
A Scalable Method for the Generation of Small Test Sets

Santiago Remersaro, Janusz Rajski
Mentor Graphics Corporation

santiago remersaro@mentor.com

Sudhakar M. Reddy
The University of Iowa

Irith Pomeranz
Purdue University

Abstract

This paper presents a scalable method to generate
close to minimal size test pattern sets for stuck-at faults in
scan based circuits. The method creates sets of potentially
compatible faults based on necessary assignments. It guides
the justification and propagation decisions to create patterns
that will accommodate most targeted faults. The technique
presented achieves close to minimal test pattern sets for
ISCAS circuits. For industrial circuits it achieves much
smaller test pattern sets than other methods in designs
sensitive to decision order used in ATPG.

1. Introduction

For scan based circuits the test application time is
proportional to the test set size and the length of the longest
scan chain. Hence, it is important to reduce test set size by
generating compact test sets in order to reduce test cost.
In recent years, with the introduction of test compression
techniques, test cost has been reduced. Test compression
techniques introduce test generation time overhead. This
overhead has been initially compensated by the utilization
of faster Automatic Test Pattern Generator (ATPG) engines.
However, faster ATPG engines may create abnormally
large test sets for some circuits under test (CUTs). This
weakness in the ATPG heuristics must be overcome to avoid
abnormal pattern counts for some CUTs. At the same time
test generation must be completed in a reasonable time to
cope with large industrial designs.

The techniques to obtain a compact test set can be
classified into static and dynamic compaction methods.
Static compaction methods are applied to already generated
test sets to further reduce their size by removing redundant
tests. Some of these methods do not alter the tests in the
set [1][11]. Others, after relaxing the test vectors in the set,
attempt to target faults detected by a vector so that they will
be detected by other vectors in the set, rendering the initial
vector redundant [7][13]. Dynamic compaction methods
attempt different heuristics to accommodate detection of
more faults by a test pattern while it is being created [4].
The basic principle of dynamic compaction is to create a
test cube for a fault, called primary or parent fault, and use
the resulting specified positions as constraints to target other

faults, called the secondary or child faults. The best results
in test set size are obtained by methods using both static and
dynamic compaction techniques.

This work focuses on opportunistically achieving close
to minimal test sets using dynamic compaction techniques.
The objective is not to create minimal test sets but to get
consistently close to minimal test counts with a fast algorithm
that can be applied to industrial designs. An ATPG engine
based on the D-algorithm using new ways to guide decisions
in order to accommodate detection of more faults by the
same test vector is developed. The guidance is based on a
preprocessing step that computes sets of faults based on some
of their necessary assignments. After the preprocessing step,
the faults in a set are targeted for test generation. Each time
a decision is to be made by the ATPG, an attempt to avoid
violating the necessary assignments of the remaining faults
in the set is made.

The rest of this paper is organized in the following
manner. Section 2 describes earlier works on compact test
set generation related to the present work and others that
achieve related results. Section 3 presents the dynamic
compaction algorithm proposed. Experimental results are
given in Section 4. Section 5 concludes the paper.

2. Earlier Works
Terms related to test generation procedures and used later

in the paper are defined below [1].
Definition 1: J-frontier is the set of all gates whose output
value is known but is not implied by its input values.
Definition 2: D-frontier is the set of all gates whose output
value is unknown and they have one or more error signals on
their inputs.
Definition 3: Test cube is a test vector that contains
unspecified values.

In [12], the authors combine dynamic and static
techniques to generate minimal or close to minimal test
sets. Dynamic fault ordering, a technique to sort the fault
list during test generation, based on the computation of
independent fault sets (IFS) is used. IFS are sets of faults
in which no two faults can be detected by the same test
vector. In [12], after the generation of a test vector the largest
IFS remaining is placed on top of the fault list and a new
fault is selected as a target for test generation from the IFS.

