
Automatic Generation of Streaming Datapaths for

Arbitrary Fixed Permutations

Peter A. Milder, James C. Hoe, and Markus Püschel

Carnegie Mellon University

Electrical and Computer Engineering Department

Pittsburgh, PA, U.S.A.

{pam, jhoe, pueschel}@ece.cmu.edu

Abstract—This paper presents a technique to perform ar-
bitrary fixed permutations on streaming data. We describe a
parameterized architecture that takes as input n data points
streamed at a rate of w per cycle, performs a permutation over
all n points, and outputs the result in the same streaming format.
We describe the system and its requirements mathematically and
use this mathematical description to show that the datapaths
resulting from our technique can sustain a full throughput of
w words per cycle without stalling. Additionally, we provide an
algorithm to configure the datapath for a given permutation and
streaming width.

Using this technique, we have constructed a full synthesis
system that takes as input a permutation and a streaming width
and outputs a register-transfer level Verilog description of the
datapath. We present an evaluation of our generated designs
over varying problem sizes and streaming widths, synthesized
for a Xilinx Virtex-5 FPGA.

I. INTRODUCTION

A permutation is a fixed reordering of a given number of

data elements. We use Pn to represent a permutation of an n
point data vector. Figure 1(a) shows an example of a 12 point

permutation P12. Data elements (0, . . . , 11) enter concurrently

from the left, are reordered, and exit in permuted order. A

hardware implementation of such a permutation is trivial if all

n data points are available concurrently: it is simply built as

a reordering of wires.

However, this type of dataflow is only practical for small

data vectors. Instead, hardware structures often utilize a

streaming dataflow, where the n-word data vector is decom-

posed into w-word subvectors, which flow into the system over

n/w consecutive cycles. We call w the streaming width, the

number of words that flow in or out of the system per cycle.

We treat the stream as continuous; once an n-word data vector

finishes streaming into the system, a new n-word data vector

begins entering on the following cycle.

Figures 1(b) and (c) illustrate a streaming version of the

permutation seen in Figure 1(a). Here, n = 12 data words,

and the streaming width is w = 3 data words per cycle. In

Figure 1(b) we see that the data labeled (0, 1, 2) enter the

system on the first cycle, (3, 4, 5) enter on the second, and

so on, for a total of n/w = 4 cycles. Figure 1(c) shows the

structure’s output, where the 12 words flow out of the system

in their new permuted order (5, 2, 3, 0, . . .), again with w = 3
words per cycle.

0

(b) Streaming input

(c) Permuted streaming output
(a) Permutation

0

1

2

3

4

5

6

7

8

9

10

11

5

2

3

0

8

11

4

1

10

7

9

6

1

2

3

4

5

6

7

8

9

10

11

5

2

3

0

8

11

4

1

10

7

9

6

Fig. 1. Examples: permutation and streaming permutation.

Performing a permutation on streaming data is difficult

because data must be reordered across time boundaries by

storing and retrieving from a memory. For example, the

element labeled 1 in Figure 1(b) streams into the system during

the first cycle of the input stream, but must be buffered until

the third cycle of the output stream (in Figure 1(c)).

A method for implementing streaming permutations must

be able to scale as w (the number of data words per cycle) in-

creases. Thus, using one large w-ported memory is infeasible;

instead, a solution must use multiple memories and partition

the problem across them.

Previous work on RAM-based structures for streaming

permutations has been very specialized. For example, [1] gives

a method to design streaming implementations of one family

of permutations called stride permutations. [2] expands on this

significantly, but its technique is still not general; its method

only applies to a specific family of permutations, and only

when n and w are powers of two.

In this paper, we propose a method that is capable of

handling any arbitrary fixed permutation (Pn) streamed at

any number of elements per cycle (w). Our technique uses

multiple banks of simple memories, allowing it to scale well

as w increases. Further, we provide a method to partition the

problem such that there are no memory port conflicts, meaning

the system sustain its full throughput (w words per cycle)

without stalling.

