
Automatically Mapping Applications to a
Self-reconfiguring Platform

Karel Bruneel, Fatma Abouelella and Dirk Stroobandt
Ghent University, ELIS Department

Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
{Karel.Bruneel, Fatma.Abouelella, Dirk.Stroobandt}@UGent.be

Abstract—The inherent reconfigurability of FPGAs enables us
to optimize an FPGA implementation in different time intervals
by generating new optimized FPGA configurations and reconfig-
uring the FPGA at the interval boundaries. With conventional
methods, generating a configuration at run-time requires an
unacceptable amount of resources. In this paper, we describe
a tool flow that can automatically map a large set of applications
to a self-reconfiguring platform, without an excessive need for
resources at run-time. The self-reconfiguring platform is imple-
mented on a Xilinx Virtex-II Pro FPGA and uses the FPGA’s
PowerPC as configuration manager. This configuration manager
generates optimized configurations on-the-fly and writes them
to the configuration memory using the ICAP. We successfully
used our approach to implement an adaptive 32-tap FIR filter
on a Xilinx XUP board. This resulted in a 40% reduction in
FPGA resources compared to a conventional implementation and
a manageable reconfiguration overhead.

I. INTRODUCTION

The inherent reconfigurability of SRAM-based FPGAs en-
ables the use of different configurations at different time in-
tervals, each optimized for the specific task in the correspond-
ing time interval. Optimized configurations are smaller and
faster than their generic counterparts and require less power.
Therefore, they use the FPGA’s resources more efficiently.
However, at the time interval boundaries, the problem at hand
will change and valuable resources will need to be used to
generate or select a new configuration and reconfigure the
FPGA.

Conventional synthesis tools generate FPGA configurations
from scratch. They use heuristics to solve NP-complete prob-
lems like placement and routing. Hence, generating a new
configuration requires huge amounts of resources. This makes
run-time generation of configurations with conventional tools
inefficient for most applications.

Several authors have tried to reduce the resources needed
for generating configurations. One of the strategies has been
to use lean versions of conventional tools [1], [2]. These lean
tools trade quality of the configuration for resources. However,
the reduction in resources is limited and often the reduced
quality of the configuration negates the overall performance
gain. If the number of possible configurations is limited, good
quality configurations can be generated off-line and stored
in memory [3], [4]. This significantly decreases the needed
resources because the on-line generation step is reduced to
selecting the right configuration from the memory. However,
a very large number of different configurations is generally

needed, rendering this technique often infeasible. This last
problem can be addressed by generating a generic implemen-
tation off-line and rapidly specializing this implementation at
run-time [5], [6], [7], [8]. Although these methods reduce the
need for resources, the reduction of the configuration quality
is mostly inacceptable.

The strategies described up till now are generic. Others have
focused on one specific application, e.g., multiplication [9].
These approaches show the best reduction in reconfiguration
resources, but they require huge amounts of design time
because the design has to be done at the LUT level.

In [10], we have shown that it is possible, for a large set of
problems, to generate an arbitrary new configuration with sig-
nificantly less resources and without sacrificing much quality.
Indeed, in many applications, subsequent data manipulations
only differ in a small set of parameter values. In between
these parameter changes, the parameter set remains at constant
values during relatively long time intervals. This property
enables an off-line generation process that results in an FPGA
configuration where some of the configuration bits are ex-
pressed as closed form Boolean functions of these parameters,
called parameterizable configurations. On-line specialization
then means evaluating these functions. One can easily see
that the number of resources needed to evaluate closed form
Boolean functions is much smaller than the resources needed
by conventional synthesis tools. This method hence allows a
designer to optimize a design in each time interval in between
two parameter changes but without the need for an unfeasibly
long generation time.

However, the ability to provide an efficient run-time re-
configuration solution is not sufficient. To make run-time
reconfiguration feasible in commercial designs, automated
design methods are needed. In this paper, we describe a tool
flow that automatically maps a high-level description of an
application to a self-reconfiguring platform, thus removing all
impediments for an easy adoption of run-time reconfiguration
in commercial designs.

