
Process Variation Aware Thread Mapping for Chip
Multiprocessors

S. Hong and S.H.K. Narayanan and M. Kandemir
Department of Computer Science and Enginneering

The Pennsylvania State University
{shhong, snarayan. kandemir}@cse.psu.edu

Ö. Özturk
Department of Computer Engineering

Bilkent University
ozturk@cs.bilkent.edu.tr

Abstract—With the increasing scaling of manufacturing technol-
ogy, process variation is a phenomenon that has become more
prevalent. As a result, in the context of Chip Multiprocessors
(CMPs) for example, it is possible that identically-designed processor
cores on the chip have non-identical peak frequencies and power
consumptions. To cope with such a design, each processor can
be assumed to run at the frequency of the slowest processor,
resulting in wasted computational capability. This paper considers
an alternate approach and proposes an algorithm that intelligently
maps (and remaps) computations onto available processors so that
each processor runs at its peak frequency. In other words, by
dynamically changing the thread-to-processor mapping at runtime,
our approach allows each processor to maximize its performance,
rather than simply using chip-wide lowest frequency amongst all
cores and highest cache latency. Experimental evidence shows that,
as compared to a process variation agnostic thread mapping strategy,
our proposed scheme achieves as much as 29% improvement in
overall execution latency, average improvement being 13% over
the benchmarks tested. We also demonstrate in this paper that
our savings are consistent across different processor counts, latency
maps, and latency distributions.With the increasing scaling of
manufacturing technology, process variation is a phenomenon that
has become more prevalent. As a result, in the context of Chip
Multiprocessors (CMPs) for example, it is possible that identically-
designed processor cores on the chip have non-identical peak
frequencies and power consumptions. To cope with such a design,
each processor can be assumed to run at the frequency of the
slowest processor, resulting in wasted computational capability. This
paper considers an alternate approach and proposes an algorithm
that intelligently maps (and remaps) computations onto available
processors so that each processor runs at its peak frequency. In other
words, by dynamically changing the thread-to-processor mapping
at runtime, our approach allows each processor to maximize its
performance, rather than simply using chip-wide lowest frequency
amongst all cores and highest cache latency. Experimental evidence
shows that, as compared to a process variation agnostic thread
mapping strategy, our proposed scheme achieves as much as 29%
improvement in overall execution latency, average improvement
being 13% over the benchmarks tested. We also demonstrate in
this paper that our savings are consistent across different processor
counts, latency maps, and latency distributions.

I. INTRODUCTION

As processor design has become severely power and complex-
ity limited, it is now generally accepted that multi-core architec-
tures represent a promising alternative to conventional complex
single core architectures. As a result, several manufacturers have
dual core chips on the market (e.g., Intel’s dual core Montecito
[3], the dual core AMD Athlon [2]), with more aggressive
configurations being delivered or prototyped (e.g., Sun’s eight
core Niagara [23], IBM’s Cell [5], Intel’s quad core Xeon [4], and
Intel’s 80 core TeraFlop [1]). In addition to power and complexity
advantages, chip multiprocessors (CMPs) are also preferable from
the reliability and thread level parallelism perspectives.

In addition to well known issues of concurrent programming,
reliability and power management in CMPs [27], [10], there is
a newly emerging and significant obstacle as we move toward
future CMPs with a large number of cores: process variation
[15], [26], [29], [12], [17]. In deep sub-micron design technology,
it is becoming increasingly difficult to control critical transistor
parameters such as gate-oxide thickness, channel length, and
dopant concentrations. As a result, these parameters may have
different values than nominal, and this may, in turn, lead to
both power and timing variability across identically-designed

components of a CMP. One option to cope with process variation
is to operate under the worst case scenario. In this operation
mode, worst possible latencies are assumed for affected hardware
components. However, this option becomes less attractive as
technology scales downward because the difference between the
worst case and average case increases dramatically [30].

The main contribution of this paper is process variation
aware thread mapping support for CMPs. Focusing on a CMP
architecture with latency variations across identically-designed
processor cores and across identically-designed L1 caches, this
paper proposes and experimentally evaluates a process variation
aware thread remapping algorithm that allows all the processors to
operate at their individual peak frequency. This algorithm makes
use of an important characteristic of the application domain we
target, namely, data intensive codes, where a series of loop nests
operate on large data structures and these loops iterate many times
during execution.