978-3-9810801-5-5/DATE09 © 2009 EDAA

Based upon this technique, we have implemented a fully au-

tomatic generation tool. The tool takes as input a permutation

Pn and the desired streaming width w; it outputs the design in

register-transfer level Verilog. Our designs are appropriate for

implementation on field-programmable gate arrays (FPGAs)

or application-specific integrated circuits (ASICs), but are

particularly well-suited for FPGAs, which typically have many

simple embedded memories.

Permutations are crucial building blocks in the fast compu-

tation of linear signal transforms, such as the discrete Fourier

transform, the discrete cosine and sine transforms, and others.

The streaming permutation structures we describe in this paper

enable the design and generation of a wide variety of hardware

implementations of these transforms (e.g., [3]).

Outline. In Section II, we provide background on permuta-

tions and streaming datapaths. Sections III, IV, and V explain

our parameterized datapath structure, formulate the problem

mathematically, and provide an algorithm for computing the

solution. Section VI presents an evaluation of the designs built

using the proposed technique. Lastly, Section VII discusses

related work and Section VIII offers concluding remarks.

II. BACKGROUND

In this section, we present relevant background on permuta-

tions. Then, we explain streaming datapaths and the indexing

scheme we use to describe them mathematically.

Permutations. We consider arbitrary permutations on n data

points, numbered (0, . . . , n− 1). For example, the cyclic shift

is defined by

Cn : 0 7→ 1 7→ 2 7→ . . . 7→ n− 1 7→ 0. (1)

If C4 is applied to data vector (x0, x1, x2, x3), the result is

then (x3, x0, x1, x2).
An arbitrary permutation Pn is defined by its images Pn(i),

i = 0, . . . , n− 1. For example, Cn(i) = (i + 1) mod n.

Permutations can be equivalently viewed as matrices. We

use the matrix representation that makes

Cn =











0 1
1

. . .

1 0











. (2)

For convenience, we use the same notation for a permutation

and its associated matrix.

Streaming datapaths. In this paper, we consider streaming

datapaths where an n point data vector is partitioned into w
words per cycle over n/w consecutive cycles. We refer to w
as the streaming width of the system. We assume the elements

of such a streamed vector to be indexed by 0, . . . , n − 1. If

i ∈ {0, . . . , n − 1} is an input index, the corresponding data

word is located at port i (mod w) and in cycle ⌊i/w⌋. For

example, the word labeled 7 in Figure 1(b) is located at port

7 (mod 3) = 1 in cycle ⌊7/3⌋ = 2.

In this work, we assume that n is a multiple of w. This can

always be achieved by extending the permutation with fixed

points: (i→ i), n ≤ i < (w · ⌈n/w⌉).

w
-to
-w
 co
n
n
ectio

n

n
etw
o
rk
 N

...

...

memory array M0
w parallel RAMs,

2n/w words each

memory array M1
w parallel RAMs,

2n/w words each

address ROM R

+ control logic

address ROM W

+ control logic

config.

table T

Fig. 2. Datapath proposed in this paper.

III. PARAMETERIZED DATAPATH

A key aspect of this work is the identification of a scalable

datapath structure that can be configured to perform any

fixed streaming permutation with any streaming width. In this

section, we present this parameterized datapath and discuss its

operation.

Figure 2 shows the datapath we consider. It consists of two

memory arrays M0 and M1, a connection network N, and

lookup tables (ROMs) that contain address and control data

(R, T, and W).

Each memory array contains w parallel memories, each with

capacity 2n/w. Each has one read port and one write port.1

Memory arrays M0 and M1 are connected to lookup tables

R and W (respectively), which hold pre-computed address

values.

N represents a connection network that is capable of taking

w data points as input and outputting them in any given order.

We pre-compute its control data, and store the resulting values

in ROM T . When w is a power of two, this network can be

built as explained in [4], [5]. The resulting network utilizes

w log2(w) − w + 1 2-by-2 switches, which is asymptotically

optimal. If w is not a power of two, N could be constructed

in several ways; in this paper, we simply build the network for

the next largest power of two. However, any other appropriate

interconnection network or crossbar may be substituted. This

decision does not affect the other portions of the datapath (M0,

M1, R, and W).