We have used our new tool flow to automatically implement
an adaptive 32-tap FIR filter on a Xilinx XUP board with
a Virtex-II Pro device. Our new tool flow results in a 40%
reduction in overall FPGA area usage while the reconfiguration
overhead is kept manageable.

Our paper starts with an overview, in Section II, of a
method to generate efficient parameterizable configurations.

978-3-9810801-5-5/DATE09 © 2009 EDAA

In Section III, we explain how to exploit parameterizable
configurations for the run-time reconfiguration mechanism in
a self-reconfiguring platform. This generic approach is then
further elaborated in Section IV, where we describe a practical
tool flow targeting commercially available (Xilinx Virtex-II
Pro) FPGAs. Finally, the experimental results are described in
Section V.

II. PARAMETERIZABLE CONFIGURATIONS

The basis of our reconfiguration method is the notion that
the bits that form an FPGA configuration can be expressed
as a Boolean function of a set of parameters, called tuning
functions. A configuration in which some of the configuration
bits are expressed as tuning functions is called a param-
eterizable configuration [10]. The most important property
of such a parameterizable configuration is that it can very
rapidly be transformed into a regular configuration for one
specific set of parameter values by simply evaluating its tuning
functions. One can easily see that compared to the NP-hard
placement and routing problems that need to be solved when
generating an FPGA configuration in the conventional way,
evaluating Boolean functions is a lot less labor intensive. What
we actually do is solve the placement and routing problem
once, as will be seen in the next paragraph, and reuse this
solution every time we generate a regular configuration from
the parameterizable configuration.

In [10], we presented a generic method for automatically
generating parameterizable configurations for LUT-based FP-
GAs from an arbitrary parameterizable circuit. Such a circuit
contains parameter inputs which change values less often
than the general inputs. The core of the method is TMAP,
a reconfigurability-aware technology mapper that produces a
tunable LUT (TLUT) circuit, i.e., a LUT circuit in which
some of the LUT truth tables are expressed as a function of
the parameters. Because the parameters only affect the truth
tables and not the TLUT structure, this TLUT circuit can
then be placed and routed offline using conventional tools to
form a parameterizable configuration.1 An important property
of the parameterizable configurations produced by TMAP is
that the specialized regular configurations derived from them
generally result in an implementation that uses less area and
runs faster than a generic FPGA implementation with the same
functionality, while maintaining full flexibility of assigning
values to the parameters.

To illustrate the concept of TMAP, we will explain it on
the example of a 6:1 multiplexer. The multiplexer has six data
inputs (I0 through I5), three select inputs (S0, S1 and S2)
and one output (O). Without loss of generality, we choose
the select inputs S0, S1 and S2 as parameter inputs.2 One
can easily see that a conventional technology mapper will

1Note that in this case only the LUT truth table bits can be expressed as a
function of the parameters. We are currently also investigating solutions that
can touch the other reconfiguration bits efficiently.

2Up to now, the selection depends on the designer’s experience but in the
future we want to also make parameter selection automatic.

I
0

I
1

I
3

I
2

O

L
1

L
0

I
4

I
5

O

L1 L0
0 0

S0S1 S0S1S2

S0S1 S0S1S2

S1 S1S2

S0S1 S2

S0 S0S1 + S2

S0S1 + S0S1 S0S1 + S2

S0 + S1 S1 + S2

S0S1 0

S0S1 + S0S1 S0S1S2

S0 S0S1S2

S0 + S1 S1S2

S1 S2

S0 + S1 S0S1 + S2

S0 + S1 S0S1 + S2

1 S1 + S2

Fig. 1: TLUT circuit of the 6:1 multiplexer example and
corresponding tuning functions.

need at least four 4-input LUTs,3 with fixed LUT truth tables,
to implement this multiplexer. This is the generic FPGA
implementation.

