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Abstract—Ensuring reliable computation at the nanoscale
requires mechanisms to detect and correct errors during normal
circuit operation. In this paper we propose a method for designing
efficient online error detection schemes for circuits based on
the identification of invariant relationships in hardware. More
specifically, we present a technique that automatically identifies
multi-cycle gate-level invariant relationships—where no knowl-
edge of high-level behavioral constraints is required to identify
the relationships—and generates the checker logic that verifies
these implications. Our results show that cross-cycle implications
are particularly useful in discovering difficult-to-detect errors
near latch boundaries, and can have a significant impact on
boosting error detection rates.

I. INTRODUCTION
Online detection of errors is becoming increasingly critical

as integrated circuits and microprocessors scale to smaller
feature sizes and become more susceptible to a host of process
variations and operational and environmental influences.
Strategies for detecting errors in logic vary. For instance,

many previous approaches have introduced some sort of re-
dundancy (either in time or space) to provide for detection of
errors in logic. Time redundancy may involve the execution of
code in multiple threads (e.g., [1]), or duplicating instructions
when resources are available (e.g., [2]). Alternatively, redun-
dancy in space may include simple duplication of the entire
design, triple modular redundancy (TMR) or insertion of parity
prediction logic. Finally, high-level functional assertions, such
as those identified during functional verification, may also be
hardcoded into the design, to signal the presence of an error
(e.g., [3]).
Recent work has proposed the use of logic implication

checkers as a means of online error detection of logic [4].
This work involves the discovery of invariant relationships
among circuit sites that are expected to hold whenever the
circuit is free of errors. Identifying any violation of these
invariants could then be used as a means of error detection
for the circuit by the addition of some simple hardware. As
an example, consider the circuit shown in Figure 1. It can
be verified that whenever node N4 = 1, node N24 = 0 to
retain correct logical consistency. If this relationship does not
hold, an error must have occurred in the intervening logic
between the two sites or at the second site. The logic shown
in grey can be added to the circuit to check for any violation
of this implication during runtime. For instance, if node N10
becomes stuck-at-1 during online operation, the added checker
logic would flag an error on any input vector where N4 = 1
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Fig. 1. A combinational circuit with added implication checker logic.

and the value at node N10 propagates to N24 (i.e., is ob-
servable at N24). The additional hardware will independently
detect errors in the logic at run time, sending a logic violation
signal to the system so it can take appropriate action (e.g.,
re-executing the failing input sequence). A main advantage
of this approach is that gate-level invariant relationships (or
assertions) are automatically identified, without providing any
high-level behavioral constraints. However, in the approach
presented in [4] (as well as in the example shown in Figure 1)
implications were identified only within a single time cycle. In
practice, implications can also exist across latch boundaries,
over multiple time cycles. Including these implications as
well in the checker logic can help detect errors near latch
boundaries, which tend to be hard to detect by single cycle
implications.
In this paper, we extend the use of implications for online

error detection to include implications both within a single
cycle and across multiple time cycles. Violations of these
implications during circuit operation are monitored by checker
hardware. We demonstrate that using these implications as a
means of error detection can offer very high fault coverage
for the circuit and that implications that exist across latch
boundaries are particularly useful for detecting a high number
of potential behavioral errors. More specifically, our results
show that including implications over multiple time cycles
in the checker logic can significantly improve error detection
rates.

II. RELATED WORK

Methods for detecting errors in logic online generally in-
volve the use of some type of redundancy in time or space.
Duplicating (or triplicating) the entire design in hardware,
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followed by a comparison of the results, is the most straight-
forward and obvious approach; however, it is very expensive
in terms of power dissipation and area requirements. Instead,
selective duplication may be used, as was done in the IBM
S/390 processor, where only the instruction and execution units
were duplicated [5]. Similarly, duplication may be selectively
applied only for sub-circuits that are determined to be most
susceptible to errors (e.g., [6]).
Coding techniques also have been proposed for error detec-

tion. Parity-check codes have been used in a number of works
(e.g., [7]–[9]), while unidirectional codes such as Berger [10]
or Bose-Lin codes [11] have also been proposed. Mitra and
McCluskey presented a comparison of several of these coding
schemes in [12]. The main disadvantage of these coding
techniques is that they may require that the original circuit
be altered in order to generate the codes. In addition, the size
of the circuit can more than double.
Other error detection techniques have been based on the