978-3-9810801-5-5/DATE09 © 2009 EDAA

Another heuristic, rotating backtrace, based on the rotation
of gate inputs selected to justify values in the J-frontier, is
employed to facilitate detection of yet undetected faults.
Double detection, which requires each fault to be detected
twice before being dropped from the fault list, is used as a
dynamic compaction technique to create test vectors that
detect earlier detected faults [8]. This facilitates dropping
of tests generated earlier by performing reverse order fault
simulation. Extremely compact test sets are created in [8]
at the expense of large computational times. This reduces
the method’s applicability to larger designs. In [6], a similar
trade-off between test set generation time and test set size is
proposed. Using similarly oriented techniques, smaller test
set sizes are achieved at the expense of additional computing
time. We will compare the results obtained with the proposed
method to those obtained in [6] and [8].

In [5] a method, called SCOAP, to guide ATPG decisions
is introduced. SCOAP is aimed at measuring the complexity
of justifying a line value and observing a gate. It does this
by creating scalar estimates of how many circuit inputs are
necessary to control and observe each gate. Its complexity is
linear in the circuit gate count. SCOAP has the disadvantage
that it fails in the presence of reconvergent fanout by either
underestimating or overestimating the scalar measures. Also
it is static in the sense that it does not take into account yet
undetected faults for ATPG guidance.

The work in [15] uses necessary assignments (NA) for
sensitizing selected paths in order to create compact test sets
to detect transition faults through longest testable paths. A
NA set of faults, is a subset of faults such that necessary
assignments of any pair of paths in the set do not conflict. In
[15], the collection of NAs for all paths in a set are called
set assignments (CA). Next, tests to satisfy all necessary
assignments of CA are derived. These tests sensitize all paths
and detect the corresponding transition faults in a set. The
paths chosen are first verified to be sensitizable and the target
transition faults are detected when the paths are sensitized.
So, the problem of creating a test for these faults is reduced to
justifying the necessary assignments for sensitizing the faults.
In [15] it is pointed out that once a set C is formed, it is very
rare that the necessary assignments in the corresponding CA
cannot be simultaneously justified.

In this work the focus is on stuck-at faults. We also
form sets of faults based on necessary assignments that
do not conflict. However, not all necessary assignments
to detect a fault can be used. We use a limited set of
necessary assignments for the activation and propagation
of faults in forming sets of faults. The collection of the
necessary assignments for faults in the set CA are used to
guide J-frontier and D-frontier decisions by the ATPG when
generating a test for a fault. In this way, we attempt to avoid
conflicts with CA. Thus, it is possible that the ATPG will
violate some necessary assignments in CA in searching for
a test. This will happen when the ATPG cannot create a test

Figure 1. Necessary assignments for f

for a given fault in the restricted search space compatible with
CA.

3. The proposed method

The objective of both static and dynamic compaction is to
produce smaller test sets. As discussed before in Section 2
some compaction procedures attempt to find optimal test sets
with computationally intensive techniques.

This section describes two scalable methods we propose
for generating test sets of near minimal size. Section 3.1
describes the necessary assignments of a fault and which
ones are considered by our methods. Section 3.2 describes
the single detections (SDA) algorithm. Section 3.3 provides
an example of the SDA method and Section 3.4 describes the
proposed extra detections (EDA) method.

3.1. Necessary assignments
For a fault f, necessary assignments (NA) are every line

value necessary for the detection of the fault. This includes
values to activate f and propagate its effect to a fanout stem
or an output. The number of necessary assignments to detect
a stuck-at fault can be increased, for example, by determining
dominators [9] and using learning techniques [10][14].

We use necessary assignments obtained by using simple
forward and backward implications on the fault-free circuit
only. Specifically, we do not use dominator analysis and
learning techniques. Thus, implications stop at the first
fanout stem or output reached from the fault site and the
backward implications stop when inputs of a gate are not
uniquely implied by its output. We illustrate the necessary
assignments we use by determining them for f in Figure
1. The necessary assignments we use for f are shown in
bold and are underlined. For f, many additional necessary
assignments can be found using dominators and learning.
These are shown in italics without underlines. It should
be noted that not all underlined assignments in bold are
normally regarded as necessary assignments. For example
the outputs of gates B and D. In our method we use these
values as necessary assignments for f.

