
Finite Precision Bit-width Allocation using SAT-Modulo Theory

Adam B. Kinsman and Nicola Nicolici
Department of Electrical and Computer Engineering

McMaster University, Hamilton,ON L8S 4K1,Canada
kinsmaab@mcmaster.ca, nicola@ece.mcmaster.ca

Abstract
This paper explores the use of SAT-Modulo Theory in

determination of bit-widths for finite precision implementa-
tion of numerical calculations, specifically in the context of
scientific computing where division frequently occurs. Em-
ploying SAT-Modulo Theory leads to more accurate bounds
estimation than those provided by other analytical methods,
in turn yielding smaller bit-widths.

1 Introduction
Approximation of real numbers with infinite range and

precision by a finite set of numbers in a digital computer
gives rise to approximation error which is managed in two
fundamental ways. This leads to two fundamental repre-
sentations: floating-point and fixed-point which limit (over
their range) the relative and absolute approximation error
respectively. The suitability of limited relative error in prac-
tice, which also enables representation of a much larger
dynamic range of values than fixed-point of the same bit-
width, makes floating-point a favorable choice for many
numerical applications. Because of this, double precision
floating-point arithmetic units have for a long time been in-
cluded in general purpose computers, biasing software im-
plementations toward this format. This positive feedback
loop between floating-point software applications and ded-
icated floating-point hardware units has produced a body of
almost exclusively floating-point scientific software.

Although transistor scaling and architectural innovation
have enabled increased power for the above mentioned gen-
eral purpose computing platforms, advances in field pro-
grammable gate array (FPGA) technology have signifi-
cantly tightened the performance gap between FPGAs and
application specific integrated circuits (ASICs). This level
of performance without the cost associated with produc-
ing an ASIC has stimulated interest in reconfigurable hard-
ware acceleration platforms (see [14] for a comprehensive
survey of architectures and design methods). These plat-
forms stand to provide greater computational power than
general purpose computing, a feat accomplished by tailor-
ing hardware calculation units to the application, and ex-

ploiting parallelism by replication in FPGAs. Notable ex-
amples of applications presently undergoing active research
include molecular dynamics simulations [12] and computa-
tional fluid dynamics [11].

To leverage the FPGA parallelism, calculation units
should use as few resources as possible, standing in con-
trast to (resource demanding) floating-point implementa-
tions used in reference software. As mentioned above how-
ever, the use of floating-point in the software results mostly
from having access to floating-point hardware rather than
out of necessity of a high degree of precision. Thus by
moving to a reduced yet sufficient precision floating-point
or fixed-point scheme, a more resource efficient implemen-
tation can be used leading to increased parallelism and with
it higher computational throughput.

This problem is significant in the context of architectural
synthesis as it directly influences the cost of the functional
units which are to be employed. By reducing bit-width, all
elements of the data-path will be reduced, most importantly
memories, as a single bit saved reduces the cost of every sin-
gle address. Furthermore, propagation delay of arithmetic
units is often tied to bit-width, as well as latency in the case
of sequential units (e.g. sequential multiplier or divider).

2 Related Work / Motivation
In this section, we first overview the main existing meth-

ods for bit-width allocation, then provide a motivational ex-
ample highlighting challenges faced by these methods.

Discovering the minimum number of bits necessary to
accurately represent an intermediate variable from a cal-
culation is a two part problem. Both the range and preci-
sion required must be determined, from which can be in-
ferred the required number of exponent and mantissa bits
in floating-point, or integer and fraction bits in fixed-point.
A large volume of work exists targeted at determining range
and precision in the context of both digital signal processing
(DSP) and embedded systems, a good summary of which is
provided by [6]. Existing solutions can be classified into
one of two main categories: analytical (formal) and simula-
tion based (empirical).

978-3-9810801-5-5/DATE09 © 2009 EDAA

Empirical Formal

Statistical
Models

Random
Samples

Extensive
Times

Scientific
Calculation

Optimistic
Bit-widths

Robust
Bit-widths

Figure 1. Contrasting empirical and formal ap-
proaches.