In the case of parameterizable reconfigurations, the param-
eter inputs (the multiplexer’s selection inputs in our example)
can be included in the LUT function and do not have to be
synthesized as real inputs. In this case, TMAP can implement
the multiplexer using only two TLUTs, as shown in Fig. 1, a
significant reduction of 50% in area for this example. Because
we assume the target FPGA fabric has 4-input LUTs, there
are 16 tuning functions associated to each TLUT’s truth table,
which express the functionality of the TLUT depending on the
parameter inputs. If the parameters S0, S1, and S2 equal, e.g.,
1, 0 and 1 respectively, the tuning functions of LUTs L0 and
L1 respectively evaluate to the regular configuration vectors
0101010101010101 and 0000111100001111.

III. MAPPING PARAMETERIZABLE APPLICATIONS TO A
SELF-RECONFIGURING PLATFORM

The fact that parameterizable configurations can rapidly
be transformed into specialized FPGA configurations and the
observation that many applications contain parameters that
remain at constant values during relatively long time intervals
enables us to use the concept of parameterizable configurations
in self-reconfiguring systems. Upon the change of a parameter
value at run-time, such a system will evaluate the tuning func-
tions in order to obtain new configuration bit values and will
then reconfigure its FPGA fabric using these values. We call
the subsystem responsible for these two tasks the configuration
manager. In this paper, we assume the configuration manager
is a process running on an instruction set processor.

The tool flow used to map a parameterizable HDL design
to a self-reconfiguring platform is shown in Fig. 2. It actually
does not produce a parameterizable configuration directly.
Instead, it produces both a master configuration, which is used

3In this paper, we always assume a LUT has four inputs. Our tool flow can
also be used for the newer six-input LUTs but for the sake of clarity we only
describe the four-input case here.

TMAP

Parameterizable

HDL Design

Synthesis

Extract Tuning

Functions

Extract Static

LUT Circuit

Master

Configuration

Reconfiguration

Procedure

Generate

Reconfiguration

Procedure

Place & Route

Fig. 2: Tool flow for mapping a parameterizable HDL design
to a self-reconfiguring platform.

to generate an initial bit stream to configure the FPGA at
start-up, and a set of specialized reconfiguration functions,
that serve as the basis for the configuration manager. The
configuration manager is thus specialized for the application
at hand. This reduces the resource needs compared to a
generic configuration manager that takes any parameterizable
configuration and the set of parameter values to produce a new
configuration.

After a conventional synthesis step, TMAP maps the design
into a TLUT circuit. Obtaining the static LUT circuit can
simply be done by ignoring that the TLUT truth tables depend
on the parameter values. The static LUT circuit can then
be implemented using conventional placement and routing
tools. The output of this implementation process is the master
configuration.

In order to change one specific TLUT’s function accord-
ing to new parameter values, we need to know the way
its truth table is related to the parameter values, i.e., the
tuning functions, and the location of the physical LUT that
implements the TLUT under consideration. The combination
of this information for all TLUTs is used to generate a C
procedure that reconfigures the FPGA. This is shown in the
right branch of the tool flow of Fig. 2. The arguments of the
procedure are the parameter values.

The fact that we model reconfiguration as a change of
parameter inputs which can be expressed in the form of a
high level HDL design and that we provide a method that
automatically maps this design to a self-reconfiguring platform
greatly relieves the designer of the burden to exploit the

PLB bus

PowerPC BRAM

HWICAP

PLB bus

OPB bus

Bridge

Reconfigurable

IP

Fig. 3: Self-reconfiguring platform implemented on a Xilinx
Virtex-II Pro FPGA.

reconfiguration possibility at the LUT level.

IV. PRACTICAL TOOL FLOW INSTANCE

In the previous section, we presented the general tool flow to
map an application to a self-reconfiguring platform. However,
to enable a commercial introduction of this tool flow without
too many hurdles, we have searched for a practical tool flow
that uses current commercial tools as much as possible and
only needs a very limited amount of additional tools. The tool
flow presented in this section targets Xilinx components and
reuses many Xilinx tools.