3.2. Single detections algorithm (SDA)
The key concept in the single detections algorithm is the

addition of a pre-processing step to test generation. This
pre-processing step screens faults to determine which ones
should be targeted for detection by a test and determines how

1. Compute NA-estimates (NAest).
2. Sort the fault list F by decreasing order of NAest.
3. Pick first untargeted fault as parent fault fp and compute NA.
4. Add the NA of fp to CA and fp to C.
5. ∀f ∈ F :

(a) If f cannot be activated: continue.
(b) If f does not have an X-path: continue.
(c) Compute NA for f with CA as constraints.
(d) If NO conflict: add NA to CA and f to C.

6. Generate a test for fp guided by CA.
7. If success: Target every f ∈ C guided by CA.
8. Random fill and fault simulate using fault dropping the created

test pattern.
9. If F not empty: goto 3.

Figure 2. A pseudocode of the SDA method

ATPG decisions are made. It does this by computing NAs
for the faults. If two faults have conflicting NAs they cannot
be detected with the same pattern. If they have compatible
NAs they will be targeted with the same pattern and the J-
frontier and D-frontier decisions will be guided, using the
computed NA, in an attempt to facilitate detecting the faults
with a single test.

SDA works in the following way. It orders the faults
placing the ones with larger number of NAs first. However,
instead of ordering on actual number of NAs per fault we
use an easily computed approximation of the NA count. We
call this NAest. This is done to avoid determining the NA
of all faults upfront since during test generation only the
NA of faults that remain undetected are needed. The NAest
computation time for the entire fault list is linear in the gate
count of the circuit. The motivation for ordering the faults
in decreasing order of NAest is that faults with larger NAest
will tend to have more conflicts with other faults and restrict
to a larger degree the number of additional faults that can be
detected by a single test. After this preprocessing step test
generation is started.

The first untargeted fault fp from the ordered fault list
is selected as a parent fault and added to a set C. The NA
of fp are computed and added to the set of set assignments
CA. Next the NA of a yet undetected fault f is checked for
compatibility with CA. If f can be activated and has an X-
path under CA, NA of f with CA as constraints are computed.
If there is a conflict CA is restored and f discarded. Else f is
added to C and CA is updated with the computed NA of f.

After C is formed, every fault except fp in C is sorted.
The sorting criterion is the number of previous times that f
was targeted as a secondary target fault. If f was targeted
more times it is placed higher in the list. If two faults were
attempted the same number of times, sorting places first the
fault whose NAest value is larger. In this way more restrictive
faults are placed first in the list to be targeted.

After C is sorted, fp is targeted by the ATPG. Every time
a J-frontier decision or a D-frontier decision has to be made
by the ATPG we attempt to maximize the compatibility of the

Figure 3. An example illustrating SDA method

Figure 4. Test for f1 using SCOAP

decision with CA. If a test cube is formed for fp, every f ∈ C
will be targeted as secondary fault for detection by the same
test in order of appearance in the sorted set C.

Once all the faults in C are targeted, the unspecified
values in the final test cube are randomly filled, the resulting
test vector is fault simulated and all the detected faults are
dropped. This process is repeated until the fault list F has no
more faults which were not targeted as parent faults. In Figure
2, we give a pseudocode of the ATPG flow.

3.3. An example of SDA method
Consider the circuit of Figure 3 with f1, f2 and f3 being

the only faults remaining in the fault list F. The gate whose
output is labeled m is a multiplexer. Lets us assume that
the faults are originally ordered in ascending order of their
indices. Next we discuss the effect of applying SCOAP and
random decision order as well as the SDA algorithm in
generating tests for the faults.

If SCOAP based guidance is applied to a test for f1 a D-
algorithm based ATPG will face two decisions. One in the
J-frontier when justifying line f=1 and the other in the D-
frontier when propagating g=D through g1 or g2. Since the
circuit is symmetrical the choices could be c=1 for justifying
f=1 and g1 to propagate the error value on g. This will result
in a test vector that cannot accommodate detection of any of
the other two faults. This is because f2 is blocked since c is
set to 1 and f3 is blocked because the select input p of the
multiplexer will be 0 to propagate the error value on g1. This
is illustrated in Figure 4. When targeting f2, the same choice
in the D-frontier will be faced and SCOAP based guidance
will again lead to the same result. For these faults SCOAP
based guidance will lead to three test patterns.