use of high-level assertions (e.g., [3], [13], [14]). These
assertions are first generated during functional verification and
later integrated into hardware checkers. While potentially very
useful, the scope of these assertions for detecting errors may
be limited, and the identification of such assertions requires
an understanding of the functional intent of the circuit.
Logic implications can be detected using recursive meth-

ods [15]–[17], and other heuristics [18], [19] and have
been used widely in logic synthesis for such purposes as
area/delay/power optimization [20]–[22], peak current estima-
tion [23], false noise analysis [24], and efficient ATPG [25].
Logic implications have also been used as a means of guiding
localized circuit restructuring to increase the chance of log-
ically masking errors [26], [27]. These masking techniques
require modifications of the original circuit that could ad-
versely affect delay on critical paths. In contrast, the works
of [4] and [28] do not try to mask the faults, but instead, offer
a means of detecting the fault using implication information
without modifying the original circuit. Similar to these ap-
proaches, our goal is to make the addition of new hardware as
unobtrusive as possible; however, unlike these works we do not
limit ourselves to implications that exist within a single cycle
and therefore we can potentially detect a larger range of faults.
In addition, [28] limits itself to just checking the outputs of a
circuit in the control logic of a processor against a subset of
the truth-table. What we are proposing is more general. Also,
unlike the works of [3], [13], [14], no understanding of the
functional intent of the circuit is required in order to extract
the implications and insert them in the checker logic.

III. METHODOLOGY
A typical circuit may contain thousands of valid implica-

tions, however using all of them to create checker hardware
would be too expensive. The novel contributions of this work
lie in the identification of those implications, both single and
multi-cycle, that are most valuable for error detection, and in
the incorporation of those implications into the checking hard-
ware. The basic flow of our approach includes the following

steps:
1) Run logic simulation to identify potential implications.
2) Check all implications for validity.
3) Eliminate implications subsumed by others.
4) Determine the fault coverage of all valid implications.
5) Select a subset of implications that provide the desired
coverage against soft or transient errors.

To find logic implications, we run circuit simulation with
random vectors and record the logic state of all nodes in
the circuit for each input vector applied. Once the simulation
is complete, we identify potential implications by comparing
node pair values in the simulation runs. For instance, for the
(a = 1) =⇒ (b = 1) implication to exist, there should never
be an instance where a = 1 and b = 0. This comparison step
turns out to be very fast because we can check 32 logic values
(the size of an unsigned integer) for each node in parallel
by doing bit vector compares. Since we are running only a
small sample of all possible input vectors, we need a more
formal method to verify that these implications are valid for
all possible input vectors. We use ZChaff [29], a SAT solver,
to check for the presence of an instance that would violate
an implication. Since this implication check can be posed as
a straightforward problem for the SAT solver, we can check
the validity of an implication very quickly, even within a large
circuit.
Once we have our list of validated implications, we run a

structural analysis of the circuit to find implications in the
validated list that might be contained within other implica-
tions. These implications that are subsumed by others do not
enhance the fault coverage and hence can be removed from
our validated list. This quick preprocessing step reduces the
number of viable implications by 40%–70%.
In order to achieve best coverage with minimal extra hard-

ware, we run a combination of structural and fault analysis
on the circuit to determine the quality of each implication.
For a given set of input vectors, we compute whether a fault
that is present at an internal node will propagate to the output
(i.e., is observable) and check if that fault causes a violation
of the implication being tested. The quality of that particular
implication and fault pair is then computed as:

implication quality = 100 ·
(
1 − fault undetected

input patterns

)
. (1)