Simulation based approaches rely on a representative in-
put data set and work by comparing the outcome of sim-
ulation of the reduced precision system to that of the “in-
finite” precision system, “infinite” being approximated by
“very high” - e.g. double precision floating-point on a gen-
eral purpose machine. Approaches including [1, 8] seek to
determine the range of intermediate variables by direct sim-
ulation while [13] creates a new system related to the dif-
ference between the infinite and reduced precision systems,
reducing the volume of simulation data which must be ap-
plied. Although simulation tends to produce more compact
data representations than analytical approaches, often the
resultant system is not robust, i.e. situations not covered
by the simulation stimuli can lead to overflow conditions
resulting in incorrect behavior.

These methods are largely inadequate for scientific com-
puting, due in part to differences between general scientific
computing applications and the DSP/embedded systems ap-
plication domain. Many DSP systems can be characterized
very well (in terms of both their input and output) using
statistics such as expected input distribution, input correla-
tion, signal to noise ratio, bit error rate, etc. This enables
efficient stimuli modeling providing a framework for simu-
lation, especially if error (noise) is already a consideration
in the system (as is often the case for DSP). Also, given
the real-time nature of many DSP/embedded systems appli-
cations, the potential input space may be restricted enough
to permit very good coverage during simulation. Contrast
these scenarios to general scientific computing where there
is often minimal error consideration provided and where
stimuli characterization is often not as extensive as for DSP.

As seen in Figure 1, simulation based methods are char-
acterized by a need for models and stimuli, excessive run-
times and lack of robustness, due to which they cannot be
relied upon in scientific computing implementations. In
contrast, analytical methods depend on the calculation only
and provide robust bit-widths. An obvious analytical ap-
proach to the problem is known as range or interval arith-
metic (IA) [9], which establishes worst-case bounds on each
intermediate step of the calculation by establishing worst-
case bounds on individual operations. Expressions can be
derived for the elementary operations, and compounded
starting from the range of the inputs. However, since depen-

dencies between intermediate variables are not taken into
account, the range explosion phenomenon results; the range
obtained using IA is much larger than the actual possible
range of values causing severe over-allocation of resources.

In order to combat this, affine arithmetic (AA) has arisen
which keeps track (linearly) of interdependencies between
variables (e.g. [4, 10]) and non-affine operations are re-
placed with an affine approximation often including intro-
duction of a new variable (consult [7] for a summary of
approximations used for common non-affine operations).
While often much better than IA, AA can still result in an
overestimate of an intermediate variable’s potential range,
particularly when strongly non-affine operations occur as
a part of the calculation, a compelling example being divi-
sion. As [4] points out, this scenario is rare in DSP, account-
ing in part for the success of AA in DSP however it occurs
frequently in scientific calculations.

Exactly solving the range determination problem is tan-
tamount to solving global optimization in general for which
no scalable methods are known. While relaxation to a con-
vex problem is a common technique for solving some non-
convex optimization problems [2], the resulting formula-
tion for some scientific calculations can be extremely ill-
conditioned, leading once more to resource over-allocation.

In order to demonstrate the hurdles encountered by both
simulation and existing analytical methods when applied to
scientific calculations, and thereby motivate this work, con-
sider the example in the following subsection.
2.1 Motivational Example

Let d and r be vectors ∈R
4, where for both vectors, each

component lies in the range [−100,100]. Suppose we have:

z =
z1
z2

=
d · r

1 +‖d− r‖
and we want to determine the range of z for integer bit-width
allocation. Table 1 shows the ranges obtained from simula-
tion, affine arithmetic and the proposed method. Notice that
simulation underestimates the range by 2 bits after 540 sec-
onds, ≈ 5× the execution time of the proposed method (98
seconds). This happens because only a very small but still
important fraction of the input space where d and r are iden-
tical (to reduce z2) and large (to increase z1) will maximize
z. In contrast, the formal methods always give hard bounds
but because the affine estimation of the range of the denomi-
nator contains zero, affine arithmetic cannot provide a range

Empirical Formal
Var. Simulation Affine Proposed

Range Bits Range Bits Range Bits
z1 [-3.7e4,3.7e4] 17 [-4e4,4e4] 17 [-4e4,4e4] 17
z2 [1,1.4e5] 18 [-8e4,1.6e5] 18 [0,1.6e5] 18
z [0,1e4] 14 ∞ – [-864,4e4] 16

Table 1. Motivational example.