As data flows through this structure, it passes through five

stages:

1. Write into M0. Data flows into the system and is written

in order to the banks of M0. Element i is written into address

⌊i/w⌋ in bank i (mod w). Address values are generated with

a ⌈log2(n/w)⌉ bit counter.

1It is also possible to replace the 2n/w word dual ported memory with two
single ported memories of size n/w. Then, data is written into one memory
while it is read out of the other. This optimization may be beneficial on an
ASIC, where the designer can build precisely the necessary memory structures.
However, this transformation is not beneficial on most current FPGAs, which
typically have embedded dual-ported memories.

2. Read from M0. On each cycle of this phase, one word

is read from each of the w memory banks of M0. The

read addresses (⌈log2(n/w)⌉ bits each) are pre-computed and

stored in lookup table R. Each line of R holds the w memory

read addresses for a given cycle. Thus, R contains n/w lines,

and each line requires w · ⌈log2(n/w)⌉ bits.

3. Connection network. The connection network N takes

in w elements and outputs them in a permuted order. We

pre-compute the values that will control the network, and

store them in T , which contains n/w configurations, with

w′ log2 w′ − w′ + 1 bits per configuration (where w′ =
2⌈log2

w⌉).

4. Write to M1. On each cycle of this phase, one word is

written into each of the w memory banks of M1. The write

addresses are pre-computed and stored in lookup table W, each

line of which holds w write addresses. So, W contains n/w
lines, each of width w · ⌈log2(n/w)⌉ bits.

5. Read from M1. Data are read from M1 in order and

flow out of the system. Element i is read from address ⌊i/w⌋
of bank i (mod w). Address values are generated with a

⌈log2(n/w)⌉ bit counter.

In order to maintain full throughput across multiple prob-

lems, M0 and M1 are each sized to hold a total of 2n words.

Then, n words can be written into addresses (0, . . . , n/w−1)
of each bank while the previous n words are being read from

addresses (n/w, . . . , 2n/w− 1). We accomplish this by using

a one bit register to determine whether or not to add an offset

to the addresses flowing into the RAMs. Every n/w cycles,

this bit is complemented.

The effect of this is that up to three n point data vectors

can be active in the structure at one time. One set of n data

points can be flowing into M0 (step 1), while a second set

flows between M0 and M1 (steps 2–4), while a third set of n
points flows out of M1.

An important aspect to understand about this datapath is

that all of the reordering is done in stages 2–4. Stage 1 writes

data to M0 in natural order, and Stage 5 reads data from M1

assuming it is already in permuted order. The problem then

becomes: given a permutation Pn, how do we guarantee that,

on each cycle, we can read w words from M0 and write them

to the correct locations of M1 without conflicts (i.e., needing

to read/write multiple words from/to the same RAM at the

same time)? A solution to this problem implies a datapath

configuration that will be capable of performing Pn with full

throughput (w words per cycle) without stalling. We formalize

this problem and derive a solution in Section IV.

Extension to support multiple permutations. In this work,

we assume that each instance of the datapath performs one

given permutation. However, the system can be easily extended

to support m different given permutations by increasing the

size of lookup tables R, T and W by a factor of m.
Then, configuration data would be pre-computed for all m
permutations, and an additional input would be added to the

system to allow for run-time selection between the m sets of

configuration data.

Relationship to previous work. The datapath we describe

can be viewed as an extension of a structure from a different

domain: the input-buffered crossbar switch [6], [7], [8]. This

crossbar is used in switching applications, and is able to

provide minimum throughput guarantees under certain input

arrival assumptions. Our datapath differs from the crossbar

in two major ways. First, we have added a second memory

array (M1) located at the connection network’s output, which

is needed to perform the reorderings we require. Second, we

use lookup tables instead of online address computation. This

is possible for our application because we can pre-compute all

values at design time (while the input buffered crossbar switch

must compute these values based upon system inputs).

IV. PROBLEM FORMULATION

In this section we formulate a mathematical problem that

corresponds to mapping a streaming permutation to the datap-

ath presented in Section III. We demonstrate that this problem

can be solved for all permutations and streaming widths.