The self-reconfiguring platform (Fig. 3) targeted by our tool
flow is implemented on a Xilinx Virtex-II Pro FPGA. The con-
figuration manager is implemented on an embedded PowerPC
(PPC) of the Xilinx Virtex-II Pro FPGA, which ensures a tight
connection to the FPGA fabric [11]. The connection between
the configuration manager and the configuration memory is
realized through the Xilinx HWICAP module, which provides
the interface between the OPB bus and the FPGA’s ICAP
(Internal Configuration Access Port). To configure parts of the
FPGA fabric (LUTs) after a parameter value has changed,
the PPC evaluates the tuning functions, generates the new
configuration, and sends this new configuration to the FPGA
configuration memory through the ICAP port of the FPGA via
the HWICAP module. The entire reconfiguration flow is thus
executed within the system and no external source is needed to
reconfigure the FPGA, nor to take the decision to reconfigure.
Therefore, this system is a true self-reconfiguring system.

The self-reconfiguring platform shown in Fig. 3 is im-
plemented using Xilinx XPS [12]. The XPS tool flow is
implemented in a makefile and it is therefore easy to insert
our tools in the flow. The adapted tool flow is shown in Fig. 4.

A. Generating the Master Configuration

We assume that the parameterizable HDL design contains
a number of parameterizable modules and a number of non-
parameterizable modules. A parameterizable VHDL module is
nothing more than a regular VHDL description with annota-
tions indicating which of the inputs are the parameter inputs.
The parameterizable module of the 6:1 multiplexer example
is shown in Fig. 5. The annotation --PARAM indicates that

TMAP

Parameterizable

HDL Design

Synthesis

Extract Static

LUT Circuit

Extract Tuning

Functions

Parameterizable

Module?

Partially Mapped

HDL Design

Y

N

Reconfiguration

Procedure

Master

Configuration

Xilinx XPS

Tool Flow

Generate

Reconfiguration

Procedure

Fig. 4: Practical tool flow for mapping a parameterizable HDL
design to a self-reconfiguring platform.

entity mux6 is

port(

s : in std_logic_vector(2 downto 0); --PARAM

i : in std_logic_vector(5 downto 0);

o : out std_logic);

end mux6;

architecture behavior of mux6 is

begin

o <= i(conv_integer(s));

end behavior;

Fig. 5: Parameterizable VHDL module of the 6:1 multiplexer
example.

the select inputs are parameters. As the annotations are in a
comment line, any conventional synthesis tool can be used to
synthesize the circuit. We used Altera Quartus II because it
can dump a .blif file that can then be used as input for our
mapper TMAP [10], which maps the circuit to a TLUT circuit.

We make a distinction between parameterizable modules
and non-parameterizable modules. Indeed, the Virtex-II Pro
architecture is a very heterogeneous architecture compared
to the homogeneous LUT architecture that TMAP targets.
Therefore, using TMAP to map the full design would result
in a very inefficient use of the Virtex-II Pro architecture. We
thus limit the use of TMAP to the parameterizable modules, as
is shown in Fig. 4. The static LUT circuit of these modules
is expressed in VHDL by directly instantiating LUTs in
the VHDL module. Combining these modules with the non-
parameterizable VHDL modules of the original design forms
the partially mapped HDL design. This VHDL design can now

be efficiently mapped to the Virtex-II Pro architecture by the
Xilinx tools without corrupting the mapping done by TMAP.
The result of this last mapping is the master configuration.
This workaround could of course be avoided if the ability to
map to TLUTs would be incorporated in the Xilinx mapper.

It is important to note that every LUT instantiated in
VHDL is given a unique name. This enables our tools to find
the LUT’s location after place and route, see Section IV-B.
Although it is not strictly necessary, we also lock the pins of
the LUTs with the lock_pins attribute so that the router
does not interchange the pins during routing. This greatly
simplifies generating the reconfiguration procedure.

B. Generating the Reconfiguration Procedure

The reconfiguration procedure reconfigures all the TLUTs
instantiated in a parameterizable module according to the pa-
rameter values that are passed as arguments to the procedure.