The proposed thread mapping phase algorithm is dynamic
(i.e., applied at runtime) and, has two alternating phases, namely
detection phase and stable phase that are separated by a remap-
ping step, as illustrated in Figure 1. In the detection phase,
the variations across the execution latencies of different threads
are captured by executing one iteration of the loop nest being
optimized. Note that these latency variations can originate from
inherent thread characteristics (e.g., one thread may have lower
cache miss rate than another) or from process variation, or from a
combination of both. In any case, one can take advantage of these
variations by remapping the parallel threads differently for the
remaining portion of the loop execution. This remapped execution
constitutes the stable portion of the proposed approach. Note that
the detection and stable phases can be repeated multiple times
for the same loop nest to accurately capture the loop behavior at
runtime, and to better adapt application execution.

Our experimental evaluation clearly shows that the proposed
scheduling scheme is very effective in practice and improves
performance by as much as 29% over a standard thread mapping
scheme which is process variation agnostic. We also found that
the average improvement brought by our thread mapping scheme
is about 13%. Finally, we study the sensitivity of our approach
to different values of processor frequency and cache latency, as
well as the number of remappings performed and the number of
processors in the CMP.

The remainder of this paper is structured as follows. Section
II discusses the related work. Section III briefly explains the
phenomenon of process variation. Section IV introduces the
applications that are targeted in this work, and Section V gives
the details of our thread mapping algorithm. Section VI presents
an example of the mapping algorithm. Section VII presents
an experimental evaluation of the proposed mapping approach.
Finally, we conclude with a summary in Section VIII.

II. RELATED WORK

There exist prior publications on qualifying and addressing
the impact of process variation. Several recent studies illustrate
the impact of the process variation on performance [15], [26],
[29], [12], [17]. A statistical design methodology to improve
benefits from a design that considers frequency binning is pro-
posed in [11]. An analytical modeling approach [16], based

978-3-9810801-5-5/DATE09 © 2009 EDAA

Detection
Phase

Detection
Phase

Detection
Phase

Thread
Remapping

Stable
Phase
Stable
Phase

Stable
Phase

Architecture
Description

Default Thread
Mapping

Fig. 1. The high level view of our approach. Dynamic remapping takes
place in a cycle consisting of a detection phase and a stable phase
separated by a remapping step. The detection phase takes as input the
default or previous thread to processor mapping. The remapping step
uses the architectural description and the output of the detection phase.

on understanding different power and variation sensitivities, is
developed to obtain the power reduction benefits. A method of
addressing within-die process variation in the routing of FPGAs
is presented in [25]. Past work also proposes a process-tolerant
cache architecture [9] and studies process variation aware cache
leakage management [22]. An analytical approach for ensuring
timing reliability while meeting the appropriate performance and
power demands in the existence of process variation is proposed
in [19]. Process variation aware parallelization strategies for
embedded MPSoCs to lower power consumption are described
in [30]. In that work, it is mentioned that dynamic mapping of
applications based on run-time traces can be very important.

Our work is different from these prior studies because most of
them do not focus on performance. Specifically, [15], [26], [29],
[12], [17] discuss the impact of process variation on chips. In
comparison, [11] and [9] focus on profit and yield, respectively.
Power improvement is studied in [22], [19], [16], and FPGA is
studied in [25]. In addition, most of the above papers are not
targeted at chip multiprocessors. [30] proposes a solution to tackle
the energy-delay product increase in embedded MPSoCs; how-
ever, the solution proposed essentially performs a static mapping
of applications. In contrast, our work focuses on dynamic thread
remapping for migrating the impact of process variation.

III. PROCESS VARIATION

Variations in the manufacturing technology, such as deposition
depths, impurity concentration densities, limited resolution of
photo-lithography and oxidation thickness are the main cause
of process variation. Furthermore, process variations are also
caused by the external environment, such as the processing
temperature and voltage. Process variations can be separated
into two categories, die-to-die and within-die fluctuations [15],
[13], [12]. Die-to-die fluctuations affect the different circuit parts
differently, while within-die fluctuations affect all parts equally.

The basic characteristics of an IC circuit, such as device
dimension W/L, transistor current and threshold voltage, may be
affected by process variations. For example, the standby current
spread in circuits is caused by the variations in channel length.
As a result, both the mean value and distribution of the circuit
frequency will be impacted. Besides, other characteristics of the
chip, such as energy dissipation, reliability and lifetime, can also
be influenced negatively. Thus, the circuit may not work as a
designer would expect it to.

With the increasing scaling of the multiprocessors, process
variations have become an important obstacle in achieving high
circuit performance. For instance, identically designed processors
in the CMPs may have different (lower) peak frequencies [30].
As mentioned earlier, it is possible to operate under process
variations by assuming the worst possible latencies for hardware
components that are affected by process variation. Clearly, this
option is becoming less attractive with the scaling of technology.