2

Specification
(Scientific

Calculation)

Precision

Range

Affine
Arithmetic

Interval
Arithmetic

Initial ranges

Range
Refinement

Use of SAT-Modulo
Theory (contribution)

Bit-width Allocation

Design Exploration

Architectural Synthesis

Figure 2. Overall bit-width allocation flow.
for the quotient z. This scenario is handled correctly by the
proposed method which maintains all the benefits of analyt-
ical (formal) methods while at the same time visibly tighten-
ing the range of the operands. The key to this is the usage of
the recent developments in SAT-Modulo Theory and details
of its operation are discussed next.

3 Proposed Solution
Given the inability of simulation based methods to pro-

vide robust variable bounds, and the limited accuracy of
bounds from affine arithmetic in the presence of strongly
non-affine expressions (Section 2.1), we proposed a method
of range refinement based on SAT-Modulo Theory. The
context of this work is shown in Figure 2, note that we fo-
cus on the range determination problem. Existing analytical
techniques (e.g. [4, 6, 10]) have had more success in preci-
sion analysis over range analysis largely because precision
analysis deals with small ranges, over which affine approx-
imations are usually sufficiently reliable. As a result, we
focus this work on the range analysis problem.

To address this problem, we take a two stage approach
as shown in Figure 2 where loose bounds are obtained from
interval arithmetic, and subsequently refined using SAT-
Modulo Theory which is detailed in the next section.
3.1 SAT-Modulo Theory

Boolean satisfiability (SAT) is a well known NP-
complete problem which seeks to answer whether for a
given set of clauses in a set of boolean variables, there exists
an assignment of those variables such that all the clauses
are true. SAT-Modulo theory (SMT) generalizes this con-
cept to first-order logic systems. Under the theory of real
numbers, boolean variables are replaced with real variables
and clauses are replaced with constraints. This gives rise to
instances such as: is there an assignment of x,y,z ∈ R for
which x > 10, y > 25, z < 30 and z = x + y, which for this
example there is not i.e., this instance is unsatisfiable.

Instances are given in terms of variables with accompa-
nying ranges and constraints. The solver attempts to find an
assignment on the input variables (inside the ranges) which
satisfies the constraints. Most implementations follow a 2-
step model analogous to modern Boolean SAT solvers: 1)
the Decision step selects a variable, splits its range into two,

Obtain range
[L, U] for var by
interval analysis

Insert constraint
(var < limit)

X2 = limitX1 = limit

SAT /
SMT

UNSAT SAT

X2 – X1
< thresh?

NO YES

limit = (X1+X2)/2

X1 = L, X2 = U

Insert constraint
(var > limit)

X1 = limitX2 = limit

SAT /
SMT

UNSAT SAT

X2 – X1
< thresh?

NO

YES

limit = (X1+X2)/2

L = X1
X1 = L, X2 = U

Start

U = X2
var range = [L, U]

Done

Figure 3. SAT/SMT range refinement of var.

and temporarily discards one of the sub-ranges then 2) the
Propagation step infers ranges of other variables from the
newly split range. Unsatisfiability of a subcase is proven
when the range for any variable becomes empty which leads
to backtracking (evaluation of a previously discarded por-
tion of a split). The solver proceeds in this way until it has
either found a satisfying assignment or unsatisfiability has
been proven over the entire specified domain.

