
An Automated Flow for Integrating Hardware IP into the
Automotive Systems Engineering Process

Jan-Hendrik Oetjens
Robert Bosch GmbH

AE/EIM3
Postfach 1342

72703 Reutlingen
Jan-Hendrik.Oetjens

@de.bosch.com

Ralph Görgen
OFFIS Institute

R&D Division Transportation
Escherweg 2

26121 Oldenburg
Ralph.Goergen

@offis.de

Joachim Gerlach
Robert Bosch GmbH

AE/EIM3
Postfach 1342

72703 Reutlingen
Joachim.Gerlach
@de.bosch.com

Wolfgang Nebel
Carl v. Ossietzky University

Embedded Hardware-/
Software-Systems
26111 Oldenburg
nebel@informatik.
uni-oldenburg.de

Abstract

This contribution shows and discusses the require-
ments and constraints that an industrial engineering
process defines for the integration of hardware IP into
the system development flow. It describes the developed
strategy for automating the step of making hardware de-
scriptions available in a MATLAB/Simulink based system
modeling and validation environment. It also explains the
transformation technique on which that strategy is based.
An application of the strategy is shown in terms of an
industrial automotive electronic hardware IP block.

1. Introduction

The domain of automotive electronics system design is
characterized by specific constraints and environmental
conditions that significantly differ from those in other
design domains like mobile communications, multimedia
or high performance computing. This results from the fact
that automotive electronics systems are often involved in
safety critical car functions that have to be highly reliable
and robust over a long lifetime, and are used in harsh en-
vironments in terms of vibrations, temperature changes,
or electromagnetic interferences. These specific con-
straints have to be considered during all steps of the
automotive electronics systems engineering process. This
contribution describes a methodology developed at the
semiconductor division of Robert Bosch GmbH in coop-
eration with OFFIS Institute for Information Technology,
which provides a seamless and automated strategy for
making intellectual property (IP) hardware models avail-
able on higher levels of model abstraction. This allows
considering hardware IP accurately during the system
modeling and exploration phase. Hence, the identification
of incorrect system behavior or problems that may arise

during system integration is possible in an earlier stage of
the systems engineering process.

Most of the companies’ system development processes
follow – at least, in their basic principals – the well-
known V model [1]. In our specific case, there is running
an additional boundary through that V model. It partitions
the process steps into tasks to be done within our semi-
conductor division and tasks to be done within the corre-
sponding system divisions (see Figure 1). The prior men-
tioned acts as a supplier of the hardware parts of the over-
all system for the latter. Such boundaries also exist in
many other companies whereas the exact boundary shape
in the V model may differ. In our case, the system divi-
sions are responsible for the engineering of the system
application, the definition of the coarse grain system ar-
chitecture and the assembling of the system by integrating
all components (mechanical parts, sensors, hardware IP,
software, etc.). An aspect that arises from that partitioning
is that both sides, systems engineering and semiconductor
development, have different views on the system and its
constraints, different understandings and know how, and
different design methods, tools, and environments. This
makes a seamless interaction of both sides an ambitious
and highly important challenge.

System
Test

Integration
Test

System
Design

Architecture
Design

Module
Design

Module
Test

Implementation

Semiconductor

Development

System

Engineering

D
esign

V
al

id
at

io
n

Figure 1. V model for system engineering

978-3-9810801-5-5/DATE09 © 2009 EDAA

In automotive electronics system design, the modeling
and validation of heterogeneous system behavior on a
high level of abstraction (at the systems engineering
level) is often done using MATLAB/Simulink. For the
design of the integrated circuits (at the semiconductor
development level), traditional register-transfer level
hardware description languages like VHDL and Verilog
play a major role. Regarding the “design” arc of the V
model a typical strategy for crossing the boundary be-
tween systems engineering and semiconductor develop-
ment can be divided in two steps. Firstly, a natural lan-
guage specification document is derived for the system
parts to be implemented in hardware from the Simulink
model (to be done at the systems engineering level or in
tight cooperation of both levels). Secondly, engineering
of the hardware component is started (at the semiconduc-
tor development level) based on this document. Vice
versa – regarding the “validation” arc of the V model –
the hardware component can be considered at systems
engineering level at the earliest after the whole hardware
development task has finished and all system components
are available for their integration in a physical prototype.
This means that a more accurate Simulink model of the
developed hardware IP, which would allow starting the
system validation task already at model level, does not
exist. This lack becomes more dramatically in the context
of current system-level design methodologies like plat-
form-based design or component-based design. There-
fore, an efficient reuse of existing hardware IP is highly
crucial.