As discussed in the previous section, the ordering of the

data inside both memory arrays is fixed: in M0, it must be in

natural order and in M1, it must be in permuted order. The

key problem then is to choose w words each cycle that are

read from the w different ports of M0 that must be written to

the w different ports of M1. Formally, we define the problem

as follows:

Problem 1. Given are a permutation Pn on I = {0, . . . , n−1}
and a streaming width w. For each of the n/w time steps j,

j = 0, . . . , n/w−1, find a subset Sj ⊂ I containing precisely

w points such that

1) the union of all Sj is I (which implies that the Sj are

pairwise disjoint); and

2) for every Sj and every k, ℓ ∈ Sj where k 6= ℓ:

k 6= ℓ (mod w) and Pn(k) 6= Pn(ℓ) (mod w).

A solution to Problem 1 will allow us to read (in cycle j)

w elements (specified by Sj) from M0 and write them to M1.
By construction, the w words will be read from w distinct

memory banks in M0 and written to w distinct memory banks

in M1. Since there are no conflicts at the read/write ports, the

system can sustain a full throughput of w words per cycle as

desired. Thus, a solution to this problem implies values for R,
W , and T that will allow the datapath in Figure 2 to perform

Pn.

Next, we transform Problem 1 into a form that enables its

solution. We start by defining a mapping πw that collects the

set of connections needed between the output of M0 and the

input of M1 in a matrix.

Definition 2. The mapping πw takes as input an n × n
permutation matrix Pn and outputs a w×w matrix of integers.

If πw(Pn) = [ck,ℓ | k, ℓ = 0, . . . , w − 1], then

ck,ℓ = |{x ∈ I | x(mod w) = ℓ and Pn(x)(mod w) = k}|.

In words, the (k, ℓ) element of πw(Pn) gives the number of

data words to be read from port ℓ of M0 and written to port

k of M1.

For example, consider the permutation

P12 = (0, . . . , 11)→ (3)

(3, 7, 1, 2, 6, 0, 11, 9, 4, 10, 8, 5).

This permutation corresponds to the example seen in Figure 1.

If we assume w = 3 ports, we have

π3(P12) =





1 2 1
1 1 2
2 1 1



 . (4)

Lemma 3. The sum of all elements in a given row or column

of πw(Pn) is n/w. A matrix with this property is called a

semi-magic square.

Proof. This follows from Definition 2 and the assumption that

one word streams into each input (and out of each output) on

each of n/w cycles.

Lemma 4. πw(Pn) can be decomposed into a sum of n/w
many w × w permutation matrices, some of which may be

repeated.

Proof. This follows from [9], where it is proven that any semi-

magic square can be decomposed into a sum of permutation

matrices. The total number must be n/w due to Lemma 3.

We represent this decomposition as

πw(Pn) = β0Q0 + β1Q1 + · · ·+ βk−1Qk−1, (5)

where the Qi are permutation matrices and the βi are integer

constants ≥ 1 with
∑

i βi = n/w.

Each of the Qi permutations represents a particular config-

uration of the switching network N in Figure 2. So, we can

choose w corresponding words from M0 (one from each bank),

permute them by Qi, and write them into the correct locations

of M1 (one word to each bank). Thus, the decomposition in (5)

represents a solution to Problem 1.

Continuing our example from (3) and (4), we can decom-

pose πw(P12) as

πw(P12) =





1 0 0
0 1 0
0 0 1



 + 2





0 1 0
0 0 1
1 0 0



 +





0 0 1
1 0 0
0 1 0



 .

Lemma 5. πw(Pn) has a decomposition (5) that satisfies

k ≤ min(w2 − 2w + 2, n/w).

Proof. [10] gives an upper bound of w2−2w+2 permutations.

We can further tighten this bound to min(w2− 2w +2, n/w),
since Lemma 4 shows us that we have at most n/w permuta-

tions.