L2 Cache

P1

L1

P1

L1

P1

L1

P1

L1

P1

L1

P1

L1

P1

L1

P1

L1

Fig. 2. A CMP architecture composed of 8 processors. Each processor
has a private L1 cache and is connected to a shared L2 cache.

Algorithm 1 Sample Benchmark ()

1: for (i = 1; i ≤ Q; i + +) do
2: !$omp parallel
3: for (j = 1; j ≤ N ; j + +) do
4: . . .
5: end for
6: barrier()
7: end for

IV. TARGET APPLICATION TEMPLATE

The applications in consideration consist of loop based compu-
tations manipulating arrays. These applications typically consist
of an outer loop within which significant computation takes place,
as outlined in Algorithm 1. The computation within the outer
loop, which consists of Q iterations, is parallelized according to
the architecture that it is run upon which in this work is a CMP
as shown in Figure 2.

Inherent differences in thread behaviors with respect to control
branches and cache accesses result in a difference in the amount
of computation that is performed by each thread. In addition to
the differences between the threads, the behavior of a given thread
itself may vary as well during the course of their execution. There-
fore, the execution of a thread can be thought of as happening in
stages (epochs). This allows the characterization of the application
according to whether there are differences between the stages of
execution or not.

The application parallelization technique that is used is pre-
sented in [18], though the selection of the parallelization strategy
is orthogonal to the main focus of our paper. The parallelized
program uses synchronization, to avoid race conditions and to
ensure the coherence of the data values. Barriers are a common
synchronization operation in programs with parallel loops. A
thread is forced to wait at the barrier until all other threads reach
the barrier at which point all the threads are released.

Our experimental evaluations use parallel programs with the
barrier supported by OpenMP. The programs use an OpenMP
compiler directive, !$omp parallel, to parallelize an inner loop,
which is inside an outer loop as shown in Algorithm 1. The barrier
guarantees that each thread is done in the inner loop before they
start the next iteration of the outer loop.

V. DETAILS OF THE ALGORITHM

Under the proposed dynamic remapping approach, the execu-
tion of the application occurs at the granularity of an epoch, which
consists of a detection phase and a stable phase, separated by a
thread remapping step.

Detection Phase. In the detection phase the threads of the
parallelized application are mapped to processors using a default
mapping and are run for one iteration of the outer loop of the
thread. In the case of the first epoch the default mapping is
random. The number of processor cycles taken to execute each
thread are measured during this initial run of the threads. In
addition to the processor cycles, the number of cache accesses

Fig. 3. The execution of the threads takes place at the granularity of
an epoch. It is assumed that that the value of K is 1. (a) A varying
application may be remapped at every epoch (b) A uniform application
is not remapped after the first three epochs.

TABLE I
THE ASSUMED CPU FREQUENCIES AND THE L1 CACHE LATENCIES.

CPU Frequency L1 Latency
GHz Cycles

1 1.1 2
2 1.1 3
3 1 2
4 1 3

are also measured. These measurements can easily be performed
using performance counters available on modern processors. In
our framework, the total load of each thread is expressed by the
tuple {processor cycles, cache cycles}; i.e., the cycles taken by
the processor and the cycles spent in accessing the L1 cache. The
threads are then ranked in decreasing order of their load. As there
are two measures to sort the threads by, radix sort is used to sort
the threads. The approach then enters the remapping step.

Remapping Step. In the remapping step, the threads which
have just been sorted are mapped to the processors. The thread
with the most load is assigned to the processor-cache pair with the
fastest frequency and cache latency combination. After that, the
thread with the second highest load is assigned to the processor-
cache pair with the second fastest frequency and cache latency
combination. This strategy is followed until all the threads are
scheduled in the order of decreasing load; that is, in the order of
decreasing frequency and cache latency combination speed.

Stable Phase. The new mapping is then used to run the threads
on the processors for a fixed number of iterations called the stable
phase. The end of the stable phase concludes an epoch.

Initially, each application is executed for three epochs. The
default mapping for the second epoch’s detection phase is the
mapping used in the stable phase of the first epoch. Similarly,
the default mapping for the third epoch’s detection phase is the
mapping used in the stable phase of the second epoch. At the
end of the third epoch, the application is characterized based on
whether the threads change their behavior from epoch to epoch.
The characterization is used to decide whether the threads will
undergo further remapping or not.