The paper is organized as follows: In section 2, exist-
ing strategies for implementing cycle-accurate Simulink
models are discussed. Section 3 outlines related work in
the automatic generation of executable models from HDL
code. Section 4 presents our approach using a conversion
into a SystemC model and its integration into Simulink.
The described approach was used to integrate an automo-
tive hardware IP into Simulink, which is presented in sec-
tion 5. Finally, section 6 concludes with an outlook on
future work.

2. Existing strategies

Existing strategies to overcome this lack include the
co-simulation of hardware descriptions and Simulink
models at systems engineering level. This is expensive in
terms of effort and costs because the expertise and envi-
ronment for simulating hardware does usually not exist on
that level. In case of external customers, another aspect is
that co-simulation usually requires the source code of the
hardware description, which might be critical due to non-
disclosure reasons. Other strategies include the manual
generation of C code descriptions for the hardware func-
tionality to be embedded into Simulink via S-functions. In
practical use, this is often not feasible due since the man-

ual coding step is time-consuming and error-prone. Addi-
tionally, the effort to keep the hardware description and
the Simulink model compliant (e.g., after several adapta-
tion or configuration steps on hardware side) is quite
high. Therefore, this step is often skipped in practical use
due to the tape-out schedule, which is a handicap for an
efficient reuse.

3. Related work

Because co-simulation and manual generation of C
code are often not applicable in practical use, an approach
for the automatic generation of C/C++ code from hard-
ware descriptions is necessary. Tools for generating C++
code that can be embedded into a Simulink environment
already exist on the market. Known commercial ap-
proaches in this area are VTOC [2] and Model Studio [3].
VTOC is a model generator that allows generating C++
models from Verilog hardware descriptions. The gener-
ated models can be embedded into HDL or SystemC envi-
ronments via wrappers for the Verilog PLI (Program Lan-
guage Interface) and SystemC. The model generator
Model Studio allows generating and validating software
models. Models created by this tool can be embedded into
several system level design tools as well as HDL simula-
tors and SystemC environments. An API is generated,
which provides visibility to the model’s content.

Both approaches do not intend to produce user-
readable code. Whereas user-readable code is required if
a manual transition to a more abstract modeling of parts
of the generated code is planned. These parts may be ei-
ther performance-critical or their RT-level implementa-
tion is insignificant for the system model’s application
(ALUs, memory banks, protocol interfaces, etc.). Some
non-commercial approaches generate SystemC code that
allows manual adaptations [4] [5]. This class of tools is
characterized by a mapping of a subset of an HDL to al-
most equivalent SystemC code. The original HDL hard-
ware description is reproduced by a generated code that
uses the available SystemC constructs. If there is no
equivalent construct a comparable one is chosen, which is
functionally equivalent in most cases. Even if there is no
comparable SystemC construct, the HDL construct is not
part of the supported subset. Thus, the supported subset of
these tools is significantly smaller than the synthesizable
subset of the HDL. An equivalent behavior of the gener-
ated SystemC model is not guaranteed due to an impre-
cise language mapping.

4. SystemC-based approach

Our approach for an automated transformation of
hardware descriptions into Simulink models also uses
SystemC as an intermediate layer. The approach can be
derived in two steps. In a first step, a VHDL hardware

description is converted into a functional equivalent Sys-
temC model. This step is done using a company-internal
transformation tool, which allows a highly flexible rule-
based manipulation of source code descriptions. For that
tool, a transformation rule was specified which provides a
mapping of hardware description and SystemC language.
In a second step, the resulting SystemC code is embedded
into Simulink via a specific SystemC wrapper class,
which implements an S-Function interface to Simulink.