Instead if random decision order is used, the D-algorithm,
when faced with the same decisions has a 50% chance to
decide among two choices for each decision. Computing the
probabilities for different sets of tests to detect the faults
using random decisions, with probability 0.25 a single pattern
to detect all faults will be obtained, with probability 0.625

CUT Pattern Count Time (sec) BCE
SDA EDA SC LB MT CT SDA EDA MT CT SDA EDA SC

c432 37 35 31 27 27 29 0.06 0.22 6.2 7 80.87 83.51 81.02
c499 53 53 52 52 52 52 0.07 0.49 17.4 5 93.08 93.15 92.98
c880 19 21 20 13 16 21 0.07 0.21 10.4 12 82.70 86.02 85.09

c1355 84 86 84 84 84 84 0.28 2.14 29.4 16 92.26 92.44 92.28
c1908 115 112 108 106 106 106 0.39 2.28 78.9 55 91.03 91.34 91.10
c2670 58 49 47 44 44 45 0.29 1.24 73.3 130 90.70 92.22 91.99
c3540 103 103 99 80 84 91 0.71 2.92 178.1 262 88.42 89.52 89.27
c5315 52 52 49 37 37 44 0.69 2.64 265.4 362 89.51 91.19 90.66
c6288 26 27 *20 6 12 14 2.93 16.47 65.6 398 96.95 97.55 95.15
c7552 92 89 84 65 73 80 1.33 6.92 794.7 1311 94.41 95.78 95.51
Total 639 627 594 514 535 566 6.82 35.53 1519.4 2558 89.99 91.27 90.51
s208 32 32 32 27 27 27 0.02 0.06 0.4 0.8 81.40 83.87 83.87
s298 24 24 24 23 23 24 0.01 0.06 0.7 1.5 80.89 81.72 81.72
s344 15 15 15 13 13 15 0.01 0.06 0.7 1.5 79.71 80.50 80.50
s349 15 15 15 13 13 14 0.02 0.05 0.7 1.7 80.13 80.67 80.67
s382 27 27 25 25 25 25 0.02 0.10 0.8 1.7 83.90 85.65 84.32
s386 65 64 64 63 63 63 0.05 0.11 3.1 3.8 74.56 76.78 76.78
s400 25 25 25 24 24 24 0.02 0.09 0.8 1.8 81.86 84.33 84.33
s420 70 70 *68 43 43 43 0.05 0.15 2.9 3.2 82.99 84.69 84.19
s444 25 25 24 24 24 24 0.05 0.11 0.9 2.3 82.84 84.88 84.14
s510 56 56 55 54 54 54 0.05 0.20 3.6 6.0 84.74 85.51 85.26
s526 52 52 52 49 49 50 0.05 0.13 3.0 4.9 83.29 85.96 85.96

s526n 52 52 51 49 49 50 0.07 0.17 3.3 4.9 83.51 85.86 85.66
s641 24 24 23 21 21 22 0.03 0.09 2.1 3.1 83.65 85.90 85.45
s713 24 24 22 21 21 22 0.06 0.15 2.8 4.6 84.53 89.01 87.86
s820 97 97 96 93 93 94 0.17 0.29 34.1 19 73.19 74.31 74.06
s832 97 97 97 94 94 94 0.17 0.31 80.1 20 73.09 74.09 74.09
s838 146 146 *140 75 75 75 0.19 0.52 15.3 13 84.36 84.90 84.36
s953 81 79 78 76 76 76 0.12 0.46 30.3 25 85.55 86.13 85.93

s1196 130 130 121 113 113 118 0.25 0.65 43.6 48 84.23 86.44 85.70
s1238 138 138 128 121 121 124 0.26 0.66 127.4 102 84.29 86.17 85.40
s1423 25 27 26 20 20 26 0.17 0.65 205.3 32 86.71 89.26 88.83
s1488 106 106 102 101 101 101 0.24 0.66 75.1 40 81.46 82.52 81.64
s1494 104 104 102 100 100 100 0.26 0.59 80.4 43 80.88 82.16 81.79
s5378 109 103 101 97 97 103 0.64 2.42 131.5 216 92.06 94.98 94.81
s9234 138 136 126 100 105 108 1.49 5.11 3157.1 1085 87.22 90.70 90.15
s13207 236 236 236 233 233 235 2.64 8.54 1178.4 1096 88.85 93.44 93.44
s15850 99 99 98 91 95 95 3.10 9.60 9252.2 1375 91.52 94.47 94.41
s35932 11 11 **10 9 12 13 1.94 4.29 11334.5 8388 75.14 75.72 74.56
s38417 79 79 78 62 68 85 5.97 23.49 28955.8 13210 92.75 94.72 94.66
s38584 123 121 118 93 110 115 7.81 27.04 38538.9 14446 92.75 95.58 95.43
Total 2225 2214 2152 1927 1962 2019 25.93 86.81 93265.8 40199.8 83.40 85.36 85.00

