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Abstract—Intensive research is performed to find post-CMOS
technologies. A very promising direction based on reversible
logic are quantum computers. While in the domain of reversible
logic synthesis, testing, and verification have been investigated,
debugging of reversible circuits has not yet been considered. The
goal of debugging is to determine gates of an erroneous circuit
that explain the observed incorrect behavior.

In this paper we propose the first approach for automatic
debugging of reversible Toffoli networks. Our method uses
a formulation for the debugging problem based on Boolean
satisfiability. We show the differences to classical (irreversible)
debugging and present theoretical results. These are used to
speed-up the debugging approach as well as to improve the
resulting quality. Our method is able to find and to correct single
errors automatically.

I. INTRODUCTION

As predicted by the well-known Moore’s law the electronic
industry celebrated great achievements in the last 45 years.
In 1965 Moore postulated that the number of transistors in
integrated circuits doubles every 18 months. However, due to
this exponential growth and hence the continuous shrinking
of the transistor sizes, fundamental physical limits will be
reached, i.e. the transistor itself will approach the atomic
scale. In addition the increasing power consumption of elec-
tronic devices becomes a serious problem. Therefore reversible
logic attracted considerable research attention. Since reversible
computation is information-lossless, i.e. data is transformed
without erasing any of the original information, power dissipa-
tion is reduced or even eliminated [1]. Furthermore, reversible
computation is the basis for quantum computing [2]. In this
domain it has been shown that some important problems such
as factorization can be solved exponentially faster than by
currently known methods.

The idea of reversible computing can be traced back to
Landauer [1] and Bennett [3], and has been further refined
by Toffoli [4]. Since synthesis of reversible logic circuits
differs significantly from classical logic circuits – fan-out
and feedback are forbidden – a strong focus on synthesis
approaches emerged (see e.g. [5], [6], [7], [8], [9], [10], [11],
[12]). Furthermore, simulation [13], [14], optimization [15],
[16], testing [17], [18], [19], and verification [20], [21] have
also been investigated. However, to the best of our knowledge
the problem of debugging has not been considered yet. While
methods for simulation, testing, or verification can only be
used to detect the existence of errors, there is no support to
locate the source of an error. For instance, errors may result
from bugs in synthesis as well as optimization tools, or manual
modifications of the circuit.

In this paper we propose the first approach to automatically
determine error candidates explaining the erroneous behavior

of a reversible circuit. More precisely, given an erroneous
circuit and a set of counterexamples describing the error(s), our
approach returns sets of gates, whose replacements with other
gates fix the counterexamples. For classical circuits, debugging
has been studied intensely (see e.g. [22], [23], [24], [25],
[26], [27]). Regarding the quality, methods based on Boolean
satisfiability (SAT) have shown to be efficient and robust. The
proposed debugging approach makes also use of SAT. How-
ever, we show that utilizing the SAT formulation from [25]
does not lead to the desired results, i.e. already for single errors
each gate of a reversible circuit becomes an error candidate
– obviously a very poor solution for the debugging problem.
Hence, we devise a SAT-based formulation for debugging of
reversible circuits which takes the ideas of [25] and integrates
the properties of reversible gates. As a result, the reported set
of error candidates is significantly reduced.

Besides the automatic debugging approach we also present
theoretical results. For a restricted error model, i.e. assuming
single missing control line errors, a significant number of gates
can be excluded from being error candidates by virtue of the
given number of counterexamples. Thus, the size of the SAT
instance is reduced or in the best case no SAT call is needed
leading to a speed-up of the overall debugging process.

Furthermore, we show that it can be decided for single errors
whether an error candidate is an error position, i.e. replacing
the respective gate not only fixes the counterexamples but
also ensures that the correct behavior of the circuit remains
the same. This becomes possible, since at each gate of a
reversible circuit the erroneous behavior for a single error
can be fixed while preserving the overall functionality. This
theoretical result is used for a tight integration of debugging
and fixing. Thus, the error can be located to correct for instance
the optimization or synthesis tool and additionally a fix for the
circuit is provided. In summary, due to the tight integration a
higher quality of the results is achieved.