4.1. Generation of SystemC models

The use of an existing transformation tool for realizing
the conversion from a VHDL hardware description into a
SystemC model reduced the implementation effort to the
specification of a rule set for the mapping of the two lan-
guages. A powerful environment for defining this map-
ping is provided by a previously described in-house trans-
formation tool [6] [7]. The main concept of the tool is a
conversion of an HDL description into an XML [8] repre-
sentation. The XML representation is the basis for trans-
formations. One of the main advantages of the XML rep-
resentation is that efficient standard tools can be used to
manipulate the representation. These tools are XSLT
processors, which use the W3C standard language XSLT
[9] to define rules (so-called style sheets) for processing
the input XML document. In our case, the XSLT proces-
sor Saxon [10] is used. Finally, after the transformations
are performed, the XML representation can be converted
back into an HDL description. The transformation tool
ensures that comments and formatting is preserved from
the original HDL code if the related statement is un-
changed during the transformations. This allows the
mixed use of manual manipulation steps (by the designer)
and automated transformation steps (by the tool). Figure 2
shows the XML-based transformation flow.

HDL HDLXML

Transformations

Source Target

Figure 2. XML-based transformation tool

The transformation tool mainly addresses design ma-
nipulations, which are often done manually. It replaces
these time-consuming and error-prone manipulations with
an automated approach.

It is not mandatory that input and output languages of
the tool are the same. In case of different languages, a
transformation rule that describes the mapping between
both languages is required. For the processing of different
languages, the transformation tool requires a grammar
description for each of them. As shown in Figure 3, these
grammar descriptions are provided in the XML Schema
format [11]. At first, the XML Schema descriptions are

used to define the structure of the XML representation of
a design for the particular language. The representation is
based on a semantically annotated abstract syntax tree.
Additionally, the tool is able to generate the environment
that is necessary to manipulate code written in the particu-
lar languages that is described by the grammar descrip-
tions. This generation process yields four documents per
language. Firstly, the XML-Schema description is con-
verted into an HTML document that describes the gram-
mar for the user who implements transformation rules.
Secondly, a grammar description for a parser generator is
created. The parser generator uses this description to
build a lexical scanner and a parser that are used to con-
vert HDL descriptions into the XML representation. The
transformation tool uses ANTLR [12] generated lexical
scanners and parsers. Thirdly, a DTD for the XML repre-
sentation is generated. The XSLT processor uses this
DTD to check the syntactical correctness of the HDL
code represented by the XML tree. Finally, a library of
XSLT templates is created. The transformation rules use
those templates to add new code to the transformation
result. They ensure that the generated code is syntactically
correct. The specification of transformation rules is per-
formed in a generic XML-based transformation language
that is derived from the available templates for the HDL.
Rules written in this language can be automatically trans-
formed to XSLT style sheets, which are used by the
XSLT processor to manipulate the XML representation.

HTML
grammar

doc

XSL templ.
for code

generation

Transform.
stylesheets

XML Schema
grammar definition

XSL
processor

DTD
grammar
definition

ANTLR
grammar
definition

Parser
generator

User

Figure 3. Automatically generated tool environment

The transformation tool includes grammar descriptions
of both of the required languages: The input VHDL and
the output SystemC. Therefore, the main task for the im-
plementation of a VHDL to SystemC conversion was the
description of a transformation rule that maps VHDL con-
structs to equivalent SystemC.

Because SystemC does not provide types that behave
exactly like VHDL types, a mayor requirement for the
mapping was the implementation of equivalents for the
VHDL standard data types (i.e. integer, arrays, and enu-
meration types). The implemented mapping bases on the
use of a library that contains classes and templates to re-
produce the VHDL standard types including their associ-

ated attributes and operators. VHDL types derived from
the standard types can then be handled by the VHDL-to-
SystemC mapping. To allow compatibility to standard
SystemC designs, an automatically generated wrapper on
top of the design hierarchy realizes a configurable con-
version to standard SystemC types.

4.1.1. Conversion strategy

At first sight, RTL descriptions in SystemC and VHDL
look very similar. However, unfortunately there are some
differences in the details. In both languages exist hierar-
chical modules and processes, ports and signals, and RT
level types like logic vectors and arbitrary integer types.
Nevertheless, some features known from VHDL are not
supported or behave different in SystemC. The differ-
ences can be classified into three categories:
1. Syntactical differences. E.g., the declaration of a

function in another function is allowed in VHDL but
not in C++ and therewith not in SystemC. Further-
more, C++ supports only constant integer expressions
in case-statements, in VHDL array types can be used
as well.

