
White Box Performance Analysis Considering
Static Non-Preemptive Software Scheduling

Alexander Viehl†, Michael Pressler†, Oliver Bringmann†
†FZI Forschungszentrum Informatik

Haid-und-Neu-Str. 10-14
76131 Karlsruhe, Germany

{viehl,pressler,bringman}@fzi.de

Wolfgang Rosenstiel†‡
‡Universität Tübingen

Sand 13
72076 Tübingen, Germany

rosenstiel@informatik.uni-tuebingen.de

Abstract—In this paper, a novel approach for integrating static
non-preemptive software scheduling in formal bottom-up perfor-
mance evaluation of embedded system models is described. The
presented analysis methodology uses a functional SystemC imple-
mentation of communicating processes as input. Necessary model
extensions towards capturing of static non-preemptive scheduling
are introduced and the integration of the software scheduling in
the formal analysis process is explained. The applicability of the
approach in an automated design flow is presented using a SystemC
model of a JPEG encoder.

I. INTRODUCTION

As the complexity of embedded systems further increases,
new design and analysis methodologies need to be evolved for
closing the steadily growing gap between demanded time-to-
market and development cycles.
Platform-based design provides a suitable methodology for em-
bedded hardware/software system development. It provides an
early and formalized design specification and hence a platform
specification that can be used at the beginning of the software
design process. As result, software and hardware development
can run in parallel and the overall design development time is
reduced. But requirement verification is still complex and can
lead to unacceptable long simulation run-times for achieving
coverage targets. So new analysis methods need to be evolved
that are based on system abstraction and that incorporate model-
based analysis tailored to specific verification goals like for
example the determination of non-functional requirements.
Especially but not limited to the area of real-time critical em-
bedded systems, performance requirements pose crucial issues
to the designers. The system behavior under different shared
resources access policies is often insufficiently predictable using
simulation and no guarantees on the worst-case behavior can be
given.
Software scheduling is one aspect that has a major impact on
global performance as well as on local software execution times
due to the impact of context switching on micro architectural
features as caches. The predictability of preemptive scheduling
on the temporal system behavior depends on the predictability
on local run-times. Interrupts and task preemption can extend
the software execution times. As consequence, a worst-case
analysis tackling these issues may lead to very pessimistic

This work was partially supported by the BMBF project VISION under grant
01M3078B and the DFG project “Communication Analysis for Network-on-
Chip” under grant BR 2321/1-1

analysis results, for example in the case of short time slices
or if a single process execution is often interrupted due to long
execution times of arithmetic operations.

ASIC1 CPU2

MEM2MEM1

CPU1

P7P5 P8

Communicating processes

Functional specification:

P7

P5 P1 P4

P2 P3

P6

Mapped communicating processes

P6 P2 P3P1 P4

Fig. 1. Mapping of communicating processes

In comparison, the impact of non-preemptive software
scheduling on the execution time of the single processes is
predictable due to that no preemption penalties have to be
considered. In the case of cooperative scheduling, the detection
of static cooperative process yield points can be incorporated
in worst case/best case execution time (WCET/BCET) analysis
of code fragments. As result, local software process timing is
predictable. Further, no additional process scheduler is neces-
sary to control the order of process execution. But even the
impact of such an additional scheduler process that controls
the static order of process activation does not lead to an
unpredictable temporal behavior if the scheduling is realized
without preemption.
Hence, an issue is that the designer has to know the application
and points in the control-flow where suspending the single
processes and activating other processes in a certain order
on the processing resources is beneficial and the schedule
does not lead to system deadlocks. Relating these issues, the
proposed methodology helps the designer to evaluate different
non-preemptive static schedules and to detect deadlocks due to
the software process schedule.