The behavioral information of the threads is maintained in a
history table that contains the rank of each thread for the first
three epochs. Each entry in the table keeps track of ranking of a
particular thread amongst all threads at the end of that detection
phase of that epoch. This allows the application in question to be
classified as being either uniform or varying (at the end of the
third epoch). If the ranking of all the threads remains the same
from epoch to epoch, then the application said to be uniform.
A uniform application is not remapped further and the threads
continue to completion. If the ranking of the threads changes, the

TABLE II
THE INSTRUCTION CYCLES, CACHE ACCESS CYCLES CAPTURED BY

THE DETECTION PHASE ARE SHOWN IN COLUMNS 2 AND 3
RESPECTIVELY. THE RANKING OF THE THREADS IS SHOWN IN

COLUMN 4. THE NEW MAPPING OF THREADS TO PROCESSORS IS
SHOWN COLUMN 5.

Thread Processor L1 Access Ranking Processor
Cycles Cycles Assignment

1 100 15 4 4
2 120 12 2 2
3 100 18 3 3
4 130 12 1 1

TABLE III
THE HISTORY TABLE OF THE

RANK OF THE THREAD AFTER
THE DETECTION PHASE IN

THE FIRST THREE CYCLES. AS
THE RANKS OF ALL THE

THREADS REMAIN THE SAME,
THE CORRESPONDING

APPLICATION IS CONSIDERED
TO BE UNIFORM.

Thread Id Cycle
1 2 3

1 4 4 4
2 2 2 2
3 3 3 3
4 1 1 1

TABLE IV
THE ASSUMED HISTORY

TABLE OF THE RANK OF THE
THREAD AFTER THE

DETECTION PHASE IN THE
FIRST THREE CYCLES. AS THE

RANKS OF THE THREADS
VARY FROM CYCLE TO

CYCLE, THE CORRESPONDING
APPLICATION IS CONSIDERED

TO BE VARYING.

Thread Id Cycle
1 2 3

1 4 4 2
2 2 2 4
3 3 1 3
4 1 3 1

application is classified as varying, and further remapping(s) can
be performed. That is, the threads are run epoch by epoch with a
possible remapping occurring in each epoch. Figure 3, illustrates
the epochwise execution of a varying application as well as a
uniform application.

VI. EXAMPLE

This section presents an example application of the thread
mapping algorithm outlined in Section V. The architecture is
assumed to be a CMP made up of 4 processors, each with a
private L1 data cache. Table I gives the operating frequency of the
processors in the CMP as well as the latency of their L1 caches.
Let us also assume that the outer loop in the example benchmark
(see Algorithm 1) consists of 200 iterations (that is, Q = 200)
and is parallelized to consist of 4 threads of 50 iterations each.
Let an epoch consist of 4 iterations : 1 iteration for the detection
phase and 3 iterations for the stable phase. In the detection phase
of the first epoch, the processor cycles and the L1 cache access
cycles are measured. Their values are assumed to be as shown in
the second and the third columns of Table II, respectively.

It is clear that the processor cycles are larger than the cache
access cycles. Therefore, the radix sort algorithm that is used to
sort (in decreasing order) the threads treats the processor cycle
value as the primary parameter and the L1 access cycles as the
secondary parameter. The rank of each thread at the end of the
first detection phase is shown in the fourth column of Table II.
The mapping at the end of the detection phase of the first epoch is
shown in column five of Table II. After that, the threads are run for
two further epochs, to classify the benchmark as either uniform or
varying. The rank of the threads at the end of each the detection
of each epoch is shown in Table III (called the history table).
As the rank of each thread remains the same across the cycles,
the benchmark is classified as uniform and the threads run to
completion without any further dynamic detection or remapping.
In order to illustrate a different scenario, let us assume the rank of
the threads in the three epochs are different, as shown in Table IV.
In this case, the benchmark is classified as varying, and executed
at the granularity of an epoch (detection phase, remapping step,
stable phase) until completion.

VII. EXPERIMENTAL EVALUATION

In this section, we describe the simulation strategy used to eval-
uate our approach and compare the results obtained against those

TABLE V
THE DETAILS OF THE NPB3.2-OMP BENCHMARKS USED IN OUR

EXPERIMENTS. THE EXECUTION CYCLES HAVE BEEN GENERATED BY
RUNNING THE OUTER LOOP OF THE BENCHMARKS FOR 100

ITERATIONS.

Program Brief Execution
Name Explanation Cycles (M)

FT Fast Fourier Transform 174018
UA Solver for a stylized 1447

heat transfer problem
BT CFD application 25327
SP CFD application 25328
MG MultiGrid method 33151
LU Solver for a

seven-block-diagonal 18370
system

LU-HP Hyper-plane 18092
version of LU

TABLE VI
THE PROCESSOR FREQUENCIES AND CACHE ACCESS LATENCIES

USED IN THE EXPERIMENTS.