2. Behavioral differences. E.g., operator precedence is
different in both languages and in contrast to VHDL,
SystemC does no boundary checks on variable as-
signments.

3. Language elements. E.g., multiple architectures for
one entity, subtypes, or attributes of objects and
types.

The main task for a conversion from VHDL to Sys-
temC is now to find equivalent C++-constructs for VHDL
elements. Solving the problems of the first category is
possible, but only by workarounds because the formal
syntax of C++ cannot be touched. Functions can be de-
clared in a particular namespace instead of in another
function and accessed with its explicit name; case-
statements can be replaced by if-elsif-statements when
necessary. The second category splits into two parts.
Some of the problems, like operator precedence, are actu-
ally caused by the C++ syntax definition. Workarounds
are the only possible solution here as well (e.g., brackets
can be used to correct operator precedence). The bound-
ary checks on variable assignments arise from the differ-
ences in the type systems of C++/SystemC and VHDL.
Those differences can be eliminated by implementing the
missing features in C++. The third category, VHDL lan-
guage elements that are not available in SystemC, can
also be solved by implementing counterparts in C++. E.g.,
multiple architectures for one entity can be realized as
different derivations of the same entity module. Many of
the disparities apply to types and objects of those types.
Therefore, it is useful to provide a set of types and associ-
ated operators that behave like those in VHDL. Further-
more, they should support subtypes and the VHDL attrib-

utes. Because IP blocks should be converted into Sys-
temC and, in general, such blocks solely contain synthe-
sizable code, it is sufficient to consider the synthesizable
types (i.e. integer, enumeration, and array types) in this
case.

In our approach, a library has been created that con-
tains C++ template classes. They can be used to declare
VHDL-like types. Furthermore, it contains declarations of
the VHDL standard types as declared in package
std.standard and macros for the declaration of user-
defined types.

The provided types and objects of those types support
the following features known from VHDL:
• attributes
• range and index constraints
• boundary checks on assignments
• ascending and descending ranges that do not have to

start with 0
• constrained and unconstrained subtypes
• operators as defined in VHDL
• string-to-array conversion.
Not implemented until now is the support for aggregates
and port slicing.

Using these types instead of natural C++ or SystemC
types allows a straightforward conversion of type and
object declarations, computational and assignment state-
ments, and expressions in VHDL to equivalent SystemC.
The resulting code is still compliant to standard SystemC.

4.1.2. Implementation of the transformation rule

The VHDL to SystemC transformation works as de-
scribed in section 4.1. The transformation rule walks
through the XML representation of the VHDL code that
has been set up by the front-end of the transformation
tool. While walking through the tree, every VHDL ele-
ment is replaced by an equivalent SystemC construct and
afterwards the resulting XML representation of SystemC
code can be written out as source text.

Table 1. Mapping VHDL to SystemC (extract)
 VHDL SystemC

package namespace
entity SC_MODULE design units
architecture SC_MODULE derived from

entity module
generic template parameter
port sc_port declarations
signal sc_signal
process statement SC_METHOD/SC_THREAD

statements
concurrent statement equivalent process statement

 In a first step, the transformation rule transforms
package declarations to namespaces and the declarations
inside of it to equivalent C++ declarations. In a second
step, it processes entities. They lead to SystemC modules,

its generics to template parameters, and its ports to corre-
sponding sc_port declarations. To support multiple archi-
tectures for one entity, the transformation creates for each
architecture one module that is derived from the module
that replaces the entity. Then, the content of the particu-
lar architecture is processed sequentially. Signal declara-
tions lead to declarations of sc_signal, component instan-
tiations to instantiations of modules as class members,
process statements to SystemC processes, and so on. Sys-
temC does not support concurrent statements as known
from VHDL but for each kind of it, there is an equivalent
process statement. Finally, a constructor has to be gener-
ated that binds the ports of embedded components and
starts the processes.