Lemma 5 shows that even though there are w! many w×w
permutation matrices, a much smaller number is needed in

(5). For our datapath (Figure 2) this could lead to a reduced

storage requirement for T since some of the k settings may

be used multiple times (if k < n/w). Taking advantage of this

would require storing the values of βi and adding additional

logic to determine when to increment T ’s address value. This

optimization would reduce the number of elements in T from

n/w to k, and hence may reduce the overall hardware cost

for some problems (if the savings from storing fewer words

offsets the added cost of storing the βi and the added logic).

We do not explore this optimization in this paper.

Because the structure proposed in this paper is an exten-

sion of the input buffered crossbar switch, our solution for

mapping a permutation to the proposed datapath is similar to

some approaches used in scheduling the crossbar switch (in

particular, [8]).

V. ALGORITHM

Based upon the problem specified in Section IV, we for-

mulate an algorithm that calculates the parameters needed to

perform a given permutation Pn with a streaming width w on

the datapath in Figure 2. This algorithm is executed at design

time; it determines the control values to be stored into ROMs

R, T , and W .

This algorithm computes a decomposition of πw(Pn) of

the form (5) and calculates the corresponding values to store

in R, T, and W. Recall, we use R and W to denote

the collection of addresses for M0 and M1, respectively.

L = (Q0, . . . , Qn/w−1) represents the list of permutations

that the connection network must perform, and T represents

the configuration bits associated with each permutation in L
(computed using the methods in [4], [5]).

Algorithm 6. Input: Pn and w. Output: R, T, and W.

1) C ← πw(Pn); (as described in Definition 2).

2) while (C contains non-zero entries) do

• find a permutation Q included in C;

• while C −Q contains no negative entries do

– C ← C −Q;

– append permutation Q to L;

– find (x0, . . . , xw−1) s.t. (xi(mod w) = i) and

(Pn(xi)(mod w) = Q(i));
– append (⌊xi/w⌋), 0 ≤ i < w to R;

– append (⌊Pn(xQ−1(i))/w⌋), 0 ≤ i < w to W ;

3) calculate T based on the permutations stored in L, using

the techniques in [4], [5];

4) output R, T, and W ;

The most computationally difficult part of Algorithm 6 is

finding a permutation Qw that may be subtracted from Cw.
This can be accomplished in several ways: using a brute force

algorithm, mapping the problem to a satisfiability problem, or

using an algorithm based on systems of distinct representa-

tives (e.g., [11, Ch. 5]). In our implementation, we choose the

satisfiability approach; it is able to solve practical problem

sizes very quickly. For the largest problem we consider in

this paper (n = 4096, w = 64), Algorithm 6 completes in

approximately 6 minutes.

VI. IMPLEMENTATION AND EVALUATION

In this section, we discuss our implementation of the

proposed method, and evaluate the designs produced.

name type ports # needed # words bits per word

M0 RAM 2 w 2n/w b
M1 RAM 2 w 2n/w b
R ROM 1 1 n w · ⌈log2(n/w)⌉
W ROM 1 1 n w · ⌈log2(n/w)⌉
T ROM 1 1 n/w w′ log2 w′ − w′ + 1

Note: w′ = 2⌈log2 w⌉; b is the number of bits in each word of the datapath’s
inputs and outputs.

TABLE I
SUMMARY OF MEMORIES REQUIRED.

Synthesis Tool. Based upon the techniques discussed in this

paper, we have built a tool that takes as input a permutation

Pn and a streaming width w, and outputs a register-transfer

level Verilog description of the design. The tool generates an

instance of the parameterized datapath, and uses Algorithm 6

to determine the values to store in the lookup tables.

Analysis of Generated Designs. Table I summarizes the

number and size of memories needed by the solution we

propose. Our solution additionally requires w′ log2 w′−w′+1
two-input switches, where w′ = 2⌈log2

w⌉. In general, the cost

of our implementation depends only on n (the number of

points in the data vector) and w (the streaming width of the

system).2

Designs produced using this method have a throughput of

w words per cycle, and a latency of 2n/w + ⌈log2(w)⌉ + 3
cycles.

Experimental Evaluation. Here, we evaluate the cost and

performance of our generated designs when synthesized for a

Xilinx Virtex-5 FPGA. We use Xilinx ISE 9.2 to synthesize

and place/route designs, and we extract all timing and area

measurements after place/route has completed. In this evalua-

tion, we assume that the data words are b = 16 bits wide.