CPU Frequency L1 Latency
GHz Cycles

1,2 1.1 2
3,4 1.1 3
5,6 1 2
7,8 1 3

obtained using alternate thread mapping approaches. Finally, we
examine the sensitivity of our approach to parameters such as
the number of remappings and the number of processors in the
architecture.

Our simulation methodology consists of two steps. First, we
determine the cycle-wise load of each thread by simulating it on
our CMP architecture. Following that, we feed the values ob-
tained from the simulation to our implementation of the dynamic
thread remapping scheme to obtain the execution times of each
benchmark. The architecture used in the experiments is an 8-
processor CMP (see Figure 2). Each processor is connected to an
8 KB private L1 cache and a shared L2 cache. The processors
are based on the UltraSPARC III architecture [6].

The architecture in consideration was simulated using Simics
[8]. Simics is a full system simulation platform that supports
Unix executables for various processors, such as the UltraSPARC
III. We created configuration files to implement a CMP with 8
processors. We also modified the g-cache system in Simics to
gather sharing characteristics of the last-level cache [20].

The seven benchmark application codes used in this work are
from the NPB Suite [21]. In order to determine the cycle-wise
load of the application threads, they were run on the Simics based
implementation of the CMP described earlier. In this particular
implementation, all the processors run at 1 GHz and the cache
access latency is 3 cycles (i.e., there is no process variation). Run-
ning the threads on these processors allows the processor cycles
and the number of cache accesses to be measured. Note that, by
measuring the number of cycles taken to execute the threads and
not the time taken to execute them, the frequency at which each
processor is functioning does not affect the calculation of the
computation load of the threads. The details of the benchmarks
are given in Table V. The benchmarks are parallelized by the use
of OpenMP [7], [18] directives. The first column of Table V gives
the benchmark name and the second column describes it briefly.
The third column shows the execution cycles (in millions) when
no specific optimization targeting process variations is applied.

The detection phase, remapping step and stable phase of our
proposed approach are implemented in C++. They are given as
input the architectural details and the cycle-wise load of the
threads. In order to simulate process variation, the processors
in the CMP, whose information is provided as input to the C++
implementation, are configured to operate at different frequencies.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FT UA BT SP MG LU LU-HP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Random Ideal Dynamic Random Dynamic Best

Fig. 4. The normalized execution time of the ideal, random, dynamic
random and dynamic best schemes when applied to the seven benchmark
applications using the processor frequencies and cache latencies shown
in Table VI. The execution times are normalized to the process variation
agnostic approach.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

FT UA BT SP MG LU LU-HPD
is

tr
ib

ut
io

n
of

 A
cc

es
se

s
to

 S
ha

re
d

Li
ne

s

1 thread 2 threads 3 threads 4 threads 5 threads
6 threads 7 threads 8 threads Cache Miss

Fig. 5. Distribution of accesses to caches lines according to the number
of threads that share that line. The graph shows that a large majority of
cache lines are shared by all the threads.

Further, the caches are configured to have different access laten-
cies. The assumed processor frequencies and L1 cache latencies
are shown in Table VI. For example, processors 1 and 2 operate
at 1.1 GHz each and the access latency of their L1 cache is 2
cycles. The implementations of the detection phase, remapping
step and stable phase are then used to simulate the running of the
benchmark applications to obtain the total execution times.

A. Ideal and Random Schemes

In order to study the effectiveness of our remapping algorithm,
we measured the performance results of the proposed dynamic
remapping approach (called dynamic random 1 as well) against
two extreme schemes called ideal and random and a variation of
the proposed approach called dynamic best. In the ideal scheme,
the computation load for each thread is computed at the granu-
larity of an iteration of the outer loop. Then, for each iteration,
a new ranking of the threads is generated. The remapping step is
given as the input the ranking of threads and the frequencies of the
processors and cache access latencies. This allows the remapping
step to create the ideal mapping of threads to the processors
at the granularity of an iteration. The running of the threads is
then simulated using the ideal mapping and the execution time is
measured. Note that, this ideal scheme is difficult to implement
in practice due to extremely high re-mapping costs (as mapping
can potentially change at every iteration). In our results with this
scheme, we omit its overheads to quantify the best theoretical
performance.

For the random scheme, the mapping unit randomly maps a
thread to processors. The running of the threads is then simulated
using this mapping and the execution time is measured. The
dynamic best scheme is exactly the same as our dynamic random
scheme, except that the default (initial) mapping of threads to

1The reason that we use the word ”random” is to is that the initial mapping is
random.