The value fault undetected is the number of input patterns
where the fault is observable and the implication is not vio-
lated. Equation 1 essentially gives us the quality of coverage
for a particular fault that is being checked with a particular
implication. It differs from the fault coverage defined for
manufacturing test where one merely wants to ensure that
each fault was detected at least once by a given test set.
Once we have estimated the implication quality for each
fault and implication pair, we use this information to remove
implications from our list that do not contribute significantly
to reducing undetected errors at circuit outputs. Our approach
identifies the “most valuable” implication for each modeled
fault—where “most valuable” refers to the one that gives the
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Fig. 2. (a) Simple sequential circuit. (b) Circuit expansion over two time frames. (c) Circuit with checker hardware (in gray) that raises a violation when
implication B1 = 0 =⇒ F2 = 0 is violated.

highest coverage of errors caused by that fault. Fortunately,
multiple faults will often share the same best implication
allowing us to prune the list further.
Note that our approach is general and can be easily extended

to include implications across multiple time cycles during our
analysis. In this way, it may be possible to discover that the
value of a circuit site at time t may imply a value at another
circuit site (or even the same circuit site) at time t+n, where
n ≥ 1. Checking for these additional implication violations
across clock cycles has the potential to be a particularly
powerful approach for error detection.
Consider the simple circuit shown in Figure 2(a). There are

no useful implications across more than a single gate that we
can use for error checking in this circuit. However, we can
search for implications across time cycles by creating a virtual
copy of the circuit (as shown in Figure 2(b)) and executing
our implication search over this expanded circuit. In this case,
we find that B = 0 in the first clock cycle implies that F = 0
in the second clock cycle.
From this example, which can be generalized to more

complex circuits, we can see that detecting implications that
exist across multiple time cycles will increase the number of
implications that we can consider and will often inherently in-
crease the distance of those implications as well. The distance
of one of these implications will include all of the logic from
the original site to the appropriate latch(es) and from there to
the second implication site.
More importantly, implications across time cycles will be

more effective for detecting faults that are physically located
only a few gates from the flip-flops and latches in the design.
These faults are generally among the most difficult to detect
with single-cycle implications. Thus, faults that were not
adequately covered by implications in a single time cycle
may find themselves better covered across cycles with the
additional distance.
In addition to giving us powerful implications for the detec-

tion of otherwise hard-to-detect errors near latch boundaries,
implications across time cycles also have the potential to

be very effective at detecting some types of delay faults.
Specifically, a delay that causes an incorrect value to be
latched at the flip-flops will create a logical discrepancy when
considered across multiple clock cycles. Appropriate cross-
cycle implications that include this delay path will be able to
detect this delay-induced error without any complicated timing
or clock-gating needed for capturing the checker results. From
the example shown in Figure 2, using this noted implication
will also allow us to detect X1 slow to fall in clock cycle 1,
Y 1 slow to fall in clock cycle 1, and slow to fall faults on the
branches of B1.
Once we have identified valuable single and multi-cycle

implications, we can include them in the error checking
hardware. In the simplest implementation, this translates to
including a single gate in the checker hardware for each
implication (for instance, the additional AND gate shown in
grey in Figure 1 raises a flag if N4 = 1 AND N24 = 0 occurs
due to an error in the circuit and thus violates the implication).
For the multi-cycle implication B1 = 0 =⇒ F2 = 0, we
would need to save the value of B in a latch and AND its
complement with F in the original sequential circuit, as shown
in Figure 2(c). This implication would be able to detect X1
stuck-at 1, Y 1 stuck-at 1, and F2 stuck-at 1. Ultimately, the
results of these and other individual implication signals can
be OR’ed into a single error signal (possibly using a wired
OR) which can then trigger an appropriate error recovery
mechanism.

IV. RESULTS
We ran experiments with a number of sequential circuits

from the ISCAS ’89 benchmark suite to validate the ef-
fectiveness of our approach. Each set of implications was
derived using the general algorithm described in Section III
which combines the use of random vector simulation and the
Zchaff SAT solver to identify and validate implications. This
process is relatively fast and can quickly identify all gate level
implications without the need for any high-level functional
information.



Three different sets of implications were collected for each
sequential circuit.