Building on this framework, an SMT engine can be used
to prove/disprove validity of a bound on a given expres-
sion by checking for satisfiability. Section 3.2 details how
bounds proving can be used as the core of a procedure ad-
dressing the range determination problem.
3.2 Range Refinement using SMT

Figure 3 illustrates the binary search method employed
for range analysis on the intermediate variable: var. Note
that each SMT instance evaluated contains the inserted con-
straint (val < limit or val > limit). The loop on the left of
the figure (between ”limit = (X1+X2)/2” and ”X2−X1 <
thresh?”) narrows in on the lower bound L, maintaining X1
less than the true (and as yet unknown) lower bound. Each
time satisfiability is proven, X2 is updated while X1 is up-
dated in cases of unsatisfiability, until the gap between X1
and X2 is less than a user specified threshold. Subsequently,
the loop on the right performs the same search on the upper
bound U , maintaining X2 greater than the true upper bound.
Since the SMT solver works on the exact calculation, all
interdependencies among variables are taken into account
(via the SMT constraints) so the new bounds successively
remove over-estimation arising in the original bounds re-
sulting from the use of interval arithmetic.

The overall range refinement process, Algorithm 1, uses
the steps of the calculation and the ranges of the input vari-
ables as constraints to set up the base SMT formulation,
note that this is where Insert constraint: from Figure 3 in-
serts to. It then iterates through the intermediate variables

3

Input : CalculationSteps, InputVarList, InputVar-
Ranges, IntermediateVarList

Output : IntermediateVarRanges

1 Use CalculationSteps to set up base SMT formulation;
2 foreach var in IntermediateVarList do
3 Refine range of var (Figure 3);
4 update IntermediateVarRanges for var;
5 update base SMT formulation with range of var;

end
6 RETURN IntermediateVarRanges;

Algorithm 1: RangeRefine

applying Figure 3 to obtain a refined range for that vari-
able. Once all variables have been processed the algorithm
returns ranges for the intermediate variables.

3.3 Dealing with Division

As discussed in Section 2, non-affine functions with high
curvature cause problems for AA, and while these are rare
in the context of DSP (as confirmed by [4]) they occur fre-
quently in scientific computing. Division is in particular a
problem due to range inversion i.e., quotient increases as
divisor decreases. While AA tends to give reasonable (but
still overestimated) ranges for compounded multiplication
since product terms and the corresponding affine expression
grow in the same direction, this is not the case for division.
Furthermore, both IA and AA are unequipped to deal with
divisors having a range that includes zero.

Use of SMT mitigates these problems, divisions are for-
mulated as multiplication constraints which must be satis-
fied by the SAT engine, and an additional constraint can be
included which restricts the divisor from coming near zero.
Since singularities such as division by zero result from the
underlying math (i.e. are not a result of the implementation)
their effects do not belong to range/precision analysis and
SMT provides convenient circumvention during analysis.

3.4 Consideration of Run-time

While leveraging the mathematical structure of the cal-
culation enables SMT to provide much better run-times
than using Boolean SAT (where the entire datapath and
numerical constraints are modeled by clauses obfuscating
the mathematical structure), run-time may still become un-
acceptable as complexity of the calculation under analysis
grows. To address this, a timeout is used to cancel the in-
quiry if it does not return before timeout expiry. In this
way the tradeoff between run-time and the tightness of the
variables’ bounds can be user controlled. If canceled, the in-
quiry result defaults to satisfiable in order to maintain robust
bounds, i.e. to assume satisfiable gives pessimistic bounds.

4 Case Studies
Given that target application domain for this method of

hardware acceleration for scientific computing, we seek to
address specifically the problem of division which is known
both to be common in scientific calculations, and to cause
problems for existing methods. This section details case
studies involving division, as well as one non-affine exam-
ple from DSP.
4.1 Energy Spectral Density

An application involving non-linearity which appears in
DSP is the calculation of energy spectral density (ESD),
which can be obtained as:

Φ(ω) =
1

2π
F(ω)F∗(ω)

where F(ω) indicates the Fourier Transform of the signal
of interest, or the Fast Fourier Transform (FFT) for discrete
signals. Since the FFT itself is affine, AA provides exact
bounds on all intermediate variables however, the ESD in-
volves magnitude of a complex number (non-affine) leading
to range overestimation.
4.2 Doppler Effect