TABLE VII
THREE DIFFERENT SCENARIOS OF

PROCESSOR DISTRIBUTIONS IN THE
FREQUENCY RANGE 1 GHZ TO 1.4 GHZ.

EACH ENTRY DESCRIBES HOW MANY
PROCESSORS OPERATE AT A PARTICULAR

FREQUENCY FOR A PARTICULAR
SCENARIO.

Frequency (GHz)
1.0 1.1 1.2 1.3 1.4

Scenario A 1 6 1 0 0
Scenario B 1 3 3 1 0
Scenario C 1 2 2 2 1

TABLE VIII
THE POSSIBLE FREQUENCIES THAT

PROCESSORS OPERATE AT. NOTE THAT,
ALTHOUGH THE DIFFERENCE BETWEEN

THE HIGHEST AND LOWEST FREQUENCIES
REMAINS THE SAME IN BOTH RANGES, I.E.

0.5 GHZ; THE RELATIVE DIFFERENCE
BETWEEN THE PROCESSORS IS LARGER IN
THE Lower RANGE AND SMALLER IN THE

Higher RANGE.

Name Frequency Range
Lower 0.5 0.6 0.7 0.8 0.9
Higher 2.0 2.1 2.3 2.4 2.5

TABLE IX
THREE DIFFERENT SCENARIOS OF CACHE
DISTRIBUTIONS ACROSS THE DIFFERENT

LATENCIES (1, 2 OR 3 CYCLES). EACH
ENTRY DESCRIBES HOW MANY CACHES
HAVE A PARTICULAR ACCESS LATENCY

FOR A PARTICULAR DISTRIBUTION TYPE.

Cache Access Latency
1 2 3

Type 1 0 4 4
Type 2 1 6 1
Type 3 2 4 2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FT UA BT SP MG LU LU-HP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Scenario A Scenario B Scenario C

Fig. 6. The normalized execution time of
the processor distribution scenarios using the
dynamic remapping approach. The execution
times are normalized to the agnostic ap-
proach.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FT UA BT SP MG LU LU-HP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Scenario A Scenario B Scenario C

Fig. 7. The normalized execution time of the
processor frequency scenarios shown in Table
VII with the Lower frequency range described
in Table VIII using the dynamic remapping
approach. The execution times are normalized
to the worst case frequency execution time.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FT UA BT SP MG LU LU-HP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Scenario A Scenario B Scenario C

Fig. 8. The normalized execution time of
the processor distribution scenarios shown in
Table VII with the Higher frequency range
described in Table VIII using the dynamic
remapping approach. The execution times are
normalized to the worst case frequency exe-
cution time.

processors is more careful than the random scheme and considers
process variations.

B. Results

Figure 4 shows the execution times of the ideal, random,
dynamic random and dynamic best schemes for the seven bench-
marks. The execution times are normalized to those of the
process variation agnostic approach in which all the processors
operate at the frequency of the slowest processor. It can be seen
that the performance of the ideal scheme is the best across
all the benchmarks. The performance of the proposed dynamic
remapping scheme is poorer than the ideal scheme across all the
benchmarks, but better than the random scheme. The execution
times of the dynamic random and dynamic best schemes are
almost identical, meaning that our approach is not very sensitive
to the initial mapping of used and adapts very quickly.

Overall, the proposed approach saves an average of 5.84%
execution time over the worst case frequency scheme and the
ideal mapping scheme saves 7.36% on average. On the other
hand, the random scheme saves 3.57% execution time, which is
half of the ideal scheme. This means that it does not make much
sense to have a process variation aware scheme without using a
form of dynamic remapping.

An important consideration is the overhead of remapping itself
on the performance of the proposed approach. Remapping threads
across processors could potentially lead to increased misses in
the L1 cache. Figure 5 gives the L2 cache access distributions of
our seven benchmarks on an eight-CPU CMP without process
variations. We can observe that a significant fraction of total
accesses, about 77% on the average, are to cache lines that are
shared by 8 threads. Therefore, when a remapping occurs, a
thread can expect, most of the time, that the L1 cache of the
processor that is mapped to will contain required data in about
77% of its lines. Therefore, the overhead of remapping a thread
is in fetching the remaining portion of cache lines from the L2
cache into the L1 cache. On average, this can be computed as :
(100−76.94)∗L1 Cache size∗L2 access latency, and is already
included in our results.