As mentioned in Section III, we need both the tuning
functions of each TLUT and the location of each TLUT in
order to do the reconfiguration upon a parameter change. The
tuning functions for each TLUT are provided by TMAP, this
is explained in detail in [10]. The LUT locations are harder
to come by. On the Virtex-II Pro a LUT location is specified
by a slice row, a slice column and whether it’s the F or the
G LUT of the slice [13]. Finding these locations for each
instantiated LUT is done in the following way. The Xilinx tool
flow generates a .NCD file that contains all the information
on the mapped circuit including the location of the LUTs.
This .NCD file is first converted to a .XDL file, a clear-
text representation of the .NCD file, using the Xilinx XDL
program [14]. We find the LUT locations in this .XDL file
by searching the unique names given to the LUTs when they
were instantiated in VHDL, as explained in Section IV-A.

A reconfiguration procedure is then generated as follows.
For each of the TLUTs in a parameterizable module we gen-
erate a TLUT reconfiguration procedure that takes the module
parameter values as inputs, evaluates the tuning functions
generated by TMAP and reconfigures the LUT. The TLUT
reconfiguration procedure for LUT L1 of our 6:1 multiplexer
example is shown in Fig. 6. The code that evaluates the
tuning functions of a TLUT is generated by simply translating
the expressions produced by TMAP into C-style expressions.4

When executed, these expressions result in a new truth table
for the LUT. The reconfiguration of the LUT is then done
by calling the procedure XHwIcap_SetClbBits, which
is provided by Xilinx in the HWICAP module driver. This
procedure takes the LUT location and the new truth table to
reconfigure the LUT. In our example we assume that LUT L1

is located in the G LUT of the slice at row 31 and column 45.
The reconfiguration procedure for a module simply calls the
TLUT reconfiguration procedure for each of the TLUTs of a
module. The reconfiguration procedure for our 6:1 multiplexer
example is shown in Fig. 7.

4It must be noted that, since the Virtex-II Pro family LUT configurations
are stored in an inverted way, the configuration data must be inverted before
configuring the LUTs [15].

void L1(XHwIcap *hwIcap,
Xuint8 S0, Xuint8 S1, Xuint8 S2) {

Xuint8 truthTable[LUT_SIZE];
truthTable [0] = !(0);
truthTable [1] = !(S0 && S1);
truthTable [2] = !(!S0 && S1);
truthTable [3] = !(S1);
truthTable [4] = !(S0 && !S1);
truthTable [5] = !(S0);
truthTable [6] = !((!S0 && S1) || (S0 && !S1));
truthTable [7] = !(S0 || S1);
truthTable [8] = !(!S0 && !S1);
truthTable [9] = !((S0 && S1) || (!S0 && !S1));
truthTable [10]= !(!S0);
truthTable [11]= !(!S0 || S1);
truthTable [12]= !(!S1);
truthTable [13]= !(S0 || !S1);
truthTable [14]= !(!S0 || !S1);
truthTable [15]= !(1);

XHwIcap_SetClbBits(hwIcap, 31, 45, G_LUT,
truthTable, LUT_SIZE);

}

Fig. 6: The TLUT reconfiguration procedure for LUT L1 of
our 6:1 multiplexer example. We assume that LUT L1 is
located in the G LUT of the slice at row 31 and column 45.

void mux2w1 (XHwIcap *hwIcap,

Xuint8 S0, Xuint8 S1, Xuint8 S2) {

L0(hwIcap, S0, S1, S2);

L1(hwIcap, S0, S1, S2);

}

Fig. 7: The reconfiguration procedure for our 6:1 multiplexer
example.

On a last practical note, we should warn the reader that,
in the Virtex-II Pro family, reconfiguring a LUT will cause
corrupted data in the SRL16s and LUT RAMs that are located
in the same column. Therefore, placing TLUTs in the same
columns as SRL16s or LUT RAMs must be avoided. This can
be done using AREA_GROUP constraints. This is no longer an
issue in the Virtex-5 family.