The Doppler effect is the apparent change in frequency
observed when a sound source is in motion with respect to
an observer. For a given emitted frequency ν and a relative
speed of u between the source and observer, the perceived
frequency will be ν ′ = cν ÷ (c + u) where c is the speed of
sound in the medium. If the medium is air and we wish to
know how the rate of frequency change with respect to the
relative speed u depends on temperature, we have:

z =
dν ′

du
=

−(331.4 + 0.6T)ν
(331.4 + 0.6T + u)2

using the approximation for the speed of sound in air c ≈
331.4 + 0.6T, T in degrees Celsius.
4.3 A Rational Function

This case employs a rational function such as those
which arise when fitting curves to experimental data. Con-
sider the following function and its derivative:

z1 =
25t2 + 125

t2 + 1
z2 =

dz1
dt

=
−200t

(t2 + 1)2

over the range −100 ≤ t ≤ 100. It is worth noting that in
addition to being common in scientific computing, such cal-
culations may also arise in an embedded system, e.g. as a
part of the model used for prediction/control.
4.4 Newton’s Method

The final case deals with application of Newton’s method
applied to a polynomial. Given a polynomial

f (x) = c3x3 + c2x2 + c1x + c0

4

roots can be obtained by using Newton’s method:

xn+1 = xn − f (xn)
f ′(xn)

If we consider a single iteration, this results in:

z = x− z3 z3 =
z1

z2
=

c3x3 + c2x2 + c1x + c0

3c3x2 + 2c2x + c1

5 Experimental Results
In this section we compare the results of AA and the pro-

posed SMT approach applied to the case studies of the pre-
vious section. Experiments were carried out on 1.5 GHz
Pentium 4 with 512 MB of RAM running Gentoo Linux,
using the freely available HySAT implementation [5, 15] as
the core SMT solver. Ranges were obtained using (unless
otherwise specified) a timeout of 2 seconds, resulting in run-
times for all cases on the order of 100 seconds. In all cases
the number of bits needed for range [L,U] has been taken
as �log2(U −L)	 to facilitate evaluation of the actual span
of the numbers, taking into account how they are centered.
In almost all cases however, the result is identical to taking
�log2(max(|L|, |U |))	+ a, where a is 0 if L and U have the
same sign, and 1 otherwise.
5.1 Energy Spectral Density

As discussed in Section 4.1, the energy spectral density
can be obtained from the magnitude of the FFT. This ex-
periment uses an 8-point FFT with each of the 8 inputs a
complex number in [−128,128]+ [−128,128]i. Due to the
affine nature of the FFT, both AA and SMT provide exact
bounds on all intermediate variables in the FFT calculation
however AA overestimates the magnitude (non-affine).

Table 2 shows the ranges obtained from both AA and
SMT when applied to each of the 8 outputs of the ESD cal-
culation (to obtain these ranges a SAT timeout of 5 seconds
was used). Note that AA ranges are centered close to zero
while SMT ranges start near zero which is correct as only
positive values would be expected.

Clearly for this calculation, AA provides good estimates
of the ranges and thus the bit-widths, since only one level
of non-affine calculations occurs. In light of the inclusion

Affine SAT-Modulo
Output Range Bits Range Bits

0 [-1835008 , 2097152] 22 [-1 , 2097153] 22
1 [-2373666 , 2635814] 23 [-1 , 1984106] 21
2 [-2269321 , 2531463] 23 [-1 , 1790022] 21
3 [-2373666 , 2635814] 23 [-1 , 2052757] 21
4 [-1835008 , 2097152] 22 [-1 , 2097153] 22
5 [-2373666 , 2635814] 23 [-1 , 1957096] 21
6 [-2269321 , 2531463] 23 [-1 , 1790023] 21
7 [-2373666 , 2635814] 23 [-1 , 2029555] 21

Table 2. Affine vs. SAT-Modulo for Energy
Spectral Density.