C. Sensitivity Experiments
We now present the results of sensitivity experiments using

the dynamic remapping approach (dynamic random). The first
experiment is to vary the number of processors operating at
the different frequencies. Table VII shows the three processor
distributions in the frequency range 1 GHz to 1.4 GHz. Each
scenario has a different number of processors operating at a
particular frequency. The distribution of processors follows the
Normal Distribution, which is expressed as :

X ∼ N(μ, σ2),

where X is the process variation distribution, i.e., a processor
frequency distribution, μ is the mean of the distribution, and σ is
the standard deviation of the distribution. The detailed distribution
model is provided in [14], [13], [24].

Figure 6 shows the performance of the different frequency
distribution scenarios under the same cache access latency distri-
bution. On average, the ”Scenario A”, ”Scenario B” and ”Scenario
C” experiments reduce the execution time by 9.70%, 11.78% and
13.25% respectively compared with the agnostic approach.

Similar to the variations for the processors, the access latency
for an L1 cache is determined using the Normal Distribution as
well. Table IX presents cache distributions across different access
latencies. Figure 9 presents the execution times for the different
cache distributions and the processor distribution Scenario B
explained in Table VII.

Next, to check the sensitivity of the results obtained to the
frequency range of the processors, the range of frequencies that
the processors operate at is varied. Table VIII gives the two new
sets of ranges of frequencies that the processors can operate at.
The difference between the highest and lowest frequencies in
both ranges is 0.5 GHz. This implies that the relative difference
between the highest and lowest frequencies is larger in the Lower
frequency range and smaller in the Higher frequency range.

Figure 7 shows the performance results for the Lower frequency
range with the processor distributions shown in Table VII. Figure
8 shows the performance results for the Higher frequency range
with the processor distributions shown in Table VII. By compar-
ing the columns across the Figures 7, 6 and 8, we can observe

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FT UA BT SP MG LU LU-HP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Type 1 Type 2 Type 3

Fig. 9. The normalized execution time of
the different cache distributions using the
dynamic remapping approach. The execution
times are normalized to the agnostic ap-
proach.

0

5

10

15

20

25

0 1 2 3 5 9
Number of Remappings

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t %

FT UA BT SP MG LU LU-HP

Fig. 10. The normalized performance im-
provement for different numbers of remap-
pings using the dynamic remapping approach.

0

5

10

15

20

25

30

4 8 12 16
Number of Processors

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t %

FT UA BT SP MG LU LU-HP

Fig. 11. The normalized performance im-
provement for different numbers of proces-
sors using the dynamic remapping approach.

that the range that has a higher relative difference between the
lowest and highest frequency has more pronounced benefits.

Next,we evaluate the impact of the number of dynamic remap-
ping occurrences on the performance. The number of dynamic
remappings is related to the number of instructions in the thread
by the formula:

instruction count := remapping count

∗ detection phase size

In order to implement this experiment, the size of the detection
phases in each thread is changed and the computation load
per-cycle for each thread is recalculated. Figure 10 shows the
benefits of increasing the number of remappings. We can see
that for the benchmarks considered, the most significant benefit
of remapping comes from performing the remapping once. The
change in benefits for further remappings is not as significant.
This is perhaps because, the benchmarks in consideration are
mostly uniform and not varying.

Lastly, the sensitivity of the remapping approach to the number
of processors in the architecture in consideration is examined.
In order to implement this experiment, we parallelized the ap-
plications such that the number of threads in the application is
equal to the number of processors in the architecture. Following
that, we used the dynamic mapping approach to simulate the
running of the threads on the processors. Figure 11 presents the
benefits of the dynamic remapping approach when the number of
processors in the architecture varies. It should be noted that the
benefits for a particular architecture are presented with respect
to the worst case frequency result on that architecture. It can be
seen that, overall, the benchmarks show greater benefits with an
increase in the number of processors due to further opportunities
for remapping. There are however, a few exceptions when the
increase in processors results in a relative loss of benefits.

VIII. CONCLUSION

Process variation in CMPs leads to processors in the CMP
operating at separate peak frequencies. This paper proposed and
evaluated a dynamic thread remapping scheme that intelligently
maps the threads of a parallel application to the different pro-
cessors in the CMP. The remapping scheme operates in two
alternating phases, remapping and stable and allows processors
in a CMP to operate at their individual frequencies. The dynamic
mapping approach maps the threads to the processors in the
CMP based on the workload of the threads and the frequency
of the processors. We studied the performance benefits offered
by the remapping scheme on an 8 processor CMP. We found
that, in comparison to a process variation agnostic scheme, the
proposed scheme brings about a 29% improvement in overall
execution latency, with the average improvement being 13%
across all the benchmarks studied. Our results also showed that
the improvement in execution latency increased in general with
an increase in the number of processors in the CMP.

