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Abstract

Dynamic Partial Reconfiguration (DPR) is a promising
technology ready for use, enabling the design of more flex-
ible and efficient systems. However, existing design flows
for DPR are either low-level and complex or lack support
for automatic synthesis. In this paper, we present a Sys-
temC based modelling and synthesis flow using the OSSS+R
framework for reconfigurable systems. Our approach ad-
dresses reconfiguration already on application level en-
abling early exploration and analysis of the effects of DPR.
Moreover it also allows quick implementation of such sys-
tems using our automatic synthesis flow. We demonstrate
our approach using an educational example.

1. Introduction

Dynamic Partial Reconfiguration (DPR) is the ability of
FPGAs, to change some parts of their programming while
the remaining (static) parts keep operating. With current
hardware description languages like Verilog, VHDL, or
SystemC [7], DPR can only be expressed at a very low
implementation level. There is no support for explicitely
expressing the change of design components at runtime in
these HDLs. More importantly, it is not possible to ex-
plore the impact of reconfigurable sub-systems on the per-
formance and behaviour of the system as a whole in early
design phases.

Additionally, using DPR manually requires a lot addi-
tional design effort, since it affects both static and dynamic
parts of the design. This time-consuming and error-prone
work makes DPR prohibitive for practical use in real prod-
ucts. There has been quite some research to overcome this.
Unfortunately the proposed solutions required a significant
change in modelling the static part of the design.

OSSS+R is a SystemC based design methodology en-

abling algorithmic specification in C/C++, functional sim-
ulation and automated synthesis. Our extension to the set
of available modelling primitives and simulation abilities is
done in terms of a SystemC domain-specific library, avail-
able under the LGPL license. Simulation can be done with
any IEEE 1666-2005 standard conforming simulator. The
designer identifies potential candidates for dynamic recon-
figuration, marks them and observes the effects by simula-
tion. The model can be directly fed into the Fossy synthe-
sis tool, generating VHDL. Feeding resulting files into an
FPGA synthesis tool quickly yields bitfiles and initial, ap-
proximate configuration times. A back-annotation of these
times into the abstract model allows performance evalua-
tions.

The basics of our approach have been presented in
[15, 16] leaving the synthesis as an outlook. This contribu-
tion fills the gap by describing the complete design flow in-
cluding automatic synthesis. We demonstrate our approach
using a reconfigurable waveform generator, starting from a
pure C++ application level model which is refined to a high
level OSSS+R model and finally synthesised to a register
transfer level model. We further present results of the final
implementation of the system on a Xilinx ML-401 develop-
ment board using the Xilinx Early Access Partial Reconfig-
uration design flow [18].

2. Previous work

OSSS [5] is a SystemC-based design methodology en-
abling the object-oriented modelling of synthesisable hard-
ware/software systems. The synthesisable subset of Sys-
temC is extended by additional elements for high-level
modelling, like shared variables, polymorphism or transac-
tion level modelling. It consists of a simulation library and
a synthesis tool, called Fossy [6].

OSSS+R extends OSSS by adding language elements for
reconfigurable components and component arbitration. The
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approach uses object-oriented techniques as an abstraction
mechanism for dynamic partial reconfiguration. Reconfig-
urable components of are modelled as polymorphic objects,
providing a statically determined method-interface to the
system. The polymorphism allows to exchange the cur-
rently available behaviour during run-time. Additionally,
activity within reconfigurable components is limited to the
execution of its methods. Therefore, the disabling of a com-
ponent is well-defined outside those periods of activity.

Given this abstract modelling most of the low-level de-
tails of the reconfiguration are transparent to the designer.
On the other hand, the simulation library is able to reflect
the effects of reconfiguration such as reconfiguration delays
and concurrent accesses to a single reconfiguration con-
troller. Therefore, designers can explore whether or not re-
configuration is beneficial for their application already in
early phases of the design cycle.

A drawback is, that not all general reconfigurable cir-
cuitry can be modeled. For example, user-defined processes
can’t be embedded in reconfigurable parts. Instead, recon-
figurable areas are shared and flexible datapath extensions
that are automatically managed.

3. Related work

There are other frameworks which allow both modelling
and synthesising of dynamic reconfigurable systems.