The remainder of this paper is structured as follows: To
keep the paper self-contained, reversible logic, the debugging
problem, and the state-of-the-art SAT-based approach for irre-
versible circuits are briefly reviewed in Section II. Section III
introduces SAT-based debugging for reversible logic, describes
improvements, and discusses observations for multiple errors.
The integration of automatic fixing and debugging is described
in Section IV. Finally, Section V gives experimental evalua-
tions of the proposed methods while Section VI concludes the
paper.
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(b) Toffoli Circuit
Fig. 1. Toffoli Circuit

II. BACKGROUND

A. Reversible Logic
Reversible logic realizes functions f : Bn → Bn, that map

each possible input vector to a unique output vector. In other
words bijections are represented. Since fan-out and feed-back
are not allowed, each reversible circuit G consists of a cascade
of reversible gates gi, i.e. G = g0g1 · · · gd−1 where d is the
number of gates. The inverse G−1 of a reversible network G
(representing the function f−1) can be obtained by reversing
the order of the gates of G.

In the recent past, many reversible gates have been stud-
ied. Multiple control Toffoli gates [4] are widely used: Let
X := {x1, . . . , xn} be the set of domain variables. A mul-
tiple control Toffoli gate has the form TOF (C, t), where
C = {xi1 , . . . , xik

} ⊂ X is the set of control lines
and t = {xj} with C ∩ t = ∅ is the target line. The
gate maps (x1, . . . , xn) to (x1, . . . , xj−1, xj ⊕ xi1 . . . xik

,
xj+1, . . . , xn). If no control lines are given (C is empty),
then the target line is inverted, i.e. the input vector of the
gate is mapped to (x1, . . . , xj−1, xj ⊕ 1, xj+1, . . . , xn).1 In
the following, we refer to multiple control Toffoli gates for
brevity as Toffoli gates.

As an example Fig. 1 shows a Toffoli circuit representing
the function specified by the given truth table. The network is
drawn in standard notation (see e.g. [2]) and includes d = 2
gates.

In the rest of this paper we only consider reversible circuits
consisting of Toffoli gates.

B. Debugging Problem
As their classic counterparts, reversible circuits may contain

errors because of bugs in synthesis as well as optimization
tools, or manual modifications, respectively. For reversible
logic these include all types of errors like missing or additional
control lines, misplaced target lines, missing gates, etc. They
can be detected with counterexamples, i.e. a set of input
assignments leading to wrong values at the output of the
circuit.

Similar to irreversible logic, the goal of debugging is
to identify gates in the network that explain the erroneous
behavior. More precisely, given an erroneous circuit G and a
set of counterexamples, a set of error candidates is returned.
An error candidate is a set of gates gi of G that can be replaced
by other gates such that for each counterexample the correct
output values result. The size of an error candidate is given
by the number of gates (later denoted by k).

Determining error candidates is crucial to understand the
erroneous behaviour and to fix the respective source of the
error. However, due to the increasing sizes of the circuits this
is only manageable with automatic techniques.

1The multiple control Toffoli gate with no control line (with one control
line) is also called NOT (CNOT) gate.
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Fig. 2. SAT-based Debugging Approach

C. Debugging of Irreversible Circuits
Methods based on Boolean satisfiability (SAT) have been

demonstrated to be very effective for debugging irreversible
logic [25]. Here, the erroneous circuit and a set of coun-
terexamples are used to create a SAT instance. Solving this
instance using well engineered SAT solvers (see e.g. [28])
returns solutions from which the desired set of error candidates
can be determined.

The general structure for the debugging problem that is
converted to a SAT instance is shown in Fig. 2. For each
counterexample, a copy of the circuit is created, whose in-
puts are assigned to values provided by the counterexamples
(denoted by cex0, . . . , cex|CEX|). The outputs are assigned to
the correct values. Furthermore, each gate gi is extended by
additional logic: A multiplexor with select line si is added. If
si is assigned to 0, then the output value of gate gi is passed
through, i.e. the gate works as usual. Otherwise (if si = 1), an
unrestricted value is used (available via a new free variable w).
Therefore, if gi is an erroneous gate, the SAT solver can assign
si = 1 and choose the correct gate value to enable correct
values at the output of the circuit.

As depicted in Fig. 2, the same select value si is used for a
gate gi with respect to all duplications. This ensures that free
values of the respective output signals are only used, if circuit
outputs are corrected for all counterexamples. Furthermore,
the total number of selects si set to 1 is limited to k. Starting
with k = 1, k is iteratively increased until the SAT instance
becomes satisfiable. Then, each satisfying assignment yields
an error candidate of size k. All gates with si set to 1 are
contained in the error candidate. By performing all solution
SAT (i.e. determining all solutions from the instance), all error
candidates are calculated.