Affine SAT-Modulo
Output Range Bits Range Bits

q1 [313 , 362] 6 [313 , 362] 6
q2 [-473252 , 7228000] 23 [6267 , 7228000] 23
q3 [213 , 462] 8 [213 , 462] 8
q4 [25363 , 212890] 18 [45539 , 212890] 18
z [-80,229] 9 [0 , 138] 8

Table 3. Affine vs. SAT-Modulo for Doppler.
Affine SAT-Modulo

Output Range Bits Range Bits
q1 [125 , 250125] 18 [124 , 250126] 18
q2 [1 , 10001] 14 [0 , 10002] 14
q3 [-20000 , 20000] 16 [-20001 , 20001] 16
q4 [-24999999 , 100020001] 27 [0 , 100020008] 27
z1 [-250 , 369] 10 [24 , 126] 7
z2 ∞ – [-67 , 67] 8

Table 4. Affine vs. SAT-Module for A Rational
Function.

of a large range of numbers below zero, subsequent calcu-
lations relying on the ESD can be expected to already begin
experiencing range inflation, especially as more variable in-
terdependencies arise. Consider also that division does not
occur, which it does in the following examples.
5.2 Doppler Effect

This case study was broken intermediately into:
q1 = 331.4 + 0.6T q2 = q1ν

q3 = q1 + u q4 = q2
3 z = q2/q4

and the parameters that were used were:
• temperature: −30◦C ≤ T ≤ 50◦C
• audible frequencies: 20Hz ≤ ν ≤ 20000Hz
• relative speed: −100m/s ≤ u ≤ 100m/s

Observing Table 3, note that AA and SMT provide compa-
rable ranges for all variables except for z where the division
occurs and where the bit-width is overestimated by 1 bit.
Despite the fact that this calculation has fewer levels of in-
termediate variables than the aforementioned ESD, and the
fact that all upper bounds from AA were exact, the resultant
range was still overestimated, a prime example of the result
of range inversion mentioned in Section 3.3.
5.3 A Rational Function

For this case study there is only one free variable,
−100 ≤ t ≤ 100 leading to strong correlations between all
the intermediates:

q1 = 25t2 + 125 q2 = t2 + 1 z1 = q1/q2

q3 = −200t q4 = q2
2 z2 = q3/q4

Table 4 shows how the ranges evolve, as before the output z1
suffers because of the division. Notice as well that AA can-
not provide bounds for z2 because the range of the divisor
(q4) includes zero, according to the affine approximation.
Even if we cheat and use the SMT lower bound of q4 ≥ 1,
the resultant range will be z2 ∈ [−20000,20000] requiring
16 bits, 8 more than allocated by SMT.

5

Affine SAT-Modulo
Output Range Bits Range Bits

z1 [-1205360 , 1170360] 22 [-1205361 , 1135361] 22
z2 [-5753 , 35769] 16 [1 , 35769] 16
z3 ∞ – [-39 , 38] 7
z ∞ – [-69 , 72] 8

Table 5. Affine vs. SAT-Module for Newton’s
Method.

5.4 Newton’s Method
In this final case study, the fully expanded intermediates

have been omitted for readability. The dividend and divisor
polynomials from 4.4 (z1 and z2) were expanded in interme-
diate steps using Horner’s method [3] to reflect a potential
hardware implementation. The range of x was [-100,100]
and the coefficient ranges were:

c0 ∈ [−10,10] c1 ∈ [7.5,8.5]
c2 ∈ [−3.75,−3.25] c3 ∈ [0.833,1.167]

Table 5 shows the results for the major intermediates (the
ones which have been omitted had identical bit-widths),
where as before the quotient z3 cannot be calculated due
to the inclusion of zero within the range of the divisor
z2. If as before we use the bound from SMT (1.83 which
has been floored to 1 in the table), we end up with z3 ∈
[−658668,620416]and z∈ [−658768,620516] requiring 22
integer bits each, at least 14 more than necessary per signal.
5.5 Run-time/Accuracy Tradeoff

We now briefly discuss the tradeoff between SMT time-
out and accuracy of bounds. Figure 4 shows how the range
and number of bits for the 8 ESD outputs (it is unimportant
which is which) vary as timeout increases. Note first that
the bounds are always hard (robust), and thus decrease as
the SMT solver is allowed to run for longer. For short time-
outs, the SMT assumes satisfiability when terminated, and
extra bit-width ends up being allocated. Notice also how-
ever that as the timeout is increased the range comes down
very slowly (Figure 4(a)), while the number of bits is met
with much less effort (Figure 4(b)).