One example is Pebble[10], a low level HDL providing
specific statements for reconfiguration. One is a mux/de-
mux encapsulation of logic variants. The control inputs of
these muxes are used as reconfiguration conditions. The
logic variants are to be exchanged during reconfiguration.
Additionally, a RECONFIGURE_IF statement allows an al-
ternative specification. The specification does not cover re-
configuration times. A compiled model can be simulated
using the Rebecca simulator. The authors demonstrated
synthesis for an Xilinx 6200 FPGA.

JHDL[3] is a structural hardware description language
based on Java. It provides reconfigurable elements, called
PRSocket, which can receive a Reconfigure(int) call,
requesting a specified implementation. Depending on the
argument, new circuit nodes are created. JHDL can be
simulated and synthesised. The system clock needs to be
stopped during reconfiguration, which makes modelling of
reconfiguration times impossible.

T.K. Lee et al. [9] used RT C to describe a reconfigurable
system. The reconfigurable elements are tasks, which are
grouped in structs, arrays or unions. The grouping deter-
mines the replacement, e.g. members of a union are mu-
tually exclusive. These groupings allow influence on con-
trol complexity, area demands and design performance. An
example model was transformed into Handel-C and RTPeb-
ble, with tool assistance and some manual work. It was then

implemented on a Celoxica RC1000-PP board.
The DCS toolset [11] accepts specially crafted VHDL as

its input, containing all implementations of the configurable
components. It also needs auxiliary scheduling and timing
information. The toolset then generates a simulation model
for debugging. Since the design is already given in VHDL,
FPGA vendor tools are used to implement the design [14].

There are other approaches, based on SystemC (like
OSSS+R), which allow simulation but do not have no tool-
assisted synthesis.

SyCERS[1] is a framework allowing modelling of run-
time reconfiguration, intended to explore design alterna-
tives. The functionality to be replaced is represented by
functions inside modules. These functions are called from
the body of SC THREADs and SC METHODs. By using
function pointers to change the function at simulation time
the dynamic behaviour is achieved. Simulation is done by
mapping to the Caronte architecture, containing a micropro-
cessor to access the reconfigurable modules.

In [2] a modelling framework using dynamic thread
spawning is used. The framework implements an additional
layer to the SystemC kernel providing required features like
dynamic ports. Using this layer, threads can be replaced at
runtime, expressing dynamic behaviour.

The ReChannel library[13] allows modelling of run-time
reconfiguration at different levels of abstraction. Though
ReChannel guides the designer during iterative refinement
to lower levels of abstraction it does not provide automatic
synthesis.

In these approaches, the management of the dynamic re-
sources (which thread may use which resources at what in-
stant) needs to be specified manually. An exception to this
is used in the ADRIATIC project [12]. In this approach,
mutual exclusive modules are to be described as bus slaves.
Then multiple slaves are grouped and wrapped in a dynamic
reconfigurable fabric (DRCF) which switches among them
and acts as a physical bus slave itself. The bus master re-
quests a specific logical slave by its bus address which is
then utilised by the DRCF to enable the requested logical
bus slave. The DRCF introduction is done at RT level.

The given list of SystemC-based approaches do not in-
clude those requiring a modified simulation kernel. Further
SystemC-based approaches can be found in [4, 8, 17].

4. Modelling example: A waveform generator

The guiding example for this paper is a C++ benchmark
implementing an audio signal generator. It contains a gener-
ator function producing three different kinds of waveforms:
triangle, square and sawtooth. The waveforms are amplified
by the output of an envelope generator and then processed
by either a simple low pass filter or an periodic amplifier
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which increases and decreases the volume over time. The
waveform type and filter kind may be reconfigured.

The original model has been implemented as an object-
oriented C++ model. Each type of the waveform generator
module is implemented as individual class with one com-
mon base class, since they are all waveform generators.
Same applies to the selectable filters. The amplitude of the
envelope generator object can be set via a method call.

This example is rather simple and artificial. However,
the design is easy to understand and well-suited to explain
problems and solutions of DPR and to illustrate the overall
OSSS+R design flow.

5. Modelling in OSSS+R

In a SystemC design flow the design entry may be a
C/C++ description of the application’s core algorithms. This
is to be refined into a hardware description, using SystemC
modelling elements. SystemC presents itself as a library,
not a language, so one may also use all features of C/C++.
While this allows faster simulation and easier modelling,
the drawback is, that such a model might use features which
are (typically) not synthesisable. Manual recoding would be
required to obtain a synthesisable model written in Verilog
or VHDL for example. A designer may be tempted to avoid
all non-synthesisable features in the first place, however this
would sacrifice advantages like more abstract modelling.