For a more detailed description of SAT-based debugging,
we refer to [25].

III. DEBUGGING OF REVERSIBLE CIRCUITS

In this section the SAT-based debugging approach for re-
versible circuits is presented. Also improvements for missing
control errors are given.

A. Formulation for Reversible Circuits
The debugging approach described in Section II-C has

been demonstrated to be very effective for determining error
candidates of irreversible circuits. However, we show that the
formulation from [25] gives very poor results here, since the
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Fig. 3. Additional Logic for Debugging

properties of reversible circuits are not incorporated. In classic
debugging only one-output gates for and, or, xor, etc. are
considered [25]. Therefore, only a single multiplexor as shown
in Fig. 3(a) is added to express whether a gate gi can become
part of an error candidate. In contrast, for reversible circuits
each gate has n outputs in total. Thus, in a straight-forward ap-
plication of the classical debugging approach, n multiplexors
with the same select si are added to the debugging formulation
(see Fig. 3(b)). However, as the following lemma shows the
debugging results are meaningless.

Lemma 1. Let G be an erroneous circuit. Using the classical
debugging approach with the additional logic formulation
depicted in Fig. 3(b) and an arbitrary set of counterexamples,
for each gate gi of G a satisfying solution with si = 1 exists.
Thus, all gates are returned as error candidates.

Proof: Let G = G1giG2 be an erroneous circuit with
a set of counterexamples. A gate gi is determined as error
candidate, if a satisfying assignment si = 1 exists such
that the correct output value for each counterexample can be
calculated. Using the additional logic formulation depicted in
Fig. 3(b), assigning si = 1 enables unrestricted values for all
n outputs of the gate gi. To obtain the values leading to the
correct circuit output, just G−1

2 has to be applied. This can be
performed for each gate gi of G.

Lemma 1 shows that the existing SAT-based debugging
formulation for irreversible circuits is too general for reversible
circuits. In fact, assigning si to 1 should imply that the output
values of gate gi cannot be chosen arbitrary, but with respect
to the functionality of Toffoli gates. The two main properties
of Toffoli gates are:
• At most one line (the target line) is inverted if the

respective control lines are assigned to 1 and
• all remaining lines are passed through.
A new formulation respecting these properties is given in

Fig. 3(c): For each output of a gate gi, a second multiplexor
with a new select sib is added (0 ≤ b < n). By restricting
si0 + · · · + sin−1 to 1 we ensure that the value of at most
one line is modified, if si is set to 1. All remaining values are
passing through. Thereby, the multi-output behavior including
the reversibility is reflected in the debugging formulation.2

Nevertheless, as in irreversible debugging the resulting error
candidates are still an approximation of the error positions as
shown by the following example.

Example 1. Consider the circuit realization of function 3 17
with an injected missing control error at gate g5 depicted in
Fig. 4. The function as well as the circuit can be found in [29].

2Note that using multiplexors obviously makes the considered circuits non-
reversible. However, this formulation is only used as a logic encoding of the
debugging problem.
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The missing control error leads to four counterexamples given
in the first four rows of Fig. 4. Besides g5, the proposed
debugging formulation also returns g4 as an error candidate
(marked by a dashed rectangle). This is, because replacing g4

with a NOT gate at line c leads to correct output values for all
counterexamples as shown in the first four rows. However, g4

is not an error position, since for the NOT gate replacement
a wrong output (wrt. the specification of 3 17) using 011
as input is computed as can be seen in the fifth line of the
figure. Thus, only g5 is a error position where a fix for all
counterexamples is possible and the correct behavior of the
circuit remains the same.

Recall that our approach determines all error candidates.
Hence, for the example this means that gate g5 is not missed.
In fact, the user only needs to consider 2 out of 6 gates to lo-
cate the error. In general, the experiments in Section V clearly
demonstrate that a significant reduction of the potential error
candidates is achieved by the proposed debugging approach.

In the next section for a restriction to a certain kind of errors,
a simplification and a theoretical result that builds the basis
for an improvement of the debugging approach is presented.