Virtex-5 FPGAs contain on-chip memory structures called

block RAM (BRAM). When our design requires a RAM or

ROM of size ≥ 1024 bits, we map it to a BRAM. Smaller

memories are created out of the FPGA’s reconfigurable logic

elements. This threshold (1024 bits) is a parameter of our

generation tool.

We evaluate the cost and performance of several config-

urations of our datapath: n = 64 with w = 2, 4, 8, 16, 32,

and n = 512, 4096 with w = 2, 4, 8, 16, 32, 64. Because the

cost of our implementation does not depend on the specific

permutation being performed, we choose one randomly for

each n. Figure 3 shows throughput (in gigabits per second)

versus FPGA area (in slices, which are the reconfigurable

blocks of the FPGA) for all designs. Each line shows a

different value of n (the problem size), and the different points

within a line correspond to different values of streaming width

w: the left-most point corresponds to w = 2; w doubles with

each successive point. (Recall, the throughput of each design

is w words per cycle.) Additionally, we label several of the

2The cost of implementation can only be further reduced in rare cases where
all or part of a lookup table or connection network is redundant.

0

50

100

150

200

250

300

0 1,000 2,000 3,000 4,000 5,000 6,000

area [slices]

n=64

n=512

n=4096

Streaming Permutations on Xilinx Virtex-5 FPGA
throughput [gigabits per second]

73

36

9

40

26

18 0

9
0

13

Fig. 3. Throughput versus slices for n = 64, 512, 4096. Labels: number of
BRAMs.

points with the number of block RAMs (BRAMs) used by that

design.

From Figure 3, we see that as w increases, the resulting

designs exhibit higher throughput, but become commensu-

rately more expensive (in area). As n increases, we do not

see a significant change in throughput or area, but we see a

large increase in the number of BRAMs required. This occurs

because the size of all memories grows with n (as shown in

Table I).

In order to provide a reference point for comparison, we

can compare our designs to [2], which describes a method

for generating streaming permutation circuits for a subset of

all permutations and streaming widths.3 The designs produced

by [2] utilize one memory array with interconnection networks

at its inputs and outputs; both networks are optimized for the

specific permutation considered. Furthermore, all memory and

switch configurations are calculated online; no lookup tables

are used. For many problems, [2] is able to produce designs

with the optimum address logic and switching network (given

the assumed architecture).

However, the technique in [2] is only applicable to a small

subset of streaming permutations. Our goal is not to improve

on [2]’s cost/performance tradeoff; we use it as a way to

measure the added costs incurred by moving to our general

structure.

The area required by the designs in [2] depends on the

permutation being performed (as well as the permutation size

and streaming width). So, we compare against designs for two

permutations: the stride-by-two permutation, which is in the

class of least expensive problems supported by [2], and the bit

reversal permutation, which is in the class of most expensive

problems. Again, we evaluate our designs using a random

3[2] is only able to perform permutations that arise from invertible mappings
on the bit representations of the indices, such as the bit reversal or stride
permutations. Of the n! possible permutations on n points, [2] is able to
perform (2m − 1)(2m − 2) · · · (2m − 2m−1), where n = 2m and only
when n and w are powers of two.

0

50

100

150

200

250

300

350

0 1,000 2,000 3,000 4,000 5,000 6,000

area [slices]

Proposed method

Stride permutation [2]

Bit reversal [2]

Streaming Permutations, n=512 on Xilinx Virtex-5 FPGA
throughput [gigabits per second]

9

0

0

0

0
4

18
8

8

4

Fig. 4. Comparison of proposed general method with [2]. Labels: number
of BRAMs.

permutation, since the cost does not depend on the specific

permutation being performed.

We synthesize and place/route these benchmark designs

using the previously stated assumptions, and present the results

in Figure 4 for n = 512. Again, we plot throughput versus

area and include the number of BRAMs for several designs.

For small values of w, all three designs have similar costs.