• First cycle implications (implications at time t)
• Second cycle implications (implications at time t + 1)
• Cross-cycle implications

We identify first cycle implications by simulating the sequen-
tial circuit for a single cycle (with multiple vectors) where flip-
flops are treated as pseudo-primary inputs and pseudo-primary
outputs (as would be done for simulation of combinational test
patterns of a full-scan design). We assume that all inputs (true
PIs and flip-flops) are independent, and thus only implications
that are valid for all possible 2n+f input combinations will
be considered valid, where n is the number of primary circuit
inputs (PIs), and f is the number of flip-flops.
Second cycle and cross-cycle implications are both identi-

fied through the simulation of 2 clock cycles using time-frame
expansion as was shown in Figure 2b. Specifically, two copies
of the circuit are created, and the feedback through the flip-
flops is broken and replaced with direct connections between
the two circuit copies.
Second cycle implications only involve circuit sites that

are both contained within the second copy of the circuit.
While first cycle implications must be valid for all possible
combinations of the flip-flops and primary input values, in
subsequent clock cycles, the flip-flop values may be con-
strained due to the fact that some states are unreachable during
correct operation of the circuit after the circuit is initialized.
This effectively means that implications can be considered
valid for a smaller set of input vectors, thereby increasing
the chance that an implication will exist between two sites
in a subsequent clock cycle. If even more clock cycles were
analyzed, more unreachable states would likely be discovered,
and more implications could be considered. Finally, cross-
cycle implications are those in which a value at a circuit site
in the first cycle, implies a value at a circuit site in the second
cycle.

circuit # of # of Implications
PI PO FF gates 1st cyc. betw. 2nd cyc.

s298 3 6 14 75 1687 3300 66
s420 19 2 16 140 12898 20761 0
s444 3 6 21 119 3054 8468 546
s510 19 7 6 179 17845 25556 260
s713 35 23 19 139 11485 10819 2789
s953 16 23 29 311 13197 13065 34
s1196 14 14 18 388 19781 2599 164
s1488 8 19 6 550 20822 17336 750

TABLE I
NUMBER OF IMPLICATIONS IN EACH CLASS.

In Table I we report the number of implications discovered
from each class (1st-cycle, between cycles, or 2nd-cycle only).
Note that by expanding the search beyond a single cycle, many
more implications can be discovered. We also investigated
the effect that implication class has on the distance between
implication sites. As noted in Section III, by considering
implications across multiple cycles, we expect to increase the
distance of the potential implications we are considering. In
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Figure 3 we show the average implication distance for the
single and cross-cycle implications. Notice that, as expected,
the cross-cycle implications tend to have a larger logical dis-
tance between the implication sites than implications contained
within a single cycle. Implications with larger distance have
the potential to cover more errors and hence are likely to be
more valuable when used for error detection.
Due to hardware overhead limitations it may not be reason-

able to include all discovered implications in the checker logic.
Nevertheless, it is instructive to estimate what the upper-bound
error coverage would be if all these implications were included
in the checker. To do this, we next ran stuck-at-fault analysis
on the circuits while simultaneously analyzing the ability of
these implications to detect each of these faults. Of course,
stuck-at faults are unlikely to be truly representative of the
errors actually occurring in one of these circuits because such
faults would be almost certainly detected by the ATPG test
set. Indeed, the errors which must be detected online should
generally be much harder to excite and/or may only be present
on random clock cycles. However, if our implications can
successfully detect stuck-at faults, they are likely to be able
to detect many of these transient errors as well.
Figure 4 shows this average error coverage, for the different

subsets of implications outlined in Table I. In this figure, the
error coverage is calculated for each fault as the fraction of all
patterns for which that fault will cause an error at an output for
which at least one implication will be violated—allowing the
propagated error to be detected and flagged by checker logic.
Averages over all faults are shown for each implication set and
for the combined set of all possible implications. The coverage
considering all implications ranges from approximately 62%
for s420 to 90% for s510. For several of the benchmarks,
almost all of the error detection could be achieved solely
through cross-cycle implications. As stated earlier, this is
likely due to both their increased distances and the fact that
they are physically capable of covering faults near the flip-
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Fig. 4. Contribution of different implication classes to error detection.