B. Improvements for Control Line Errors
The proposed debugging formulation needs a substantial

amount of additional logic. This can be reduced, if a restricted
error-model is assumed. In this section we describe a simpler
debugging formulation for control line errors. This simplifica-
tion leads to a faster calculation of error candidates and thus
should be applied, if the source of an error can be limited to
this type of errors.

Control line errors include both, missing as well as addi-
tional control lines in a Toffoli gate. They may occur, when
e.g. optimization approaches or the designer himself manip-
ulates control lines of Toffoli gates. In particular, deleting
control lines is used by optimization approaches (see e.g. [15])
since they reduce the quantum costs for the considered circuit.
Errors caused by deleting control lines can be seen as missing
control errors, too.

Since missing control errors (as well as additional control
errors) only affect the target line of a Toffoli gate, the
debugging formulation can be simplified to the one shown
in Fig. 3(d). Here, multiplexors are only added for the target
line of each gate. If a gate gi includes a control line error, only
the value of the target line can be erroneous. By assigning si

to 1, the SAT solver can choose the correct value and thus
enable correct outputs. In this case, gi becomes an element of
an error candidate.
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Fig. 5. Circuit with Multiple Error
Furthermore, if a single missing control error is assumed,

the following holds:

Lemma 2. Let G be a reversible circuit with a single missing
control error and |CEX| the total number of counterexamples
for this error. Then, the erroneous gate includes c = n− 1−
log2 |CEX| control lines.

Proof: Let G be a reversible circuit with a missing control
error in gate gi containing c control lines. To detect the
erroneous behaviour, (1) all control lines of gi have to be
assigned to 1 and (2) another line of gi (the missing control
line) has to be assigned to 0. Due to the reversibility, these
values can be propagated to the inputs of the circuit leading
to |CEX| = 2n−c−1 different counterexamples in total. From
this, one can conclude

|CEX| = 2n−c−1

log2 |CEX| = log2 2n−c−1

log2 |CEX| = n− c− 1
c = n− 1− log2 |CEX|.

Exploiting Lemma 2, the number of gates that have to
be considered can be reduced significantly. In some cases,
this reduction already leads to a single gate and therewith to
the desired error position (see Section V). But even if the
automatic debugging approach has to be invoked, improve-
ments can be observed since additional logic as depicted in
Fig. 3(d) only has to be added to gates containing exactly
c = n− 1− log2 |CEX| control lines.

C. Debugging Multiple Errors
In general, the proposed formulation can also be used for

multiple errors (i.e. for k > 1). However, the case of multiple
errors is more complicated. All solutions for a concrete k
(that have been found incrementally by starting from k = 1)
only guarantee that the counterexamples are corrected, but
the correct behavior of the circuit may be changed. This is
illustrated in the following example:

Example 2. Consider the circuit realization of the function alu
depicted in Fig. 5. In this circuit a multiple error has been
injected at gate g2 and at gate g3, respectively. If the proposed
debugging approach is executed, for k = 1 exactly one
solution (g2) is returned. However, by exhaustive enumeration
it has been checked, that no replacement for gate g2 exists,
such that the circuit realizes the function specification. In
fact, an adequate replacement of gate g2 only fixes the
counterexamples.

A similar observation has also been made for irreversible
circuits. In first experiments (not described in this paper) this
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Fig. 6. Erroneous Circuit with Fixes

case has not been found often. Obviously, this can be handled
by increasing k and calculating the error candidates for k +1.
A detailed consideration of such kinds of multiple errors is
left for future work.

IV. AUTOMATIC FIXING

This section introduces an important result for automatically
fixing single and multiple errors. Furthermore, an approach
for single errors is proposed that allows to compute the error
positions for a circuit. Replacing a gate given by an error
position not only fixes all counterexamples but also ensures
that the correct behaviour of the circuit remains the same.

For a given specification F (usually provided as a reference
circuit used to obtain the counterexamples) an erroneous
circuit G can be fixed by applying the following lemma.

Lemma 3. Let F be an error-free representation of a re-
versible function and G = G1giG2 be an erroneous realiza-
tion/optimization of F .3 Then G can be fixed by replacing any
gate gi of G with a cascade of gates Gfix

i = G−1
1 FG−1

2 .

Proof: Since G−1G realizes the identity function, it holds:

G1G
fix
i G2 = F ⇔

G−1
1 G1G

fix
i G2G

−1
2 = G−1

1 FG−1
2 ⇔

Gfix
i = G−1

1 FG−1
2

Thus, replacing gi with Gfix
i fixes the erroneous circuit G.