V. EXPERIMENTS AND RESULTS

We validate our run-time reconfiguration tool flow on an
adaptive filtering application. It implements a 32-tap FIR filter
with 8-bit coefficients and an 8-bit input in a fully pipelined
way. We assume that the coefficients need to be changed
every once in a while, which could, e.g., be the case in
a wifi application to cancel inter-symbol interference (ISI).
Every time a wifi-client is moved, the communication channel
properties change and the coefficients of the ISI cancelation
filter need to be updated. We also assume that the configuration
manager is responsible for calculating the new coefficients and
reconfiguring the filter accordingly.

We implemented this system on a Xilinx XUP board in two
different ways. The first way is the conventional way. The filter
is implemented using generic multipliers and coefficient values
are handled as regular inputs to the filter. The coefficients are

PLB

OPB

PowerPC BRAM

B

PowerPC BRAM

B
PLB

OPB

HWICAP

OPB

FIR FIR

OPB

In

Out

In

Out

(a)

PLB

OPB

PowerPC BRAM

B

PowerPC BRAM

B
PLB

OPB

HWICAP

OPB

FIR FIR

OPB

In

Out

In

Out

(b)

Fig. 8: (a) Block diagram of a conventional adaptive FIR filter
implementation. (b) Block diagram of the reconfigurable FIR
filter implementation.

TABLE I: Comparison of the conventional implementation and
the reconfigurable implementation.

Conventional Reconfigurable
FIR Area (LUTs) 4,259 1,985
System Area (LUTs) 1,218 1,298
Total Area (LUTs) 5,477 3,283
Reconf. time (ms) N/A 151

stored in registers which are mapped in the PPC’s memory
through the PLB and OPB buses. The coefficient manager
is implemented as software on the PPC. It changes the filter
characteristics by writing registers. Figure 8 (a) shows a
detailed schematic of this first implementation.

The second implementation uses our new toolflow to gener-
ate a reconfigurable FIR filter. Again, the coefficient manager
is implemented in software, but now the coefficient manager
changes the filter characteristics by reconfiguring the FPGA
through the ICAP, as explained in Section IV. Figure 8 (b)
shows a detailed schematic of the second implementation.

In both implementations the PPC is clocked at 200 MHz
and the busses are clocked at 66 MHz.5 The resource usage
of both implementations can be found in Table I. The table
shows that the reconfigurable implementation requires in total
2,194 (40%) less LUTs to implement the adaptive filter. This
is mainly because of the size reduction (by over 53%) of
the run-time reconfigurable FIR filter versus the generic FIR
filter. The coefficient controller is only slightly bigger in the
reconfigurable implementation because of the additional HW-
ICAP module that is needed to connect the PPC to the ICAP,
and the memory needed to store the tuning functions which
occupies 30% of the total memory of the PowerPC. The goal
of this paper is mainly to show the concept of our automatic
reconfiguration tool flow and to show its benefits on a single
example implementation. We envisage the implementation of
more elaborate examples in the future to also show the benefits
of the tool flow for much larger designs. The first results
indeed look promising.

Of course, this size reduction does not come for free. The

5The maximal clock frequency of the ICAP port in the Virtex-II Pro family
is 66 MHz.

time needed to change the coefficients in the reconfigurable
implementation, 151 ms, is much larger than for the con-
ventional implementation, which requires only a few clock
cycles to change the coefficients. However, this is not an
infeasible overhead since the intended system does not require
rapid changes of the coefficients and the (optimized) system
runs a lot longer in between two coefficient changes. In
the future, we want to further optimize the reconfiguration
process and thus even reduce the reconfiguration time. At this
moment, reconfiguring is done one LUT at a time. Since the
reconfiguration atom of a Virtex-II Pro FPGA spans a full
column of LUTs, reconfiguring a full column at a time will
significantly reduce the reconfiguration time.

Also the offline (static) overhead of our reconfiguration
method is low. The additional tool flow time for enabling
the reconfiguration6 is about 17% of the total time needed
(11 minutes in this experiment) to implement the reconfig-
urable implementation in XPS. This overhead could be further
reduced by optimizing the generation of the reconfiguration
procedure.

