results for R = 1/4 using QPSK modulation

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8

Es/No [dB]

B
E

R

DVB-S2 Spec. Boundary

New Decoder after BCH

New Decoder after LDPC

Conventional after LDPC

Fig. 7. BER simulation of R = 3/5 with 8PSK modulation

BCH decoding for that code configuration. The maximum

number of iterations was limited to 40. One can notice a

significant error floor of 10−8 starting at 5.5 dB without BCH

decoder. The error floor is eliminated by the BCH decoder at

5.5 dB, which is exactly the specification requirement of DVB-

S2. In comparison to a conventional decoding architecture with

two phase decoding the coding gain is improved around 0.1
dB, see Figure 7. To satisfy the DVB-S2 specification with

two phase decoding, more iterations are required, resulting

either in a lower throughput at a given clock frequency or

a higher energy consumption for fixed throughputs since the

clock frequency would have to be increased.

B. Implementation Results

The forward error correction design was implemented in

TSMC 90nm CMOS technology. Implementation results of

the proposed decoder in 90nm technology [12], and the latest

published DVB-S2 decoder IP [13] (65nm technology) are

summarized in Table I. The presented FEC IP core has a total

area of 13.1mm2 after place and route. Even with compression

of the extrinsic LLRs, 67% of the core area are required for the

TABLE I
IMPLEMENTATION RESULTS

Paper This [12] [13] This†1 This†2

Technology [nm] 90 90 65 65 -

No. of streams 2 1 1 2 1

Parallelism 90 360 180 90 180

Air Throughput [Mbit/s] 2*90 135 135 2*90 135

Frequency [MHz] 270 300 174 270 105

Memory capacity [Mbits] 3.59 2.83 3.18 3.60 2.80/2.68†3

Memories No. cuts 37 65 91 50 -

Memory area [mm2] 8.78 5.20 3.00 4.34 -

Gate Count [kGates] 650 - - 668 -

Power [mW] 477/853 980 476 - -

Total Area [mm2] 13.1 15.8 6.07 6.03†4 -

†1 for comparison: design shrunk to 65nm, synthesis only
†2 for comparison: same parameters as [13]
†3 excluding export oscillator
†4 estimated after place and route

memories. The main reason is the large block size of 64 800
used in DVB-S2. Compared to the 90nm decoder of [12] we

require less power and area while offering a higher throughput.

Power numbers are obtained assuming a toggling rate for all

flip-flops of 25% under best case (853mW) and worst case

timing conditions (477mW). We furthermore synthesized the

decoder in a 65nm process. In this case the overall area of

our core is reduced to 6.03mm2. Compared to the decoder of

[13] we could reduce the decoder parallelism, what allows for

a simplified routing of the barrel shifters.

Comparing the different approaches is difficult though.

Different number of channels, parallelisms, and other require-

ments lead to different decoder implementations. Therefore,

we adapted the presented IP to one channel with an LDPC

decoder parallelism of 180, which is the configuration of [13].

The obtained numbers show the efficiency of our approach.

Compared to [13] the clock frequency could be reduced

by 40% from 174 MHz to 105 MHz to obtain the same

throughput. Furthermore, when excluding the export oscillator,

the overall memory consumption is reduced by 16% from 3.18

Mbits to 2.68 Mbits. The clock frequency of the presented

receiver IP is determined by the code rate 3/5 and 8PSK

modulation, since decoding this code takes the most clock

cycles to meet the DVB-S2 specification.

The layout of the overall IP core is depicted in Figure 8. It

contains all components as shown in Figure 1, such as LDPC

decoder, BCH decoder, descrambler, CRC, etc. As mentioned

before, the biggest part of design are the memories. They

are placed around the logic of LDPC core and the pre- and

postprocessing blocks.

VIII. CONCLUSION

In this paper we presented a novel LDPC decoder, which

was used within an FEC IP core for DVB-S2. The decoder

is able to apply Gauss-Seidel decoding in an efficient way

even when the parity check matrix contains superpositions of

permutation matrices. Furthermore, the λ-Min algorithm was

modified to allow a higher compression rate of the extrinsic

memory. The proposed techniques allow a reduction in power

and area consumption compared to previous publications.

