Design and Implementation of Scalable, Transparent
Threads for Multi-Core Media Processor

Takeshi Kodaka, Shunsuke Sasaki, Takahiro Tokuyoshi, Ryuichiro Ohyama
Nobuhiro Nonogaki, Koji Kitayama, Tatsuya Mori, Yasuyuki Ueda, Hideho Arakida
Yuji Okuda, Toshiki Kizu, Yoshiro Tsuboi and Nobu Matsumoto
Toshiba Corporation, Semiconductor Company
Center for Semiconductor Research and Development
580-1, Horikawa-Cho, Saiwai-Ku, Kawasaki, Kanagawa, Japan

Abstract—In this paper, we propose a scalable and transparent
parallelization scheme using threads for multi-core processor. The
performance achieved by our scheme is scalable to the number of
cores, and the application program is not affected by the actual
number of cores.

For the performance efficiency, we designed the threads so that
they do not suspend and that they do not start their execution
until the data necessary for them are available. We implemented
our design using three modules: the dependency controller, which
controls dependencies among threads, the thread pool, which
manages the ready threads, and the thread dispatcher, which
fetches threads from the pool and executes them on the core.

Our design and implementation provide efficient thread
scheduling with low overhead. Moreover, by hiding the actual
number of cores, it realizes transparency. @ We confirmed the
transparency and scalability of our scheme by applying it to
the H.264 decoder program. With this scheme, modification of
application program is not necessary even if the number of cores
changes due to disparate requirements. This feature makes the
developing time shorter and contributes to the reduction of the
developing cost.

I. INTRODUCTION

As portable devices prevail and network infrastructures
become sophisticated, processing of multimedia data, such as
image and audio, gets more and more divergent and compli-
cated. In order to handle complicated and diverse processing
of multimedia data, multi-core architectures have been widely
adapted.

On multi-core architecture, parallelization of application
program is necessary in order to process data efficiently.
Parallelization of application program is usually realized by
converting existing application program for single core into
one for multi-core architecture.

It is sometime necessary to change the number of cores in
order to satisfy different requirements. If application program
has to be parallelized every time the number of core changes,
developing time becomes longer and it makes developing cost
more expensive.

To address these problems, some platforms are proposed
[1], but they are for high performance computing and hence
it is difficult to adapt them for portable devices due to high
overhead.

In this paper, we propose a parallelization scheme, which
enables us to achieve scalable performance without modifying

978-3-9810801-5-5/DATE09 © 2009 EDAA

Media Processing Engines (MPEs)

L1 1 : L1 Instruction Cache
L1 D: L1 Data Cache

MPE MPE MPE MPE

L11|L1D L11 (L1D L1l |L1D L11 (L1D

L2 Cache

Main Memory

Fig. 1. Block Diagram of Target Architecture

application program even if the number of cores changes. In
the next chapter, the hardware architecture of our target is
described, followed by the details of our scheme. Then we
show the application of our scheme to H.264 decoder and
conclude this paper.

II. TARGET HARDWARE ARCHITECTURE

Fig. 1 depicts the target architecture of the hardware [2],
which consists of several cores, called MPE. Each MPE
includes a 32-bit RISC core accompanied with a 64-bit SIMD
2-way VLIW coprocessor, L1 instruction and data cache.
This VLIW coprocessor is the same as image recognition
processor[3] except that it has extended instructions for audio
processing. Outside MPEs exists L2 cache, which can be
accessed from all the MPEs. Further, the L2 cache is connected
to main memory.

This architecture is designed so that the performance im-
proves in proportion to the number of MPEs. Therefore, by
changing the number of MPEs, this architecture can handle a
variety of applications.

Fig. 2 shows a chip micrograph of the processor imple-
mented based on the architecture. The specifications of the
chip are described in Table I.