Table 1. ISCAS benchmark circuits results

two patterns to detect all faults will be created and with
probability 0.125 three patterns will be created.

If the SDA algorithm is used, NAs for the faults in F
will be computed. As there is no conflict in the necessary
assignments a set C including all the faults in F will be
formed. The necessary assignments for all the faults in F are
displayed in Figure 3. When the J-frontier decision on f is to
be made the SDA algorithm will choose d to set f=1 to avoid
conflict with c=0 which is part of the CA of C. When the
D-frontier decision in g is to be made, SDA algorithm will
choose branch g2 to avoid conflicting with the assignment
p=1, which is also part of CA. The pattern created in this way
can detect faults f2 and f3. Thus, the SDA algorithm will
produce one test vector to detect all the faults.

3.4. Extra detections algorithm (EDA)
In order to reduce the pattern count obtained using

the SDA procedure given above, we used the following
observation in deriving a modified procedure called extra
detections algorithm.

As test generation proceeds, the number of yet undetected
faults decreases and the sizes of the sets of compatible faults
constructed from the undetected faults decreases. We can
increase the sizes of sets by adding faults that have been
detected by tests generated earlier. This causes some faults
to be detected several times without increasing the size of
the test set compared to that obtained by using the SDA
algorithm. Multiple detection of faults improves the quality of
tests by increasing the probability of detection of unmodeled

faults. This observation was the motivation behind the recent
work called Embedded Multi-Detect ATPG [3]. Additionally,
as observed in [8], the extra detections of earlier detected
faults causes some of the tests generated earlier to become
unnecessary and they can be dropped using static compaction
techniques [8][11].

We modify the formation of sets in the SDA algorithm to
obtain the EDA algorithm. In the SDA algorithm the fault sets
are formed from yet undetected faults. In the EDA algorithm
after considering the yet undetected faults to form the sets
we consider faults already detected in increasing order of
the number of times they are detected. In order to increase
the probability of dropping earlier generated tests we use the
following heuristics in processing the already detected faults.
We only keep the faults that are detected less than ten times,
dropping the faults at the tenth detection. For each fault we
record the first pattern that detects it and the number of faults
detected by the pattern for the first time. For each earlier
generated pattern we record the number of faults uniquely
detected. We use this number when considering faults that
are detected exactly one time by earlier tests.

When we consider adding already detected faults to a set
we first consider faults detected only once in the following
order. If the pattern p that detects a fault f uniquely detects
fewer faults, then f is placed in the set ahead of other
faults. This heuristic increases the probability of dropping
patterns that uniquely detected fewer faults since faults not
uniquely detected by such patterns are already detected by
other patterns.

While considering faults detected two or more times
we use the following heuristics. Faults are considered in
increasing order of the number of times they are detected.
Let faults f and g be detected the same number of times and
patterns p and q detect f and g for the first time respectively.
We place f ahead of g if pattern p detected fewer faults for
the first time than pattern q.

4. Experimental results
In this section, experimental results for ISCAS benchmark

circuits and industrial designs are presented. All results for
ISCAS circuits were obtained using a 3.6-GHz processor.
Results for industrial circuits were obtained using a 2.8-GHz
processor. The proposed procedures were implemented as
add on to a commercial ATPG based on the D-algorithm.