The presented work is based on an automated design flow
(Section III) that maps the functional implementation of com-
municating SystemC processes to platform modules in platform-
based design as depicted in Fig. 1. The design flow was

978-3-9810801-5-5/DATE09 © 2009 EDAA

extended to detect explicit interrupt calls that activate/suspend
software processes. This paper describes the incorporation of
extensions (Section III-A) towards integration of two classes of
non-preemptive software scheduling, namely static order non-
preemptive scheduling (Section III-C) and cooperative non-
preemptive software scheduling (Section III-B). On account of
that the integration is based on accurate model transforma-
tion (Section III-D) and not on pessimistic estimation, further
scheduling policies (as e.g. TDMA scheduling) can be inte-
grated on top, leading to the ability of hierarchical scheduling.
Section IV presents a case study on the application of the
extended methodology to a JPEG encoder SystemC model.

II. RELATED WORK

Many approaches in fundamental and current literature tackle
the issue of global performance analysis under shared resource
utilization. These can be distinguished between simulation-
based approaches and analytic approaches. Simulation-based
methodologies lack a sufficient corner case coverage in a tolera-
ble amount of time. Although methodologies as TLM [1] allow
the consideration of different parts of the system at different
levels of abstraction for speeding up simulation, TLM-based
approaches (like e.g. [2], [3], [4]) can not generally break these
limitations.

Analytic approaches have to be distinguished whether the
underlying model is derived from functional system implemen-
tations [5], [6] (white box approach) or whether the analysis
model is explicitly modeled [7], [8] or derived from formal
specifications like UML models [9], [10], synchronous dataflow
graphs [11] (black box approaches). Black box approaches
abstract from the internal behavior of components and consider
task graphs as representation of the internal communication
and inter task communication. Based on this model, efficient
analysis towards performance and schedulability can be per-
formed (e.g. TDMA scheduling and optimization [12], [13]).
The missing link from a direct derivation of the analysis model
and the lack of representing aspects like synchronization by
communication and the representation of complex interaction
schemes and task internal control flow descriptions like loops
and branches limit the practical applicability.

Other approaches like timed automata [14] or Petri nets [15]
require an explicit description of the system in the analysis
model and are very fine grained. The problem sizes to be
analyzed are not suitable for complex systems. The application
of these methods is more likely the area of single component
verification at late stages of the design flow.

White box approaches derive the analysis model directly
from a functional implementation of a system. The approach
presented in [16] extracts an abstract analysis component model
from functional implementations. Issues are the incorporation of
complex component interaction schemes as well as the consider-
ation of different synchronization primitives by communication.

In [17] an approach for extracting a formal system repre-
sentation model called communication dependency graph from
a functional implementation and information on component
platform mapping is presented. The analysis methodology is
restricted to include concurrent resource utilization by guaran-
teeing conflict free resource access using a method for conflict
analysis. The approach presented in this paper is based on this

approach and extends it towards static non-preemptive software
scheduling on multi processor system-on-chip (MPSoC) plat-
forms.

A. Analysis model
To represent quantitative temporal communication and com-

putation properties of a design at system level, a model called
communication dependency graph (CDG) is used.

A communication dependency graph (CDG) denotes a con-
solidated representation of a system consisting of communi-
cating processes. In each process, only communication end-
points and the temporal and causal behavior between them
are considered. The control-flow is represented by edges con-
necting communication endpoints. An edge exists if at least
one path in the control-flow graph connects the communication
endpoints without passing any other communication endpoint.
The communication endpoints are characterized concerning the
synchronization behavior, and whether they represent sending
or receiving events.

Definition 1 (CDG). A CDG is basically denoted by
CDG :=< VCDG, ECDG, ECOM , τCDG, lCDG >, where
• VCDG is a set of nodes representing communication endpoints.
• ECDG ⊆ VCDG × VCDG is a set of directed edges describing

the precedence dependencies between nodes.
• ECOM ⊆ Vsend × Vrec, with

Vsend = v ∈ VCDG : τCDG(v) ∈ {sendasync} and
Vrec = v ∈ VCDG : τCDG(v) ∈ {receiveasync, receivesync} is
a set of directed edges describing the communication instances

• The function τCDG(v) :
VCDG → {sendasync, receiveasync, receivesync, init} denotes
the type of each node.