TABLE I
CHIP SPECIFICATION

Technology 65nm CMOS, triple-well, 8-layer-metal
Die Size 5.06mm x 5.06mm
Gate Counts Logic 3.6M Gates
SRAM 5.6Mb
Clock Frequency | MPE, L2 cache logic 333MHz
L2 cache SRAM, Bus I/F | 166MHz

L1 cache 8KB (Instruction) / 8KB (Data)
2-way set associative, FIFO
64B Line

L2 cache 512KB (unified)

4-way set associative, LRU
256B Line

'||||||| T O T e e e T

MPE | MPE
HII.‘I
i

IWPE

ll.
I III [II
I Iﬂll (] [{H

MPE

il il
| 4|
I

| L2 cache SRAM 2 cache

igontrolle NS

L1D L1l

T T

& MPE MPE MPE " MPE

Fig. 2. Chip Micrograph

III. PARALLEL PROCESSING SCHEME FOR THE TARGET
ARCHITECTURE

One of the most important factors in terms of performance
is how to divide application program to smaller parts and how
to assign them on each core.

Furthermore, for efficiency of application program devel-
opment, the transparency, which hides the actual number of
cores and makes the program independent from it, is another
significant factor.

In this chapter, we propose the parallelization scheme which
realizes both the transparency and the performance scalability.

A. The Proposed Parallel Processing Method

As explained below, there are two types of parallelization
methods: pipelining and threading. We adopted the thread
based parallelization as our fundamental principle.

1) Pipelining: One of the methods to develop parallel
application program for multi-core processor is pipelining. As

assigning functions to 5 cores

Fig. 3. Pipeline Based Parallel Processing

7 hread Scheduler

ead eﬂd Threa
Cogh Q"«Eﬁe Coite (}'1"5%

Fig. 4. Thread Based Parallel Processing

shown in Fig. 3, the application program is divided into some
modules (funcl() to funcl0()) so that data are passed among
them. This method gives the best performance when the load is
distributed equally among modules. However, if the number of
cores changes, division and assignment have to be done again.
Therefore, this method is not transparent and the application
program is not reusable.

2) Threading: Another type of parallelization is threading.
This method divides a application program into smaller parts,
called threads, which are as small as a function in C language,
and each thread is assigned to one core by thread scheduler
on the fly as shown in Fig. 4. The data are passed through
threads. As the number of threads increases, the performance
improves. However, in order to assure the correct operation,
the scheduling that assigns each thread to a core in appropriate
order is necessary. In terms of application program reusability,
the scheduler hides the number of cores and enables to develop
application program independent from the actual number of
cores.

B. The Proposed Thread Scheduler

In our threading concurrency model, the thread scheduler is
the most important factor in order to realize the transparency
and the performance scalability. For the performance
scalability, we have developed the scheduling mechanism,
aiming at reduction of scheduling overhead and improvement
of efficiency. For the transparency, we have developed the
interface that hides the actual number of cores from application

p

Thread Scheduler

(MPE \\
Dependency
Controller
thread

dispatcher
MPE)

Thread Pool

necessary
available

thread
dispatcher /

\

Fig. 5. Proposed Thread Scheduler

programs.
The thread scheduler has the following properties.
o A thread can not suspend during its execution
o A thread does not start until all the data necessary for the
thread become ready.

Based on this design, we implemented the scheduler which
consists of three modules as shown below.

o The dependency controller

o The thread pool

o The thread dispatcher
Our implementation is depicted in Fig. 5.

1) The synchronization mechanism of threads: An appli-
cation program consists of threads which communicates with
each other by sending and receiving data. The shared data
must be read and written at proper timing so that the whole
system runs correctly. When data are passed, a consumer
thread must wait until a proper producer thread sends the
data. If the consumer thread suspends until the producer thread
generates data, the context, which includes registers, stack, and
so on, must be saved. Likewise, the context must be restored
when the thread resumes. These save and restore operations
are costly, particularly for the architecture with many registers,
such as VLIW coprocessor. Hence we designed so that threads
do not suspend. Additionally, in our design, a thread starts
its execution only when all the data necessary for the thread
are available. This design eliminates the number of context
switches, resulting in reduction of scheduling overhead.

2) Selecting ready threads: In our design, a thread becomes
ready to run only when all the necessary data are available.
In order to check if a thread is ready, the number of data
necessary for the thread and the counter holding the number
of data already available are used.

When an application program does calculation with threads,
it registers the threads to the thread scheduler with the number
of data necessary for each thread. Then, when the data
necessary for the thread become ready, the counter for the
thread is updated. If the number of data necessary for thread
and the number of data which are already available are equal,
the thread is deemed to be ready to run.