For the design’s top module, an additional step is per-
formed. To connect the design to a standard SystemC
environment, the top module is surrounded by a wrapper
that converts its ports into standard SystemC types. Here
it is possible to use a standard mapping for the type con-
version, or it can be configured individually.

A particular characteristic of this transformation is that
it is implemented to create readable code. As far as possi-
ble, identifiers and the code structure in the generated
code are the same as in the original code. This especially
includes formatting characters and comments; they are
inserted at a position in the result code that is equivalent
to their original position. Hence, the design is prepared
for further processing steps, automatic or by hand.

4.2. Embedding SystemC into Simulink

The integration of the resulting SystemC code into
Simulink is done by a previously described wrapper con-
cept [13]. This concept bases on an abstract SystemC
wrapper class that realizes the S-Function interface re-
quired by Simulink. The wrapper class provides the nec-
essary functionality for synchronization and data type
conversion between SystemC and Simulink. Classes im-
plementing the abstract SystemC wrapper class are gener-
ated along with the VHDL-to-SystemC transformation.
Therefore, the user of the flow described above gets a
ready-to-compile Simulink model of the VHDL design.

The synchronization of the Simulink and the SystemC
environment is a complex task because Simulink uses a
sample-time whereas SystemC uses an event queue. Inte-
grating SystemC into Simulink as an S-function requires
that the S-function is updated whenever a signal at the
interface of the SystemC module changes. Therefore, a
synchronization method where incoming signals inherit
their sample time and outgoing signals have a variable
sample time would be preferred. Due to limitations of
Simulink, this preferred method is not supported. As a
result, different scenarios with different synchronization
strategies are supported by the provided wrapper classes.
Table 2 gives a short overview.

Table 2. Synchronization strategies
Scenario Strategy
SystemC module
has no incoming
signals

Only internal events can occur. The S-function
gets a variable sample time assigned. It uses the
event queue to predict the time of the next event.

SystemC module
has incoming
signals but no
internal periods

Events can occur if incoming signals change. The
S-function gets inherited sample times assigned.
The sample time is inherited for each port sepa-
rately in order to allow different input sample
times.

SystemC module
has incoming
signals and inter-
nal periods

The S-function inputs inherit their sample times. A
base period is calculated from the inherited sample
times and the internal periods. The base period is
assigned to the outgoing signals.

The data type conversion is done implicit by the wrap-
per classes. Default C/C++ types are mapped to their
Simulink equivalents. For SystemC types, different map-
ping strategies are available. The simplest way is a con-
version to the Simulink standard type double. For typical
SystemC modules generated from VHDL a conversion
from SystemC logic vectors to Simulink fixed point is the
appropriate way.

5. Experiments

In the following, the automated flow will be compared
to a manual. An automotive electronics example, the im-
plementation of a configurable bus-arbiter, has been used
for the evaluation. As shown in Figure 4, the arbiter se-
quences the requests of the masters to access one of the
slaves. The master and slave modules are part of the sys-
tem model, which is implemented in MATLAB/Simulink.
The arbiter itself is available as an IP block implemented
in synthesizable VHDL.

 Arbiter

System Level

RT Level

Master ...

Interrupt
Control

Master Master

Slave ...Slave Slave

Figure 4. Bus-arbiter model

For the manual conversion of the arbiter to a Simulink
component as described in section 2, the designer needs
to know its entire functionality and how he can express it
in C code. Additionally, he must know how to write an S-
Function. Due to the different models computation in
VHDL and Simulink simulations, it is a difficult task to

come to a comparable behavior. As one can see, a de-
signer with knowledge in several abstraction layers and
their particular tools is necessary to manage this task, and
even then, it is time-consuming and error-prone.

The automated flow consists of only four commands to
the transformation tool, load bus-arbiter design, transform
to SystemC, generate S-Function wrapper, and write out
design. This can be done either by the system engineer or
by the RTL engineer because the four commands auto-
matically create an S-Function and no special knowledge
is needed. For both of them, the complete conversion
costs only about five minutes.

In both approaches, the final step is to compile the re-
sulting S-Function and instantiate it in the appropriate
Simulink block, and afterwards, the simulation of the sys-
tem can be started.