At a first glance, applying this lemma for fixing the erro-
neous circuit G, i.e. replacing gi by Gfix

i (which includes the
circuit F ), leads to a larger circuit than F itself. However,
almost always Gfix

i can be simplified to a cascade of just
a few gates. Moreover, in case of a single error there exists
at least one gate gj whose replacement Gfix

j consists of a
single gate. To determine whether Gfix

i is equivalent to a
single gate, all possible input combinations are simulated and
the resulting specification is matched against Toffoli gates. To
find a fix where Gfix

i is equivalent to a single gate, for all
gates gi (0 ≤ i < d) Gfix

i has to be computed and checked
thereafter. For larger circuits such a straight-forward method
is not feasible. Therefore, by integrating fixing and debugging
the check has to be carried out only for the error candidates –
a significantly smaller number of gates. Furthermore, in case
of single errors the application of the lemma to each error
candidate yields whether the respective error candidate is an
error position or not – a very strong result.

Please note that more than one error position is possible.
Consider the circuit given in Fig. 6. Here, a single missing
control error has been injected at gate g1. However, two valid
fixes are possible.

In summary, by integrating debugging and fixing the run-
time as well as the quality of the results are improved. In

3Note that G can also contain multiple errors.



TABLE I
DEBUGGING (DETERMINING ERROR CANDIDATES)

(a) Arbitrary errors
REVDBG

BENCHMARK d n |CEX| CAND. TIME RED.
3 17 6 3 4(2) 2 <0.01s 66.7%
4 49 16 4 8(2) 2 <0.01s 87.5%
4gt4 6 5 4(2) 1 <0.01s 83.3%
4mod5 9 5 16(1) 2 <0.01s 77.8%
alu 6 5 32(3) 1 <0.01s 83.3%
ham3 5 3 4(2) 2 <0.01s 60.0%
ham7 23 7 16(1) 1 <0.01s 95.7%
hwb4 17 4 8(2) 1 <0.01s 94.1%
hwb5 55 5 8(2) 4 0.03s 92.7%
hwb6 126 6 16(1) 16 0.13s 87.3%
hwb7 289 7 16(1) 14 1.04s 95.2%
hwb8 637 8 4(2) 2 10.82s 99.7%
hwb9 1544 9 30(3) 1 95.32s 99.9%
plus63mod4096 429 12 32(3) 17 18.97s 96.0%
plus63mod8192 492 13 8(2) 4 19.3s 99.2%
plus127mod8192 910 13 16(1) 98 64.19s 89.2%
urf1 11554 9 128(12) – Ab. –
urf2 5030 8 64(6) 1 1911.54s 99.9%
urf3 26468 10 256(25) – Ab. –

(b) Missing control errors
REVDBG TARGET LINES |CEX|-BASED

ONLY Reduction
BENCHMARK d n |CEX| CAND. TIME CAND. TIME CAND. TIME RED.
3 17 6 3 2(2) 2 <0.01s 2 <0.01s 4/2 <0.01s 66.7%
4 49 16 4 8(2) 10 <0.01s 5 <0.01s 2/1 <0.01s 93.8%
4gt4 6 5 2(2) 3 <0.01s 3 <0.01s 2/2 <0.01s 66.7%
4mod5 9 5 8(2) 6 <0.01s 4 <0.01s 4/1 <0.01s 88.9%
alu 6 5 16(1) 5 <0.01s 1 <0.01s 2/1 <0.01s 83.3%
ham3 5 3 4(2) 3 <0.01s 1 <0.01s 1/1 <0.01s 80.0%
ham7 23 7 32(3) 5 0.02s 1 <0.01s 17/1 <0.01s 95.7%
hwb4 17 4 8(2) 4 <0.01s 1 <0.01s 1/1 <0.01s 94.1%
hwb5 55 5 8(2) 6 0.03s 2 <0.01s 25/1 <0.01s 98.2%
hwb6 126 6 16(1) 7 0.06s 1 0.01s 20/1 0.01s 99.2%
hwb7 289 7 32(3) 250 7.70s 42 0.17s 28/5 0.05s 98.3%
hwb8 637 8 8(2) 34 13.50s 8 0.39s 167/1 0.11s 99.8%
hwb9 1544 9 16(1) 68 71.71s 9 0.58s 443/1 0.30s 99.9%
plus63mod4096 429 12 16(1) 296 18.18s 49 0.17s 84/12 0.04s 97.2%
plus63mod8192 492 13 512(51) 101 605.80s 15 5.08s 43/4 1.54s 99.2%
plus127mod8192 910 13 64(6) 237 285.09s 31 1.81s 128/8 0.54s 99.1%
urf1 11554 9 128(12) – Ab. 2 36.40s 1/1 <0.01s 99.9%
urf2 5030 8 64(6) 12 2202.43s 4 8.38s 1/1 <0.01s 99.9%
urf3 26468 10 256(25) – Ab. – Ab. 1/1 <0.01s 99.9%