As shown above, by considering the number of data as in-
formation for a thread, the amount of information for checking
the status of a thread and the cost of selecting a thread are
reduced, resulting in decrease of scheduling overhead.

3) The thread execution mechanism: The overhead of
scheduling heavily depends on operations to check which
threads are available and to select the appropriate thread.
We implemented the thread scheduler with three modules:
the dependency controller, the thread pool and the thread
dispatcher. This design makes overhead of scheduling smaller
as described below.

The dependency controller keeps a record of the number of
data necessary for the thread and the counter, and checks if a
thread is ready to run. Moreover, the dependency controller
provides interface between an application program and the
thread scheduler. All the threads are registered to this mod-
ule and managed by the dependency controller. A thread is
transferred to the thread pool when it becomes ready to run.

The thread pool is a kind of buffer which stores threads
transferred by the dependency controller. Threads are stored
in this pool until they are fetched by the thread dispatcher:

The thread dispatcher fetches a ready thread and execute it.
This module runs on every core and works independently. The
thread dispatcher always monitors the thread pool. If it finds
a thread in the thread pool, it fetches the thread and execute
it. Fig. 6 illustrates an example of thread execution. When an
application program does calculation with threads, it registers
threads to the dependency controller along with the number of
data necessary for the thread. (Fig. 6 (a)). When the data are
created by the producer, the producer send a message to the
dependency controller to tell that the data are ready. Receiving
the message, the dependency controller increments the counter
which holds actual number of ready data. If the number of data
necessary for the thread and the counter which holds actual
number of ready data are equal, the thread is deemed to be
ready to run. The ready thread is transferred to the thread pool.
(Fig. 6 (b)).

Meanwhile, the thread dispatchers run on cores for thread
execution. The thread dispatcher monitors the thread pool and
if a thread is transferred to there as described above, it fetches
the thread from the thread pool. Finally, the thread is executed
on the core that the thread dispatcher runs on. (Fig. 6 (c)).

This design of thread execution separates selecting ready
threads from the execution of threads because the depen-
dency controller and the thread dispatcher run independently.
Therefore, each operation runs concurrently and scheduling is
performed more effectively.

4) The transparency: In order to hide the number of cores,
the interface to application program should be minimal. In our
design, we decided to have one interface, the dependency con-
troller. Application program sends message to the interface,
such as requests of registering a thread and notifications of data
generation. With this design, only the dependency controller
is visible from application program, and it hides the number
of cores.

IV. APPLICATION OF THE PROPOSED SCHEME TO H.264
DECODER

In this chapter, we show the result of application to H.264
decoder to prove the effectivity of our scheme.

Thread Scheduler
Dependency LEE
Controller
5 o Thread Pool
i3 dispatcher
registe ER;
1|0 | < e
thread

(a) registering a thread

Thread Scheduler
Dependency MPE
Controller
N thread
£ % Thread Pool
Appl. 2 T becomesready
- . "’
111 Thread hotif Thread
i
dispatcher
notifying data generation
Thread Scheduler
Dependency
Controller

necessary
available

dispatcher

¢) executing a thread

Fig. 6. Example of thread execution

VSP

Fig. 7.

System Block Diagram of H.264 Decoder

A. Exploit of Parallelism in H.264 Decoder

Fig. 7 illustrates typical H.264 decoder. We divided it
into three components, CSP, the Coded Stream Processing
component, VSP, the Video Signal Processing component, and
FOC, Frame-buffer Output Controlling component. We applied
our parallelization scheme to VSP.

First, we examined the parallelism of VSP. VSP has spatial
parallelism and temporal parallelism. Temporal parallelism
means that different operations can be done simultaneously.
In the case of VSP, decoding of luma signal and chroma
signal does not require data exchange. Hence these parts

time

THREAD1 THREAD3
MC (L) [~ IPAQT (L)

THREADO \ THREADS
MVP < DBF(L)
BS / EoM
PCM \ THREAD2 THREAD4 /
MC (C) —p| IP/IQT (C)

L: Luma
C: Chroma

Fig. 8. Temporal Dependency of H.264 Decoder

MB MB

W—>.O
"

—>® @

F

= @

Y

._),#GN'

#20

AN

>

B
|#M2 RS S #MNl

Spatial Dependency of THREADS

Fig. 9.

are considered to have temporal parallelism. Further, these
parts can be divided into threads so that each thread has
approximately the same load. As the result, the threads have
dependencies, shown in Fig. 8. In this figure, each node
indicates a thread after temporal parallelism is extracted and
arrows correspond to data transmission among nodes.