• The edge weights are represented by the function lCDG :
ECDG → N0 × N0 with minimum and maximum execution
time lCDG(v1, v2) = (csmin, csmax) between the nodes v1, v2 ∈
VCDG.

III. DESIGN AND ANALYSIS FLOW

Due to the limited space in this paper, the general design
flow depicted in Fig. 2 is explained briefly. The starting point
is the so-called system design which consists of communicating
processes in SystemC/C++, an abstract platform description,
the model of the temporal system environment, information on
functional mapping and parameterization as well as require-
ments on the envisaged system. The first major part of the
design flow consists of abstracting communicating software
processes functionality with the objective of determining lo-
cal temporal properties and an abstract representation of the
global communication structure as represented by the CDG
model. The software abstraction methodology and tool flow
was presented in [17], [18], [19]. It was extended to determine
static interrupt calls in assembler files. Continuing with the
results from software abstraction, the global timing analysis
(i.e. communication analysis) for incorporating the impact of
blocking communication primitives on the global timing of
the system can be applied if no cooperative scheduling will
be integrated in the system. After communication analysis,
performance analysis and requirement evaluation based on the
determined global system timing can take place. The calculated
properties can then be used for an exploration of the system
design. The new aspects presented in this paper are necessary

gcc splitter

Requirement
Evaluation

Mapping/Deployment

Platform

CP in C++/SystemC

Requirements

.asm

Environment

Communication AnalysisPerformance
Analysis

Static Scheduling
Analysis

gromit

untimed CDG
processes

composer

.asm

CET

CDG

System Design SW AbstractionExploration

Fig. 2. Analysis flow

to be integrated in the design flow if cooperative scheduling is
specified within the system design. The statically determined
CDG with interrupt extensions is sufficient for the worst case
incorporation of cooperative process scheduling. For this issue,
a method for static CDG transformation with the objective of
generating CDG models without interrupts is applied, which is
presented in Section III-B.

A. Analysis model extension

The CDG model presented in Section II-A represents plain
communicating processes. In this section, we extend the basic
CDG model for expressing what we call hierarchic behavior.

Definition 2 (CDG interrupt extensions). The CDG definition is
extended by:
• PCDG is a set of communicating processes
• The mapping function %CDG : VCDG → PCDG that describes

the affiliation of each node v ∈ VCDG to a process ν ∈ PCDG

• ICDG is a set of interrupts
• EINT ⊆ Vsend × ICDG,

with Vsend = v ∈ VCDG : τCDG(v) = {sendasync} is a set of
interrupt emissions

• The function αCDG :
PCDG → (ICDG ∪ init)(n) denotes the set of n ∈ N0 interrupts
that activate a process.

• The function δCDG : PCDG → ICDG
(m) denotes the set of

m ∈ N0 interrupts that deactivate a process.
• The minimum and maximum interrupt service latency

ismin, ismax of an interrupt i ∈ EINT is determined
by the function lINT : ICDG → N0 × N0 with
lINT (i) = (ismin, ismax)

Fig. 3a shows a simple system consisting of three commu-
nicating processes P1, P2, and IN. Blocking communication
nodes are represented by two concentric circles whereas non-
blocking nodes are represented by only one circle. Communi-
cation instances are shown as dotted lines, whereas control-flow
edges are represented by drawn through lines. The processes P1

and P2 are mapped to one single computation resource whereas
process IN provides input data. Both processes are scheduled
cooperatively using the interrupts Ia and Ib.