OSSS+R encourages the designer to use C++ features,
since classes, objects and inheritance are synthesisable. For
more complex components, like concurrently used objects,
OSSS+R provides synthesisable containers to reduce the
dilemma described before. A group of objects where each
member is accessed rarely overlapped with other members
of the same group is a good candidate for reconfiguration.
Additionally, polymorphic pointers in the C++ model are a
hint to dynamic objects which also make good candidates.

In the initial C++ model of the waveform generator some
objects were implemented using polymorphism. The differ-
ent implementations of the abstract generator interface were
accessed through a polymorphic pointer. This way, the ref-
erenced generator could easily be switched from one wave-
form generator object to another without having to change
the interface to the object. These generator objects are used
mutually exclusive and switches are rare events. To let
the generators share the same physical reconfigurable area
the polymorphic pointer is replaced by an OSSS+R recon-
figurable object. The reconfigurable object uses the same
generator base class as the polymorphic pointer and pro-
vides the same C++ syntax for accessing the object. For the
same reason as the waveform generators are identified, the
filters are good candidates for reconfiguration, too. They
are mapped to a second reconfigurable object, resulting in
two reconfigurable areas within the final system. The white
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boxes in Figure 1 show the application after its transforma-
tion to OSSS+R.

Code Transformations. The C++ model contains a poly-
morphic pointer wg which is initialised using one of the
available generator classes.

WaveformGenerator * wg;
wg = new SquareGenerator();
sample next_sample = wg->fetch();

For OSSS+R, this pointer is moved inside the SystemC
module WaveGenModule and transformed into a reconfig-
urable object:

SC_MODULE( WaveGenModule ) {
// ... SystemC code here
osss_recon< WaveformGenerator > wg;

SC_CTOR( WaveGenModule ) {
SC_CTHREAD( work, clock.pos() );
reset_signal_is(reset, true);
uses( wg );

wg.reset_port( reset );
wg.clock_port( clock );

}
};

Within the module constructor, the reconfigurable object
is bound to the process work, enabling work to access the
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object. Similarly, the object could be bound to even more
processes. To resolve concurrent accesses by more than one
process, the reconfigurable object automatically provides a
built-in scheduler, serialising all incoming requests.

As it can be seen in the implementation of the process
work, the new variable is used almost like the original C++
pointer, the only difference being the assignment to an ob-
ject, where new is omitted.

void WaveGenModule::work() {
// ... SystemC code here ...
while (true) {
switch (generator.read()) {
case 0: wg = SquareGenerator(); break;
case 1: wg = SawtoothGenerator(); break;
case 2: ...

}
sample next_sample = wg->fetch();
// ... SystemC code here ...

}

The resulting implementation performs a reconfigura-
tion, whenever the runtime class of wg changes, possibly
caused by an assignment. However, if the run-time class
matches the previous one, only the object’s attributes are
modified. State preservation could have been obtained by
using OSSS+R Contexts, as described in [16].

Devices and Timing To reflect reconfiguration and con-
text switch times during simulation with proper timing,
OSSS+R supports timing annotations provided by the de-
signer. Timing annotations are defined as part of the target
platform definition. They are given for a combination of
platform and class type, e.g. Virtex 4 and Sawtooth. De-
signers may specify the time needed for a reconfiguration
and the time needed to store the state of a class instance:

OSSS_DECLARE_TIME( // Timing:
virtex4, // Platform
Sawtooth, // Class name
sc_time( 2, SC_US), // Context save/restore
sc_time(100, SC_US)); // Reconfiguration time

Initially during the modelling phase, the specified times
are rough estimates by the designer. Later on, when the final
implementations of the configurations are available, the ex-
act reconfiguration times can be obtained through the size
of the partial bitstreams and the performance of the cho-
sen reconfiguration controller. These timings can then be
back-annotated to the initial model, providing the exact tim-
ing behaviour within the application model. If the model
shows some unexpected or unwanted behaviour due to this
reconfiguration times, these issues can be traced back to the
OSSS+R model. This is much more convenient than debug-
ging RT level code.