flops that are highly unlikely to be covered by single-cycle
implications.
Including all of the implications in our checker logic would

be prohibitively expensive. However, from the discussion in
Section III, we do not expect all these implications to provide
the same quality (as defined in Eqn. 1). Thus the low quality
implications can be removed from our set without significantly
hurting the overall fault detection rate. We initially compress
our implication set by determining which implication provides
the best error coverage for each fault. Each implication identi-
fied in this manner is added to the implication list. While this
could imply one implication per fault, this is an unlikely case
because a single implication may provide the best coverage
for multiple faults. Thus, this “implication sharing” allows us
to compress our implication set even further.

circuit 1st cycle cross-cycle 2nd cycle only
s298 39 109 3
s420 35 160 0
s444 33 182 19
s510 94 167 6
s713 195 156 8
s953 233 150 6
s1196 449 44 2
s1488 409 263 51

TABLE II
NUMBER OF COMPRESSED IMPLICATIONS.

Table II summarizes the results of this pruning operation.
Note that the third data column only includes those impli-
cations that were “newly” discovered in the second cycle
and are not also present in a first cycle analysis. In general,
we can get over an order of magnitude reduction in the
number of implications in the checker logic by using this
compression process. Also note that for all circuits, the cross-
cycle implications remain an important component of the final
implication list.
Unfortunately, even this compressed set of implications may

be too large to implement in checker hardware. However,
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Fig. 5. Average error coverage achieved for different area overhead
thresholds.

another advantage of our method lies in the fact that area
overhead may be easily traded off for additional fault coverage.
Because cross-cycle implications require an additional flip-
flop to hold circuit site values from one clock-cycle to the
next, they are more expensive than single cycle implications.
Analysis with the Mentor Graphics layout tool, ICStation,
shows that in general the insertion of a cross-cycle implication
is approximately twice as expensive in terms of area as a single
site implication when both standard cell area and routing are
considered. Given these estimates, we created implication sets
where the area overhead in terms of gate count for the checker
was limited to 10, 20, 30, 40, or 50 percent, where a single-
cycle implication counted as 1 gate and cross-cycle implication
as 2. In a physical layout of the circuit the exact area overhead
may vary somewhat due to routing and other issues. However,
on average, the overhead is often relatively close to our
targeted goal (e.g., experiments with ISCAS combinational
circuits showed an average 12.6% area overhead post-layout
when 10% overhead was targeted [4]). A greedy algorithm was
used to choose the included implications for each hardware
overhead limit. We then found the average error coverage for
each set of implications in the same way as it was calculated
earlier in Figure 4. The results are shown in Figure 5. Of
particular note is the fact that the full compressed implication
set has almost the same error coverage as the set of all possible
implications. The reduction in coverage varies from less than
2% to slightly over 7%. It is also important to realize that,
even when the checker is restricted to low overheads, the final
error rate for the circuit will still generally be very small. The
error coverages shown in Figure 5 presuppose that an error is
always present at a circuit site and has propagated to an output.
In actuality, errors will almost never be present on every clock
cycle. Even stuck-at faults will be either “not excited” or “not
observed” for many input combinations and thus will cause
no error at the output for those combinations.
Finally, Figure 6 shows the percentage cross-cycle implica-
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tions making up both the 10% and 50% overhead experiments.
Even with the additional cost of cross-cycle implications, their
superior error detection capability ensures that they play a
significant role in maximizing error coverage.

V. CONCLUSIONS
We have presented an online error detection technique based

on the use of logic implication information discovered using
multi-cycle logic analysis. Overall, our results point to the
promising use of single- and cross-cycle implications as a
means of detecting faults in circuits. While implications alone
cannot be used to achieve complete fault detection, up to 90%
error coverage is possible.
For future work we would like to explore implications

targeted intelligently towards “important” faults that cause
catastrophic failures. These implications could provide excel-
lent coverage while trading off area overhead. Because all
observable faults do not have a similar impact on output
usability, implication checkers could be targeted for only
covering these catastrophic faults.
We also plan to analyze more completely the relation-

ship between the logical distance between node sites in an
implication and the fault detection rate for the implication.
In addition, we plan to evaluate the effect these multi-cycle
implications have on detection of delay faults across various
benchmarks. Finally, we note that all the implications we use
are simple 2-node implications. It is possible that higher fault
coverage could be obtained if more complex implications were
included in the checker logic; future work will explore ways
of efficiently identifying these more complex implications as
well.
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