particular, in case of single errors we can guarantee to locate
the source of an error and provide a fix for each error position
consisting of a single gate.

V. EXPERIMENTAL EVALUATION

The proposed methods have been implemented in C++ and
evaluated on a set of reversible circuits taken from [29]. Due
to page limitation only the major results of this evaluation
are documented in this section. For solving the respective
instances the SAT solver MiniSat [28] was used. The doc-
umented run-times include the times for instance generation
and solving. All experiments have been carried out on an
AMD Athlon 3500+ with 1 GB of main memory. The timeout
(denoted by Ab.) was set to 5000 CPU seconds.

A. Automatic Debugging of Errors
In a first series of experiments the proposed debugging

approaches for error candidate determination are considered.
To this end, single arbitrary errors and single missing control
errors have been randomly injected to circuits taken from [29].
More precisely, a gate has been replaced with another gate and
a control line has been removed, respectively. Counterexam-
ples describing the errors were generated using a SAT-based
equivalence checker.

For debugging arbitrary errors, the approach proposed in
Section III-A was used (denoted by REVDBG). For missing
control errors additionally the improvements of Section III-B
are possible, namely the consideration of target lines only
(denoted by TARGET LINES ONLY) and the application of
Lemma 2 (denoted by |CEX|-BASED REDUCTION).

The results are summarized in Table I. Column BENCH-
MARK gives the circuit name. Column d, column n, and
column |CEX| give the number of gates, the number of lines,
and the number of counterexamples (the number within the
brackets denotes the number of counterexamples for which the
circuit has been duplicated). Furthermore, for each approach
the number of obtained error candidates (denoted by CAND.)
and the overall run-time in CPU seconds (denoted by TIME)
are provided. Column CAND. for |CEX|-BASED REDUCTION
includes two values. The first denotes the remaining gates after
applying Lemma 2, the second gives the final number of error
candidates after running the SAT-based debugging approach.

Finally, column RED. lists the best reduction obtained by our
approaches, i.e. the percentage of gates that are identified as
non-relevant (meaning the error is not located at these gates).

As shown in the table, a significant amount of gates can
be automatically identified as non-relevant for debugging the
error. Reductions of at least 66.7% – for larger circuits of more
than 90% – are achieved. As an example, for the arbitrary
error in circuit hwb9 with 1544 gates a single error candidate
is obtained in less than 100 CPU seconds. The quality of the
resulting set of error candidates often depends on the strategy
used. For example, to identify the missing control error in
circuit hwb7 still 250 (out of 289) error candidates have to
be considered after applying the REVDBG approach. Here,
restricting the error model and using the improvements not
only leads to a speed-up, but also to a smaller number of
error candidates. In particular, this is effective for the circuits
hwb4 and urf1. Here, just by applying Lemma 2 the set of
error candidates is reduced to the single erroneous gate.

B. Integrating Fixing of Errors
The error candidates obtained by the debugging approaches

can be used to fix the counterexamples, but it is not ensured
that they also represent error positions. However, as described
in Section IV the integration of debugging and fixing for
single errors gives the error positions. Thus, we also provide
experiments for the integrated approach.

The results are shown in Table II.4 Here, either the ex-
haustive approach introduced in Section IV has been applied
(denoted by EXHAUST.) or previously the gates are reduced
using the appropriate debugging method, i.e. REVDBG for
arbitrary errors or |CEX|-BASED REDUCTION for missing
control errors (both denoted by DBG+FIX in Table II). Again,
BENCHMARK, d, n, and CAND. denote the name, the number
of gates, the number of lines, and the number of obtained error
candidates of each benchmark, respectively. The documented
overall run-times (including the run-time for debugging when
applied) is given in column TIME. The number of the resulting
error positions is provided in column POS.