6 Conclusion / Future Work
This paper has demonstrated the use of SAT-Modulo the-

ory for range analysis in bit-width allocation, and results
have shown that robust bounds (unlike from simulation) can
be obtained which are significantly tighter than from affine
arithmetic. Ongoing work for this method will include ex-
pansion to deal with iterative methods such as Newton’s
method (for more than just one iteration as in Section 4.4)
and Conjugate Gradient, as well as exploring solver run-
time management for more complex calculations.

References
[1] P. Belanovic and M. Rupp. Automated Floating-point to Fixed-point

Conversion with the Fixify Environment. In Proc. International
Workshop on Rapid System Prototyping, pages 172–178, 2005.

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

1s 2s 5s 10s 20s 50s
SMT timeout

O
ut

pu
t U

pp
er

 B
ou

nd
 (m

ill
io

ns
)

(a) ESD Output Ranges

20

21

22

23

1s 2s 5s 10s 20s 50s
SMT timeout

O
ut

pu
t B

its

(b) ESD Output Bit-widths
Figure 4. Effect of timeout on range/bit-width.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[3] R. L. Burden and J. D. Faires. Numerical Analysis, 7th Edition.
Brooks Cole, 2000.

[4] C. Fang, R. Rutenbar, and T. Chen. Fast, Accurate Static Anal-
ysis for Fixed-point Finite-precision Effects in DSP Designs. In
Proc. International Conference on Computer Aided Design (IC-
CAD), pages 275–282, 2003.

[5] M. Franzle and C. Herde. HySAT: An Efficient Proof Engine for
Bounded Model Checking of Hybrid Systems. Formal Methods in
System Design, 30(3):178–198, June 2007.

[6] D.-U. Lee, A. Gaffar, R. Cheung, O. Mencer, W. Luk, and G. Con-
stantinides. Accuracy-Guaranteed Bit-Width Optimization. IEEE
Transactions on Computer-Aided Design, 25(10):1990–2000, Oc-
tober 2006.

[7] J. Lopez, C. Carreras, and O. Nieto-Taladriz. Improved Interval-
Based Characterization of Fixed-Point LTI Systems With Feed-
back Loops. IEEE Transactions on Computer Aided Design,
26(11):1923–1933, November 2007.

[8] A. Mallik, D. Sinha, P. Banerjee, and H. Zhou. Low-Power Opti-
mization by Smart Bit-Width Allocation in a SystemC-Based ASIC
Design Environment. IEEE Transactions on Computer-Aided De-
sign, pages 447–455, March 2007.

[9] R. Moore. Interval Analysis. Prentice Hall, 1966.
[10] W. Osborne, R. Cheung, J. Coutinho, W. Luk, and O. Mencer.

Automatic Accuracy-Guaranteed Bit-Width Optimization for Fixed
and Floating-Point Systems. In Proc. International Conference on
Field Programmable Logic and Applications (FPL), pages 617–620,
2007.

[11] K. Sano, T. Iizuka, and S. Yamamoto. Systolic Architecture for
Computational Fluid Dynamics on FPGAs. In Proc. International
Symposium on Field-Programmable Custom Computing Machines,
pages 107–116, 2007.

[12] R. Scrofano, M. Gokhale, F. Trouw, and V. Prasanna. Accelerating
Molecular Dynamics Simulations with Reconfigurable Computers.
IEEE Transactions on Parallel and Distributed Systems, 19(6):764–
778, June 2008.

[13] C. Shi and R. Brodersen. An Automated Floating-point to Fixed-
point Conversion Methodology. In Proc. International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pages 529–
532, 2003.

[14] T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, and
P. Cheung. Reconfigurable Computing: Architectures and Design
Methods. IEE Proceedings - Computers and Digital Techniques,
pages 193–207, March 2005.

[15] University of Oldenburg. HySAT Download.
http://hysat.informatik.uni-oldenburg.de/26273.html.

6

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