4.1. Results on ISCAS circuits
Table 1 shows results for the ISCAS benchmark circuits

set. In Table 1, after the circuit name the pattern counts for
different test generation methods are shown. Under column
Time (sec) the run times for the different methods are shown.
Next, under column BCE the bridge coverage estimates,
computed as in [2], are shown for some test generation
methods. In Table 1, the abbreviation SDA refers to the single
detections method, EDA refers to the extra detections method,

Figure 5. Run times for the various methods

SC is for static test compaction of [11] used on tests obtained
using method EDA, LB is the highest known lower bounds
on the test set sizes from [6], MT is the method in [6] and CT
is the method in [8]. Run times for SC are not shown since
they were negligible. For the largest ISCAS circuit (s38584),
it took 0.14 seconds to perform SC on the test set obtained
using EDA.

From Table 1 we can see that the proposed algorithms
approach and even sometimes match the lower bounds known
for ISCAS circuits. Only in the three circuits marked (*) the
method failed to approach the lower bound and produced
a high pattern count. In one case (**), both the proposed
methods produced the smallest test set known so far. Given
the disparity of the capabilities of the computers used to run
the different procedures we can only focus on the run time
trends relative to circuit sizes to discern the scalability of
different methods. To illustrate this, in Figure 5 we plot the
run times of methods SDA, EDA, MT and CT normalized by
dividing the run time by the number of testable faults in the
circuit. The normalized run times and the number of faults
are given on a logarithmic scale. The gridlines are for every
increase in the magnitude order. It can be seen that the run
time per fault of SDA and EDA procedures are essentially
constant where as the run times for MT and CT methods
increase dramatically as the circuit size grows.

Bridge coverage estimate was proposed in [2] as a
measure of detection of unmodeled defects. From the last
three columns of Table 1 we note that the BCE for tests
generated using EDA is higher than that of the tests generated
using SDA even though the test set sizes of EDA are smaller.
The BCE of test sets obtained after reducing the test sets of
EDA by using static compaction are also higher. Thus we
conclude that EDA produces smaller but higher quality test
sets. Of course EDA requires longer run times compared to
SDA.

It is important to notice that fault coverage is not reported
for ISCAS circuits because the fault efficiency obtained was

CUT KG FC % FE % Pattern Count Time (norm. to Rand) BCE
Rand SCOAP SDA SDASC EDA SC SCOAP SDA EDA SC Best R-S

c-210 210 96.76 97.94 899 1192 673 670 633 613 1.72 1.53 4.28 95.47 91.47
c-260 260 98.84 99.90 8489 3632 3646 3646 3636 3304 0.67 1.32 3.92 88.15 81.31
c-305 305 97.23 98.96 675 353 303 303 296 295 1.53 1.01 1.51 94.34 94.34
c-419 419 87.04 94.15 1228 1256 1195 1194 1137 1088 2.06 0.79 2.66 98.05 92.95
c-845 845 97.02 99.90 905 5565 515 515 515 500 5.92 1.64 2.84 93.04 99.30

Table 2. Industrial designs results

100%, i.e. every testable stuck-at fault was detected.

4.2. Results on industrial designs
The results on five industrial circuits are given in Table

2. After the circuit name we give the circuit gate count in
thousands of gates followed by the fault coverage and fault
efficiency. Each one is reported only once because they are
the same for every test generation method.

In Table 2, we report test set sizes for various test
generation procedures. Here, Rand and SCOAP stand for
test generation procedures using random decision order and
SCOAP based decision order, respectively. The results given
under Rand and SCOAP are obtained after performing static
compaction [11] on the test sets. Method SDASC represents
the use of SDA followed by static compaction and the other
methods are the same as given earlier in Table 1. Next
three columns give run times relative to the run time of the
Rand procedure. In the last two columns we give the bridge
coverage estimate for SC and the best BCE of Rand and
SCOAP based test generation methods.

From Table 2, it can be noted that for some circuits the
random decision order based method gives much smaller
test sets than the SCOAP based decision order but for other
circuits it produces larger test sets. However, the proposed
methods consistently give smaller test sets for all the circuits.
The BCE of the test sets generated using EDA followed by
static compaction are typically higher than the BCE of the
Rand and SCOAP methods. Only for circuit c-845 the BCE
of SC is lower than the best BCE of Rand and SCOAP due to
the fact that the test set size is several times larger than the
one for SC.