OSSS+R
Model

010101001101010
010101010101010
101010101001001
010010011010100
100100101000101
101100110111100
101001001001000
100100010011100
010010010000010

GCC
+

execution

Designer's
decision about
modifications

SystemC
Library

010101001101010
010101010101010
101010101001001
010010011010100
100100101000101
101100110111100
101001001001000
100100010011100
010010010000010

Synthesis

Tool:
Fossy

Synthesis
Model

(SystemC
or VHDL)

Simulation
Model

(e.g. VHDL)

OSSS+R
Simulation

Library

FPGA

010101001101010
010101010101010
101010101001001
010010011010100
100100101000101
101100110111100
101001001001000
100100010011100
010010010000010

Mentor
ModelSim

Reconfiguration
times

010101001101010
010101010101010
101010101001001
010010011010100
100100101000101
101100110111100
101001001001000
100100010011100
010010010000010

Perl
+

Xilinx ISE

010101001101010
010101010101010
101010101001001
010010011010100
100100101000101
101100110111100
101001001001000
100100010011100
010010010000010

Automatic
trans-

formation

010101001101010
010101010101010
101010101001001
010010011010100
100100101000101
101100110111100
101001001001000
100100010011100
010010010000010

Partially
automatic

transf.

Legend

RT level

Bitstream
level

B
ac

ka
n

n
o

ta
ti

o
n

Trace,
Waveform,

...

Trace,
Waveform,

...

Application level

Figure 2. OSSS+R tool chain

6. Synthesising OSSS+R

Figure 2 presents the flow from an OSSS+R model to a
final FPGA implementation. Initially, the OSSS+R model
is simulated to validate its behaviour using the OSSS+R
simulation library. The model is then automatically syn-
thesised to register transfer level (RTL) using the Fossy
tool. First, OSSS+R specific language elements are replaced
with equivalents composed of SystemC components. Then
synthesis of the resulting SystemC model to RTL is per-
formed, including class tree synthesis, implicit to explicit
FSM transformation etc. The output can be either SystemC
or VHDL. The generated VHDL may then be further pro-
cessed by FPGA vendor tools, e.g. the Xilinx ISE tool suite.
Once bitstreams are obtained, the reconfiguration times can
be calculated and backannotated into the OSSS+R design.

In Figure 1 a block-diagram of the generated RTL archi-
tecture of the waveform generator is shown. The square,
gray boxes are generated by Fossy representing infrastruc-
ture components which are needed to implement the dy-
namic partial reconfiguration. While these components are
automatically provided and instantiated as simulation mod-
els by the simulation library, they are not synthesisable as
such and have to be replaced by synthesisable equivalents.

Recon-Object. For each reconfigurable object a corre-
sponding reconfigurable area, called slot is generated. This
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slot may take any of the classes that have been mapped to
the reconfigurable object. Each of the classes is generated
as a stand-alone module, communicating with other mod-
ules by a signal-based protocol. Thanks to their polymor-
phic nature, all of the classes within one reconfigurable ob-
ject can share the same physical interface although the sig-
nal interpretation varies during runtime. After implemen-
tation, each of the classes will be represented by its own
partial bitstream.

Each slot is managed by an accompanying component
controlling the access to the slot, detecting needs for recon-
figurations and initiating reconfiguration requests. Opera-
tions on the reconfigurable object, e.g. method calls on wg

inside the waveform generator module, are replaced by a
signal-based protocol to the access controller and the slot.
Each request to a reconfigurable object is first directed to
the access controller, to schedule it with other pending re-
quests. If the access is granted and the requested configu-
ration is activated the process directly communicates with
slot.

Reconfiguration controller. If an access controller de-
tects the need to perform a reconfiguration, a request for
reconfiguration is sent to the platform independent part of
the reconfiguration controller (PIRC). The PIRC is auto-
matically generated by Fossy. In our example, there are
two access controllers requesting services, so the PIRC is
equipped with a scheduler to resolve conflicts. Addition-
ally, the PIRC translates requested class types and location
information to bitstream numbers. The translated requests
are serviced by the platform dependent reconfiguration
controller (PDRC) part. A PDRC is implemented manually
once for a given platform, e.g. a FPGA prototyping board,
and can be re-used for multiple applications. Platform de-
pendent blocks in Figure 1 are shown in black.