Second, we analyzed the threads which were already divided
in terms of temporal parallelization, in order to improve
performance with spatial parallelization. Spatial parallelization
means that a module which operates on different location
can be executed simultaneously. The VSP, which operates in
macro block level, can be divided so that they utilize spatial
parallelism. Fig. 9 shows the extraction of spatial parallelism
of THREADS in Fig. 8. Each node indicates operations in
macro block level and arrows represent data transmission.
Spatial parallelism is extracted from Fig 9. For example,
MB#01 creates data necessary for MB#02 and MB#10, and
each of them can be executed concurrently.

As shown above, temporal and spatial parallelism are ex-
tracted from H.264 decoder. Fig 10 shows the final result of
concurrency.

B. Evaluation

Fig. 11 shows the result of performance of H.264 - 720p
with the different number of cores. The x-axis indicates the
number of MPEs for VSP processing, and the y-axis indicates
the decoded frame rate. Because of the transparency, the same

THREAD3

THREAD1

THREADS

125
vd

THREAD2 THREAD4

Fig. 10. Temporal and Spatial Dependency of H.264 Decoder

application program is used on the evaluation, regardless of
the number of cores.

The H.264 decoder, which is used for this evaluation,
utilizes two MPEs for CSP and FOC. The VSP operation,
which uses threads, runs on the different number of MPEs.
The number of MPEs for VSP operation is specified when the
decoder starts. We change the number of them from 1 to 6
for evaluation. The evaluation in this section is based on the
in-house cycle accurate simulator, which is developed for the
processor described in II.

As shown in Fig. 11, when the number of MPE changes
from 1 to 4, the frame rates scale up to 10.6, 20.4, 29.1,
and 35.7 respectively. This result proves that the performance
improves in proportion to the number of MPEs and that
our design and implementation are effective for multi-core
architecture.

Meantime, the frame rate is 41.1 with 5 MPEs and 43.2
with 6 MPEs. The improvement is saturated at 5 MPEs. This
saturation is caused by L2 cache which is shared by all the
MPEs. As the number of MPEs increases, so does the number
of accesses to L2 cache. Therefore, the hit rate of L2 cache
decreases and the latency to access memory or cache becomes
longer.

V. CONCLUSIONS

In this paper, we proposed the parallelization scheme which
realizes scalable performance and transparency. We scrutinized
the effectiveness and overhead of the scheduler, and the inter-
face between application programs and the thread scheduler.

43.2

357

20.4

Frame Rate (fps)
|

1 2 3 4 5 6

Number of MPEs

Fig. 11. Frame Rate of H.264 Decoder

In our design threads have two properties: 1) a thread can
not be suspended once it starts and 2) a thread becomes
ready to run only when all the data necessary for the thread
are available. The readiness of a thread depends only on
the number of data necessary for the thread. Our scheduler
consists of three modules, the dependency controller, the
thread pool and the thread dispatcher.

In our design, as the number of cores increases, the per-
formance improves. Also the application program developed
by our scheme does not depend on the number of cores,
which is hidden by our design. By applying our scheme to
H.264 decoder, we confirmed that the performance improves
in proportion to the number of cores without modifying the
application program.

Yet, performance declines as the number of cores are large.
To handle this issue, we are planing to develop a new scheduler
which will improve cache efficiency.

REFERENCES

[1] S.Maeda and et al., “A real-time software platform for the cell processor,”
IEEE micro, vol. 25, no. 5, pp. 20-29, Sept.-Oct. 2005.

[2] S. Nomura and et al., “A.9.7mw aac-decoding, 620mw h.264 720p 60fps
decoding, 8-core media processor with embedded forward-body-biasing
and power gating circuit in 65nm cmos technology,” ISSCC Dig. Tech.
Papers, pp. 262-263, Feb. 2008.

[3] J. Tanabe and et al., “Visconti: Multi-vliw image recognition processor
based on configurable processor,” IEEE Custom Integrated Circuits Con-
ference, pp. 185-188, Sep. 2003.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