LDPC Core

Pre- and

Post

Processing

3.816 mm

3
.4
3
4
 m
m

Rectangular

Boxes:

Memories

Area:

13.1 mm
2

Fig. 8. Layout of forward error correction design

REFERENCES

[1] European Telecommunications Standards Institude (ETSI), “Digital
Video Broadcasting (DVB) Second generation framing structure for
broadband satellite applications; EN 302 307 V1.1.1,” www.dvb.org.

[2] A. Morello and V. Mignone, “DVB-S2: The Second Generation Standard
for Satellite Broad-Band Services,” Proceedings of the IEEE, vol. 94,
pp. 210–227, 2006.

[3] R. Gallager, “Low-density parity-check codes,” Information Theory, IRE

Transactions on, vol. 8, pp. 21–28, 1962.
[4] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “High Throughput

Low-Density Parity-Check Decoder Architectures,” in Global Telecom-

munications Conference, 2001. GLOBECOM ’01. IEEE, vol. 5, 2001,
pp. 3019–3024 vol.5.

[5] M. Mansour and N. Shanbhag, “High-Throughput LDPC Decoders,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 11, pp. 976–996, 2003.

[6] D. Hocevar, “A Reduced Complexity Decoder Architecture via Layered
Decoding of LDPC Codes,” in Signal Processing Systems, 2004. SIPS

2004. IEEE Workshop on, 2004, pp. 107–112.
[7] F. Guilloud, E. Boutillon, and J. Danger, “λ-Min Decoding Algorithm

of Regular and Irregular LDPC Codes,” in Proc. 3nd International

Symposium on Turbo Codes & Related Topics, Brest, France, Sep. 2003,
pp. 451–454.

[8] F. Kienle, T. Brack, and N. Wehn, “A synthesizable IP Core for DVB-
S2 LDPC Code Decoding,” in Design, Automation and Test in Europe.

Proceedings, 2005, pp. 100–105 Vol. 3.
[9] A. Segard, F. Verdier, D. Declercq, and P. Urard, “A DVB-S2 compli-

ant LDPC decoder integrating the Horizontal Shuffle Scheduling,” in
Intelligent Signal Processing and Communications, 2006. ISPACS ’06.

International Symposium on, 2006, pp. 1013–1016.
[10] J. Dielissen, A. Hekstra, and V. Berg, “Low cost LDPC decoder for

DVB-S2,” in Design, Automation and Test in Europe, 2006. DATE ’06.

Proceedings, vol. 2, 2006, pp. 1–6.
[11] M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, and M. Falcao,

“Flexible Parallel Architecture for DVB-S2 LDPC Decoders,” in Global

Telecommunications Conference. GLOBECOM ’07. IEEE, 2007, pp.
3265–3269.

[12] P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebars,
E. Lantreibecq, and B. Gupta, “A 135Mb/s DVB-S2 Compliant Codec
Based on 64800b LDPC and BCH Codes,” in Solid-State Circuits

Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE

International, 2005, pp. 446–609 Vol. 1.
[13] P. Urard, L. Paumier, V. Heinrich, N. Raina, and N. Chawla, “ A 360mW

105Mb/s DVB-S2 Compliant Codec based on 64800b LDPC and BCH
Codes enabling Satellite- Transmission Portable Devices,” in Solid-State

Circuits Conference, 2008. Digest of Technical Papers. ISSCC. 2008

IEEE International, 2005, pp. 310–311.
[14] R. Tanner, “A Recursive Approach to Low Complexity Codes,” Infor-

mation Theory, IEEE Transactions on, vol. 27, pp. 533–547, 1981.
[15] H. Jin, A. Khandekar, and R. McEliece, “Irregular Repeat-Accumulate

Codes,” Second International Conference on Turbo Codes, Brest,

France, Sep. 2000.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