Method calls. The user processes contain accesses
(method calls and assignments) to reconfigurable objects
and their contexts. These accesses are replaced by a sig-
nal level protocol between user processes and access con-
trollers (for permission handling and reconfiguration) and
user processes and slots (for method calls and assigments).
In a reconfigurable system, a single user process may com-
municate with a set of different slot implementations, each
having their individual interface signal interpretation. Due
to the strong type system in the original model, it is guar-
anteed that the user process always uses the correct signal
interpretation. After the replacement of all OSSS+R spe-
cific elements with synthesisable SystemC equivalents, the
RTL model is generated as SystemC or VHDL.

RTL simulation model. Typically, a designer wants to
check the result of any automatic transformation by simu-

lating its result. However as standard HDLs do not support
the expression of DPR, the result of the OSSS+R synthesis
cannot be simulated as such. As a solution to this, Fossy
can generate an RTL simulation model, which can be sim-
ulated with any standard HDL simulator. In this model, all
possible configurations of a slot are instantiated in parallel
and connected to a multiplexer structure. For the simula-
tion model, a pseudo PDRC is generated which controls the
select inputs of the multiplexers. For each reconfiguration
request, instead of writing bitstreams to an FPGA config-
uration port, the PDRC mimics the behaviour by waiting
for as long as the configuration would take in the real sys-
tem. The waiting time is taken from the timing specifica-
tions which have been given by the designer in the original
model (see Section 5). After a first implementation these
values may also be replaced with the reconfiguration times
of the final partial bitstreams. The pseudo PDRC provides
the same interface as the original, so despite the multiplexer
structure, the rest of the model is identical to the synthesis
model. This way the application can be simulated with stan-
dard HDL simulators and will show the same behaviour as
the reconfigurable design.

From RTL to bitstreams. If the simulation is success-
fully validated using the RT level simulation model, the
RT level synthesis model can be transformed to gate level
and bitstreams using FPGA vendor tools. The synthesis of
OSSS+R has been developed to be platform independent.
However, to support the DPR features of a target platform,
the model usually has to be tailored to a vendor specific
tool framework. Typically, this includes creating a specific
top level, some pinout description files, a floorplanning file
etc. We have implemented this vendor specific adaption for
the Early Access Partial Reconfiguration Flow (EAPR) [18]
from Xilinx.

7. Evaluation

Using the EAPR flow, we have successfully imple-
mented the generated RTL model of the waveform gener-
ator on an ML401 development board from Xilinx. The
PDRC has been designed manually, using the Virtex4 ICAP
directly with a maximum bandwidth of roughly 600 MBit-
s/sec. Table 1 shows the size of the partial bitstreams and
their resulting reconfiguration times.

To get a picture of the overhead introduced by the recon-
figuration infrastructure Table 2 shows the usage of FPGA
resources for PIRC, PDRC and access controllers. Com-
pared to the total resources of the FPGA the overhead is
rather small. While the overhead for PDRC and PIRC is
constant, the resource usage for access controllers would
increase with the number of slots and the use of a sched-
uler. However, we consider the overhead acceptable given
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Table 1. Size and configuration time of partial
bitstreams

size configuration time

LoopAmplify 73 155 Bytes 91.44 us
LowPass 75 414 Bytes 94.27 us
Sawtooth 73 777 Bytes 92.22 us
Square 77 195 Bytes 96.49 us
Triangle 75 093 Bytes 93.87 us

Table 2. Resource usage of infrastructure
LUTs device utilisation

PDRC 209 1 %
PIRC 289 1.3 %
Access CTRL Filter 29 0.1 %
Access CTRL Generator 31 0.1 %

the potential save of FPGA area through the use of DPR.

8. Conclusion and Future Work

In this paper we presented a complete modelling and
synthesis flow for DPR systems based on the modelling
framework OSSS+R. Using an educational example we
demonstrated how a designer can efficiently design such
systems without having to deal with the implementation de-
tails of DPR. Using the abstraction mechanism of polymor-
phism, reconfiguration can easily be expressed and captured
already on application level. OSSS+R models are synthe-
sised to RTL models using the synthesis tool Fossy. Using
the Xilinx EAPR flow, we were able show that the overhead
introduced by the DPR infrastructure is acceptable.

In future we will extend Fossy to support the synthesis
of reconfigurable objects with Named Contexts [16]. We
are also planning to integrate a more flexible approach for
the implementation of the communication infrastructure be-
tween processes and reconfigurable objects.
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