VI. CONCLUSION

Run-time hardware reconfiguration provides ample opportu-
nities for optimizations of an implementation in time intervals
in between two parameter changes. This paper provides a
general tool flow that automatically maps any application that
has a set of slowly varying inputs (called the parameters) to
a self-reconfigurable platform. We have effectively integrated
our tool flow in the Xilinx XPS tool flow that targets Virtex-II
Pro FPGA devices. We used the embedded PowerPC of the
Virtex-II Pro device as reconfiguration manager. Experimental
results on a 32-tap adaptive filter show that the use of self-
reconfiguration with our tool flow improves the resource
demands of the application by 40% without introducing a pro-
hibitively large reconfiguration generation overhead. Yet, the
optimized design remains fully flexible as each combination
of parameter values can be handled at any moment of the
implementation run time.

6TMAP time and the time to extract the tuning functions and generate the
reconfiguration functions.

REFERENCES

[1] R. Lysecky, G. Stitt, and F. Vahid, “Warp processors,” Transactions on
Design Automation of Electronic Systems, vol. 11, no. 3, pp. 659–681,
July 2006.

[2] Y. Sankar and J. Rose, “Trading quality for compile time: ultra-
fast placement for FPGAs,” in FPGA ’99: Proceedings of the 1999
ACM/SIGDA seventh international symposium on Field programmable
gate arrays. New York, NY, USA: ACM, 1999, pp. 157–166.

[3] M. J. Wirthlin and B. L. Hutchings, “Improving functional density using
run-time circuit reconfiguration,” vol. 6, no. 2, pp. 247–256, 1998.

[4] J. Villasenor, B. Schoner, K.-N. Chia, C. Zapata, H. J. Kim, C. Jones,
S. Lansing, and B. Mangione-Smith, “Configurable computing solutions
for automatic target recognition,” in Proc. IEEE Symposium on FPGAs
for Custom Computing Machines (FCCM), 1996.

[5] J. Leonard and W. H. Mangione-Smith, “A case study of partially
evaluated hardware circuits: Key-specific DES,” in Proc. International
Workshop on Field-Programmable Logic and Applications (FPL), 1997,
pp. 151–160.

[6] S. Singh, J. Hogg, and D. McAuley, “Expressing dynamic reconfigu-
ration by partial evaluation,” in Proc. IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM), 1996.

[7] N. McKay and S. Singh, “Dynamic specialisation of XC6200 FPGAs
by partial evaluation,” Lecture Notes in Computer Science, vol. 1482, p.
298, 1998.

[8] K. Bruneel, P. Bertels, and D. Stroobandt, “A method for fast hardware
specialization at run-time,” in Field Programmable Logic and Applica-
tions, 2007. FPL 2007. International Conference on, 2007, pp. 35–40.

[9] M. J. Wirthlin, “Constant coefficient multiplication using look-up ta-
bles,” J. VLSI Signal Process. Syst., vol. 36, no. 1, pp. 7–15, 2004.

[10] K. Bruneel and D. Stroobandt, “Automatic generation of run-time
parameterizable configurations,” in Proceedings of the International
Conference on Field Programmable Logic and Applications, 2008, pp.
361–366.

[11] B. Blodget, P. James-Roxby, E. Kelle, S. McMillan, and P. Sundarara-
jan, “A selfreconfiguring platform,” International Conference on Field-
Programmable Logic and Applications, pp. 565– 574, 2003.

[12] Embedded System Tools Reference Manual, Xilinx.
[13] Virtex-II Pro and Virtex-II Pro X FPGA User Guide, Xilinx.
[14] J.-B. Note and Éric Rannaud, “From the bitstream to the netlist,” in

FPGA ’08: Proceedings of the 16th international ACM/SIGDA sympo-
sium on Field programmable gate arrays. New York, NY, USA: ACM,
2008, pp. 264–264.

[15] A. Upegui and E. Sanchez, “Evolving hardware by dynamically re-
configuring Xilinx FPGAs,” in Evolvable Systems: From Biology to
Hardware, ser. LNCS, J. M. et al., Ed., vol. 3637. Berlin Heidelberg:
Springer-Verlag, 2005, pp. 56–65.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