4Note that only circuits, where more than one error candidate is returned by
our approach, have to be considered to determine the error positions. However,
to demonstrate the performance of fixing, results for all circuits are given in
Table II.



TABLE II
FIXING (DETERMINING ERROR POSITIONS)

EXHAUST. DBG+FIX
BENCHMARK d n TIME TIME CAND. POS.
ARBITRARY ERRORS
3 17 6 3 <0.01s <0.01s 2 1
4 49 16 4 0.01s <0.01s 2 2
4gt4 6 5 <0.01s <0.01s 1 1
4mod5 9 5 <0.01s <0.01s 2 1
alu 6 5 0.01s <0.01s 1 1
ham3 5 3 <0.01s <0.01s 2 1
ham7 23 7 0.22s 0.01s 1 1
hwb4 17 4 0.01s 0.01s 1 1
hwb5 55 5 0.27s 0.06s 4 1
hwb6 126 6 3.14s 0.51s 16 1
hwb7 289 7 33.35s 2.67s 14 1
hwb8 637 8 347.31s 11.90s 2 1
hwb9 1544 9 4341.01s 98.32s 1 1
plus63mod4096 429 12 Ab. 143.89s 17 1
plus63mod8192 492 13 Ab. 90.82s 4 1
plus127mod8192 910 13 Ab. 3346.03s 98 1
urf1 11554 9 Ab. Ab. – –
urf2 5030 8 Ab. 1917.28s 1 1
urf3 26468 10 Ab. Ab. – –
MISSING CONTROL ERRORS
3 17 6 3 <0.01s <0.01s 2 2
4 49 16 4 <0.01s <0.01s 1 1
4gt4 6 5 <0.01s <0.01s 2 1
4mod5 9 5 0.01s <0.01s 1 1
alu 6 5 <0.01s <0.01s 1 1
ham3 5 3 <0.01s <0.01s 1 1
ham7 23 7 0.21s 0.01s 1 1
hwb4 17 4 0.04s <0.01s 1 1
hwb5 55 5 0.29s 0.01s 1 1
hwb6 126 6 3.08s 0.03s 1 1
hwb7 289 7 33.31s 0.63s 5 1
hwb8 637 8 347.05s 0.67s 1 1
hwb9 1544 9 4621.41s 3.33s 1 1
plus63mod4096 429 12 3352.62s 87.97s 12 1
plus63mod8192 492 13 Ab. 73.16s 4 1
plus127mod8192 910 13 Ab. 270.79s 8 1
urf1 11554 9 Ab. 28.98s 1 1
urf2 5030 8 Ab. 5.97s 1 1
urf3 26468 10 Ab. 141.95s 1 1

As expected the exhaustive approach (iterating over all gates
and applying Lemma 3) is not feasible for large designs. In
contrast, integrating debugging and fixing enables efficient
determination of both, error positions and corrections. Au-
tomatic debugging and fixing is possible for circuits with
up to 5, 000 gates when arbitrary errors are considered. If
additionally a restricted error model is assumed, circuits with
more than 26, 000 gates can be handled due to the proposed
improvements.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed first methods for automatic de-
bugging errors in Toffoli circuits. We have shown, that a one-
to-one adaption of classical approaches does not lead to the
desired results. Hence we devised a formulation that integrates
the properties of reversible gates. Furthermore, improvements
for (missing) control errors as well as methods for automatic
fixing of errors have been introduced. In particular, the latter
can be utilized for single errors to increase the quality of the
obtained results.

However, debugging of reversible circuits is still at the
beginning. Thus, several aspects are left for future work. In
particular, multiple errors have to be considered in detail. First
observations regarding this have been given in Section III-C.
Additionally, different error models (similar to the ones iden-
tified in [19] for reversible testing) have to be studied.
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[28] N. Eén and N. Sörensson, “An extensible SAT solver,” in SAT 2003, ser.
LNCS, vol. 2919, 2004, pp. 502–518.

[29] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
An online resource for reversible functions and reversible circuits,” in
Int’l Symp. on Multi-Valued Logic, pp. 220–225, RevLib is available at
http://www.revlib.org.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