The analysis of the simulation performance shows that
it is almost the same in the two cases. Table 3 lists some
profiling results that have been achieved with MATLAB
R2008a running on a Linux system with an Intel Pentium
D 2.8GHz CPU with 2GB RAM. The mentioned values
are the average values of ten simulation runs in each case.

Table 3. Simulation Performance

 manually
implemented

automatically
generated

total duration 43.23s 44.03s
arbiter output 0.68s (1.57%) 1.72s (3.91%)
arbiter update 0.63s (1.46%) -
arbiter output + update 1.31s (3.03%) 1.72s (3.91%)
arbiter relative performance 1 0.76
total relative performance 1 0.98

The total duration of the simulation is 43.23s with the
manually implemented S-Function and 44.03s with the
automatically generated one. The Simulink simulation
kernel calls two methods of the bus-arbiter S-Function in
each time step, the output method to set the modules out-
put ports and the update method to update the modules
internal states. In case of the manually implemented S-
Function, the simulation spends 1.31s on these two meth-
ods; that corresponds to 3.03% of the total simulation
duration. The automatically generated S-Function stores
and updates its internal state in the SystemC part. There-
fore, the update method is not used here. The output
method consumes 3.91% of the total simulation duration,
1.72s. The simulation performance of the automatically
generated arbiter module considered separately decreases
by a factor of 0.76 compared to the manual implemented
version. That is very little according to the fact that it can
be generated in a few minutes. The performance of the
complete simulation merely decreases by a factor of 0.98.
If one assumes that the proposed flow is only used for a
few parts of the system and most of the simulation dura-
tion is spent by processing the rest of the system, one can
conclude that the automated flow involves no significant
overhead.

6. Conclusion and future work

In this contribution, the challenges that lie in the inte-
gration of hardware IP into the system development flow
have been discussed. Furthermore, an automated flow has
been described that allows the seamless integration of IP
components available as VHDL code into a Simulink
model. The VHDL code is converted automatically into
equivalent SystemC code. This is done by an environment
for automated design transformations that has been ex-
plained in detail as well as the VHDL-to-SystemC map-
ping strategy. The result is a SystemC module surrounded
by an S-Function wrapper, which can be used directly in a
Simulink model. An analysis of the benefits and the over-
head of the automated flow has been done by means of an
industrial automotive electronics example. It has shown
that the time saving due to the automation of the conver-
sion surpass the overhead during simulation by far.

Further tasks are to provide support for additional
VHDL-features and to add specialized implementations
of often-used VHDL types in C++ to improve their per-
formance.

7. References

[1] Hoffman, M., T. Beaumont, Application Develop-
ment: Managing a Project's Life Cycle, Mc Press, 1997
[2] ARC International, VTOC for SoC Models,
http://www.arc.com/
[3] Carbon Design Systems, Model Studio,
http://carbondesignsystems.com/
[4] VHDL-to-SystemC-Converter, European SystemC Users
Group, http://www-ti.informatik.uni-tuebingen.de/~systemc/
[5] VH2SC, HT-Lab, http://www.ht-lab.com/
[6] Oetjens, J.-H., J. Gerlach, W. Rosenstiel, An XML Based
Approach for the Flexible Representation and Transformation of
System Descriptions, Forum on Design Languages, Lille, 2004
[7] Oetjens, J.-H., J. Gerlach, W. Rosenstiel, Flexible Specifi-
cation and Application of Rule-based Transformations in an
Automotive Design Flow, Design, Automation, and Test in
Europe, Munich, 2006
[8] World Wide Web Consortium, Extensible Markup Lan-
guage, http://www.w3.org/XML/
[9] World Wide Web Consortium, XSL Transformations
(XSLT) Version 1.0, http://www.w3.org/TR/xslt/
[10] The SAXON XSLT and XQuery Processor,
http://saxon.sourceforge.net/
[11] World Wide Web Consortium, XML Schema 1.0,
http://www.w3.org/XML/Schema/
[12] ANTLR, ANother Tool for Language Recognition,
http://www.antlr.org/
[13] Hylla, K., J.-H. Oetjens, W. Nebel, Using SystemC for an
Extended MATLAB/Simulink verification flow, Forum on De-
sign Languages, Stuttgart, 2008

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