ACKNOWLEDGMENT

This research is supported in part by NSF Grants 0811687,
0720645, 0720749, and 0702519.

REFERENCES

[1] http://techresearch.intel.com/articles/Tera-Scale/1449.htm.
[2] http://www.amd.com/us-en/Processors/ProductInformation/.
[3] http://www.intel.com/pressroom/kits/itanium2/.
[4] http://www.intel.com/products/processor/xeon5000/.
[5] http://www.research.ibm.com/cell/.
[6] An Overview of UltraSPARC TM III Cu UltraSPARC III Moves to Copper

Technology Version 1.1, 2003.
[7] OpenMP Application Program Interface Version 2.5 Public Draft, 2004.
[8] Simics User Guide for Unix 2.2.12, 2005.
[9] A. Agarwal, et al., “A process-tolerant cache architecture for improved yield

in nanoscale technologies,” TVLSI, vol. 13, no. 1, pp. 27–38, Jan. 2005.
[10] V. Agarwal, et al., “Clock rate versus ipc: the end of the road for conventional

microarchitectures,” in ISCA, 2000, pp. 248–259.
[11] D. Animesh, et al., “Speed binning aware design methodology to improve

profit under parameter variations,” ASPDAC, pp. 6 pp.–, 24-27 Jan. 2006.
[12] S. Borkar, et al., “Parameter variations and impact on circuits and microar-

chitecture,” DAC, pp. 338–342, 2-6 June 2003.
[13] K. Bowman, et al., “Impact of die-to-die and within-die parameter fluctua-

tions on the maximum clock frequency distribution for gigascale integration,”
Solid-State Circuits, IEEE Journal of, vol. 37, no. 2, pp. 183–190, Feb 2002.

[14] K. Bowman, et al., “Maximum clock frequency distribution model with
practical vlsi design considerations,” ICICDT, pp. 183–191, 2004.

[15] K. A. Bowman, et al., “Impact of die-to-die and within-die parameter vari-
ations on the throughput distribution of multi-core processors,” in ISLPED,
2007, pp. 50–55.

[16] S. M. Burns,et al. “Comparative analysis of conventional and statistical
design techniques,” in DAC, 2007, pp. 238–243.

[17] Y. Cao and L. T. Clark, “Mapping statistical process variations toward circuit
performance variability: an analytical modeling approach,” in DAC, 2005, pp.
658–663.

[18] L. Chun, et al., “Exploiting barriers to optimize power consumption of
cmps,” IPDPS, pp. 5a–5a, 04-08 April 2005.

[19] J. Donald and M. Martonosi, “Power efficiency for variation-tolerant multi-
core processors,” in ISLPED, 2006, pp. 304–309.

[20] A. Jaleel, et al., “Last level cache (llc) performance of data mining workloads
on a cmp - a case study of parallel bioinformatics workloads,” HPCA, pp.
88–98, 11-15 Feb. 2006.

[21] H. Jin, et al., The OpenMP Implementation of NAS Parallel Benchmarks
and Its Performance, October 1999.

[22] M. Ke and J. Russ, “Process variation aware cache leakage management,”
ISLPED, pp. 262–267, 4-6 Oct. 2006.

[23] P. Kongetira, et al., “Niagara: A 32-way multithreaded sparc processor,”
IEEE Micro, vol. 25, no. 2, pp. 21–29, 2005.

[24] H. Masuda, et al., “Challenge: variability characterization and modeling
for 65- to 90-nm processes,” Custom Integrated Circuits Conference, 2005.
Proceedings of the IEEE 2005, pp. 593–599, 18-21 Sept. 2005.

[25] Y. Matsumoto, et al., “Performance and yield enhancement of fpgas with
within-die variation using multiple configurations,” in FPGA, 2007, pp. 169–
177.

[26] S. Nassif, “Modeling and analysis of manufacturing variations,” Custom
Integrated Circuits, 2001, IEEE Conference on., pp. 223–228, 2001.

[27] B. Nayfeh and K. Olukotun, “A single-chip multiprocessor,” Computer,
vol. 30, no. 9, pp. 79–85, Sep 1997.

[28] O. Ozturk, et al., “Compiler-directed variable latency aware spm manage-
ment to cope with timing problems,” in CGO, 2007, pp. 232–243.

[29] S. Samaan, “The impact of device parameter variations on the frequency
and performance of vlsi chips,” ICCAD, pp. 343–346, 7-11 Nov. 2004.

[30] S. Srinivasan, et al., “Process variation aware parallelization strategies for
mpsocs,” SOCC, pp. 179–182, Sept. 2006.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