However, we see that as w increases, the amount of slices

and BRAM required for our general method increases more

quickly than those from [2]. If we repeat this experiment for

smaller problem sizes (values of n), the difference between

our method and the benchmark is reduced; for larger values

of n, it is increased.

VII. RELATED WORK

We do not know of any prior work on the general class

of RAM-based streaming permutation structures considered

in this paper. As discussed in Section VI, [2] provides a

generation technique for a subset of streaming permutations.

Other approaches (e.g., [1]) consider streaming implementa-

tions of a specific family (stride permutations). [12] builds

streaming permutation structures using a register allocation

method, resulting in a large number of individual registers

connected with switches or multiplexers.

As discussed previously, the structure we consider in this

paper and our mathematical approach are related to the input-

buffered crossbar switch [6], [7], [8], which is able to perform

network switching with minimum throughput guarantees. We

have modified certain aspects of this switch (replacing online

scheduling logic with pre-computed lookup tables), and have

added components (M1) that are necessary to adapt the design

for streaming permutations.

Furthermore, the task of calculating the schedule for the

input-buffered crossbar switch is related to the problem we

solve with Algorithm 6. Some approaches use a technique

similar to ours, where the mapping from input to output ports

is represented as a matrix that is then decomposed [7], [8].

Others approach the problem in different ways, e.g., as a

bipartite matching problem [6].

VIII. CONCLUSIONS

In this work, we described a parameterized architecture

for performing an arbitrary fixed permutation on a streamed

data vector. This design consists of double-ported RAMs, a

switching network, and lookup ROMs that store pre-computed

address and control data. We presented a technique that can

map any streaming permutation onto this datapath, and a

scheduling algorithm that guarantees the datapath can operate

at full throughput without stalling. Using these techniques,

we have developed a fully-automated tool that outputs a given

design in register-transfer level Verilog. Lastly, we evaluated

designs produced by our tool, and compared them with designs

from an existing, less general technique.

ACKNOWLEDGMENTS

This work was supported by DARPA under the DOI grant

NBCH1050009 and the ARO grant W911NF0710416 and by

NSF awards 0325687 and 0702386.

REFERENCES

[1] T. Järvinen, P. Salmela, H. Sorokin, and J. Takala, “Stride permutation
networks for array processors,” in Proc. IEEE Intl. Conf. on Application-

Specific Systems, Architectures and Processors, 2004.
[2] M. Püschel, P. A. Milder, and J. C. Hoe, “Permuting streaming data

using RAMs,” Journal of the ACM, in press.
[3] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal datapath

representation and manipulation for implementing DSP transforms,” in
Proc. Design Automation Conference, 2008.

[4] K. Y. Lee, “On the rearrangeability of 2(log2 n)− 1 stage permutation
networks,” IEEE Transactions on Computers, vol. 34, no. 5, pp. 412–
425, May 1985.

[5] A. Waksman, “A permutation network.” Journal of the ACM, vol. 15,
no. 1, pp. 159–163, 1968.

[6] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achiev-
ing 100% throughput in an input-queued switch,” IEEE Transactions on

Communications, vol. 47, no. 8, August 1999.
[7] S. Li and N. Ansari, “Input-queued switching with QoS guarantees,”

in Proc. INFOCOM (Joint Conference of the IEEE Computer and

Communications Societies), 1999.
[8] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “Birkhoff-von Neumann

input-buffered crossbar switches for guaranteed-rate services,” IEEE

Transactions on Communications, vol. 49, no. 7, January 2001.
[9] D. Kőnig, “Über Graphen und ihre Anwendung auf Determinantenthe-

orie und Mengenlehre,” Mathematische Annalen, vol. 77, pp. 453–465,
1915–1916.

[10] D. B. Leep and G. Myerson, “Marriage, magic, and solitaire,” American

Mathematical Monthly, vol. 106, no. 5, pp. 419–429, 1999.
[11] M. Hall, Jr., Combinatorial Theory. Wiley-Interscience, 1986.
[12] K. K. Parhi, “Systematic synthesis of DSP data format converters

using life-time analysis and forward-backward register allocation,” IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, vol. 39, no. 7, pp. 423–440, 1992.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