Elements related to interrupts are graphically represented by
triangular shapes. Interrupt emission of a process at a commu-
nication endpoint is characterized by an emission triangle that
is connected via dotted lines with the emitting communication
node. The interrupt-based activation (deactivation) of a process
is represented by a triangle pointing to (away from) the process

Process P
2

Process IN Process P
1

Ib

C1

C3

{I }
b

{I }
a

40, 45

11, 20

C2

{init, I }
b

{I }a

Ia

15, 23

1, 4

5, 18

4, 10

3, 5

19, 24

3, 4

4, 6

4, 22

S
b

S
3

S
2

S
a

R
2

I
2I

I

S
1

I
1

R
3

R
1

(a) Extended CDG with cooperative schedul-
ing

Process IN Process P
1,2

C ’1

C1 3, 5

51, 89

51, 105
40, 45

40, 45

11, 20

I
I

S
1

S ’
1

R ’
1

R
1

I
II

(b) Equivalent CDG

Fig. 3. Cooperative process scheduling

in the left top part of the bounding process box. The association
of a graphical model element with an interrupt I is denoted by
annotation of I to the related triangle. In the example, process
P1 is activated initially (INIT) and by interrupt Ib. It is deacti-
vated by interrupt Ia. P1 emits Ia after receiving communication
instance C1 and sending communication instance C2. Due to
the deactivation sensitivity of P1 to Ia, the process deactivates
itself by emitting Ia. Due to the activation sensitivity of P2 to
Ia, process P2 is activated as result. The process receives the
buffered communication data of communication instance C2 and
sends C3. Subsequently, it deactivates itself and activates P1 by
emitting Ib. P1 receives the buffered communication instance
C3 and receives communication instance C1 from process IN .
The behavior of the processes recurs.

B. Cooperative scheduling

The extensions to the CDG allow the description of arbitrary
scheduling policies, therein also preemptive policies. However, a
general consideration of these extensions required intricate anal-
ysis and hence limits analyzable system complexities. Because
of that, restrictions are formulated that describe the subset of
cooperative scheduling policies and allow an efficient analysis
by static model transformation.

Definition 3 (Cooperatively scheduled processes). A set Γ(k) of
k processes {ν1, ..., νk} is cooperatively scheduled if:
i ∈ {1 ≤ i ≤ k}, j ∈ 1 ≤ j ≤ k : j 6= i and
• ∃1i : init ∈ αCDG(νi) This condition states that exactly one

process exists that is initially activated.
• ∀i ∃1σ ∈ ICDG : σ ∈ αCDG(νj) This conditions states that

exactly one activating interrupt for each process exists.

• ∀i∀σ ∈ δCDG(νi)∃1j : αCDG(νj) This condition states that
each deactivating interrupt of a process activates another process

• ∀i ∀σ ∈ δCDG(νi) : (σ × v) ∈ EINT ∧ %CDG(v) = νi This
condition restricts the scheduling to non-preemptive behavior.

The model does not need to be restricted concerning process
sets containing disjoint subsets that activate each other without
an initial activation or external activation by other processes.
Because of that they are never activated, the transformation
algorithm presented in Section III-B automatically removes
them from the graph.

C. Static non-preemptive scheduling
The restricted CDG extensions can be used to model static

non-preemptive software scheduling. The basic idea is the
representation of a scheduler as additional process that explicitly
activates the single processes and deactivates itself using the
interrupt extensions. On cooperative process deactivation, the
scheduler is called and selects the next process to be activated.
Fig. 4 shows an example of a CDG containing a static scheduler
process.

Process P3

Process P1 Process P2scheduler

 I s

{I }c

{I }s

{I }s

{I }a

 I s

{I }s

{I }
b

 I s

{init, I }s

a
{I , I , I }

b c

 I c

 I b

 I b

 I a

tsched

tsched

tsched

tsched

tsched

S
y

S
y

S
y

Sb1

S
a

Sb2

S
c

I

I I
I

Fig. 4. Static order process scheduling

The scheduler process can be directly adopted from the
deployment model. For this issue, information on the static order
of processes is contained in this model as vector
Λ : P