From Table 2 we can see that the run time ratio for the
proposed methods vs. Rand remains almost constant making
the methods scalable. For SDA, this ratio is 1.26 and for EDA
this ratio is 3.04. This difference comes from the increased
times that a fault was targeted for detection.

5. Conclusions

A scalable dynamic compaction technique that relies on
preprocessing to determine guidance for the ATPG decisions
was proposed. The proposed method generates minimal or
close to minimal test sets, except in three cases, for ISCAS
benchmark circuits. For industrial designs it outperforms the
best results of random and SCOAP based decision guidance
by always producing similar or better test set sizes. It is a

scalable technique because it maintains an almost constant
run time ratio with other guidance methods currently used in
commercial tools.

Acknowledgment
Research supported in part by SRC Grant No. 2007-TJ-

1642 (S.M. Reddy) and by SRC Grant No. 2007-TJ-1643 (I.
Pomeranz).

References
[1] M. Abramovici, M. Breuer, and A. Friedman. Digital Systems Testing

and Testable Design. IEEE Press, Piscataway, NJ, 1994.
[2] B. Benware, C. Schuermyer, N. Tamarapalli, K.-H. Tsai,

S. Ranganathan, R. Madge, J. Rajski, and P. Krishnamurthy.
“Impact of Multiple-Detect Test Patterns on Product Quality”. Proc.
IEEE International Test Conference, 1:1031–1040, September 2003.

[3] J. Geuzebroek, E. J. Marinissen, A. Majhi, A. Glowatz, and F. Hapke.
“Embedded Multi-Detect ATPG and Its Effect on the Detection of
Unmodeled Defects”. Proc. IEEE International Test Conference,
pages 1–10, October 2007.

[4] P. Goel and B. Rosales. “Test generation and dynamic compaction of
tests”. Dig. 1979 Test Conf., pages 189–192, October 1979.

[5] L. H. Goldstein and E. L. Thigpen. “SCOAP: Sandia
Controllability/Observability Analysis Program”. Design
Automation, Conference on, pages 190–196, June 1980.

[6] I. Hamzaoglu and J. H. Patel. “Test Set Compaction Algorithms
for Combinational Circuits”. IEEE Trans. Computer-Aided Design,
19(8):957–962, August 2000.

[7] S. Kajihara and K. Miyase. “On Identifying Don’t Care Inputs of
Test Patterns for Combinational Circuits”. Proc. ICCAD 2001, pages
364–369, November 2001.

[8] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy. “Cost-
Effective Generation of Minimal Test Sets for Stuck-at Faults
in Combinational Logic Circuits”. IEEE Trans. Computer-Aided
Design, 14(12):1496–1504, December 1995.

[9] T. Kirkland and M. R. Mercer. “A Topological Search Algorithm for
ATPG”. Design Automation, 24th Conference on, pages 502–508,
June 1987.

[10] W. Kunz and D. K. Pradhan. “Recursive Learning: a New
Implication Technique for Efficient Solutions to CAD Problems-
Test, Verification, and Optimization”. IEEE Trans. Computer-Aided
Design, 13(9):1143–1158, September 1994.

[11] X. Lin, J. Rajski, I. Pomeranz, and S. M. Reddy. “On Static Test
Compaction and Test Pattern Ordering for Scan Designs”. Proc. IEEE
International Test Conference, pages 1088–1097, October 2001.

[12] I. Pomeranz, L. N. Reddy, and S. M. Reddy. “COMPACTEST: A
Method to Generate Compact Test Sets for Combinational Circuits”.
IEEE Trans. Computer-Aided Design, 12(7):1040–1049, July 1993.

[13] L. N. Reddy, I. Pomeranz, and S. M. Reddy. “ROTCO: A Reverse
Order Test COmpaction Technique”. Proc. 1992 Euro-ASIC Conf.,
pages 189–194, June 1992.

[14] M. H. Schulz, E. Trischler, and T. M. Sarfert. “SOCRATES: A Highly
Efficient Automatic Test Pattern Generation System”. IEEE Trans.
Computer-Aided Design, 7(1):126–137, January 1988.

[15] Z. Wang and D. Walker. “Dynamic Compaction for High Quality
Delay Test”. IEEE VLSI Test Symp., pages 243–248, April 2008.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