(m)
CDG → P

(n)
CDG. According to the example in Fig. 4,

Λ(P1, P2, P3) = (P1, P2, P2, P3). During analysis, the interrupt
service latency lINT and further scheduling overhead tsched

are integrated with the objective of exploration of different
schedules. The benefit from the functional process modeling
perspective is that the implementation of the processes does
not need to be modified due to the entire process call order is
specified by the deployment model and enforced by the sched-
uler process. However, each switch between two functional
processes inherits an additional amount of (lINT +tsched) in the
resulting CET that potentially leads to an overall performance
decrease. The application of static schedules can lead to fur-
ther benefits, if the temporal environment is unknown during
functional implementation and later, when the (e.g. bursty)
environment characteristics is known, the scheduling can be
modified for optimizing properties as buffer sizes or end-to-end
latencies without affecting the functional implementation.

D. Incorporation of model extensions
The restricted model extensions are handled by static model

transformation. The basic idea is the construction of one new

process that represents the behavior of the statically scheduled
processes. This is possible due to that the process call order is
static and dynamic behavior as process preemption is permitted
by the restrictions of Definition 3. The resulting process repre-
sents the behavior of the single processes without the inclusion
of interrupts or process activation/deactivation by interrupts.

1) Model transformation: An algorithm was developed that
transforms a set of cooperatively scheduled processes to one
resulting process under consideration of the interaction with
other processes in the CDG. This algorithm is basically de-
picted in Algorithm 1. The general proceeding is that the
process activation order is traversed, beginning at the initially
activated process. The cooperative processes are subsumed to
a single resulting process that represents the temporal behavior
of the cooperative processes. It is integrated within the inter-
process communication with the remaining processes of the
system. Temporal properties of communication instances within
the cooperative group, control-flow edges, interrupt latencies
and scheduling overhead are accumulated and represented by
control-flow edges of the resulting process.

The processes are traversed as long as no communication
with a process outside the group of cooperatively scheduled
processes is found. If an external communication (communica-
tion endpoint) is found, it is inserted in the resulting process
as the end of the collapsed edge. The previously accumulated
execution times are attributed to this edge. The call order and
the internal control-flow of the processes are traversed until
the structure of the resulting process recurs. Then a fix point
is determined and the transformation ends. The transformed
CDG of the cooperatively scheduled communicating processes
depicted in Fig. 3a is shown in Fig. 3b.
An additional benefit apart from the general inclusion of coop-
erative scheduling is that this inclusion by transformation does
no lead to additional pessimism during analysis. The developed
algorithm further contains the handling of complex control-flow
statements as cascaded loops. Due to the limited space, these
extensions are not contained in the depicted algorithm. However,
they were implemented and the case study which contains such
complex patterns was processed with the implementation.

IV. CASE STUDY: JPEG ENCODER

For presenting the applicability of the presented approach, a
SystemC model of a JPEG encoder was used. For allowing
the representation of cooperative software scheduling in the
functional source code, sc_yield(sc_process_handle
target) was defined as extension to SystemC. The objec-
tive for defining these extensions is the localization of co-
operative yield calls in the source code for CDG generation.
Further, a user space library was developed that allows a
semantically equivalent simulation of extended SystemC models
and a validation of the analysis results. According to the
CDG model extensions introduced in Section III-A, the JPEG
encoder CDG shown in Fig. 5 was automatically derived.
The SystemC model of the JPEG encoder consists of six
processes with four processes performing the functionalities
of DCT(d), quantization(q), zigzag transformation(z), and run
length encoding(r). These four processes are realized as soft-
ware. The annotated BCET/WCET values were analytically
calculated for a PowerPC 750 with 100 MHz and 8 kB L1

Algorithm 1 Cooperative schedule inclusion
Require: Communication Dependency Graph
Ensure: Flattening of hierarchical behavior
1: pcur = p ∈ PCDG : α(p) ∩ init 6= ∅ //current process
2: vcur = pcur.initNode() //current node
3: ecur = new() //current edge
4: pret.add(vcur) //return process
5: scur = (pcoop1.initNode(), ..., pcoopn.initNode()) //current system

state
6: Ss = [] //set of all system states
7: while (Ss ∩ scur == ∅) ∧ (∃i ∈ ICDG : (va, i) ∈ EINT do
8: Ss.put(scur) //add current state to set of states
9: vnext = pcur.nextNode() //next node of current process

10: enext = (vcur, vnext) ∈ ECDG //visit next edge
11: lCDG(ecur) = lCDG(ecur)⊕ lCDG(enext) //add execution time
12: if ∃inext ∈ ICDG : (vnext, inext) ∈ EINT //interrupt emission in

next node then
13: pnext = p ∈ Pcoop : α(p) ∩ inext 6= ∅
14: lCDG(ecur) = lCDG(ecur)⊕ lINT (inext)
15: else
16: if ∃vcomm ∈ VCDG : (vnext, vcom) ∈ ECOM ∧ %(vcom) /∈

Pcoop then
17: //external communication instance
18: ecur = (vcur, vnext)
19: vcur = vnext

20: pret.add(vcur)
21: ECDG.add(ecur)
22: ecur = new() //reset current edge
23: else
24: //intra process communication
25: end if
26: end if
27: Scur.updateState(pcur)
28: end while
29: vretfindReturnNode()
30: ecur = (vcur, vret)
31: ECDG.add(ecur)

cache. The depicted CDG implies a static order schedule of
all four processes with Λ(d, q, z, r) = (d, q, z, r) that was
derived from the deployment specification. Micro architectural

dctreader

quant

writer

rlehscheduler

zigzag

Is

I }
d

 {

s
 {I }

63x

63x

510

10

70

10

320

10

430

140, 630

100, 580

66970, 77660

50, 60
200, 250

d
i

800

500

500

500

 I s

s
{I }

{I }q

63x

63x

880

28800, 31420

50, 60

200, 250

100, 560

140, 500

10

10

10

50

150

Is

{I }
s

{I }
r

63x

63x

720

70

330

10

70

10

470

40, 50

90, 420

110, 140

18210, 60300

100, 150

{I , I , I , I }
zr q d

{init, I }s

 I d

 I q

 I r

tsched

tsched

tsched

tsched tsched

 I z

 I s

s{I }

{I }
z

63x

63x

880

21770, 26010

100, 560

130, 220

40, 50

150, 200

width

height1

maxval1

raw_data
width3

height3

maxval3

enc_data2S

S15

S14

S13

Ssd sqS

S16

S17

S18

S 5

srS

S
d

S
z

S
r

S
q

Ssz

R
1

R12

11R

R10

I

S
11

S
12

S
1

I

S
10

S
3

2
R

I

I

R18

R5

R17

16R

I

13R

14R

15R

4R

I

I

S
4

3
R

Fig. 5. Static order scheduled JPEG encoder CDG

platform component properties of the software parts (like e.g.
clock frequencies, caches and pipeline characteristics) as well
as the application of scheduling can be explored using the
proposed methodology. In this section, we compare models with
and without cooperative scheduling under different input data
rates di. For evaluation, the utilization of underlying hardware
components is used for comparison.
Due to the focus on computational aspects in this paper, we
consider idealized temporal communication properties. This

means, that communication latency and transmission duration
are considered to be 0. As described in Section III, temporal
communication properties are included in the existing analy-
sis flow and can be seamlessly integrated with the proposed
scheduling extensions in architectural exploration.
In the following, different configurations towards parameter
exploration were examined. As basis for execution time anal-
ysis, four microcontroller configurations of a PPC 750 were
used: µC1 and µC2 with 100 MHz and 8 kB L1 cache, µC3

with 250 MHz and 16 kB L1, and µC4 with 400 MHz and
32 kB L1 cache. The table in Fig. 6 characterizes the used
configurations concerning process mapping with cooperative
scheduling to microcontrollers. Given are the inter arrival time

CONF # d q z r di
−1 lINT

1c µC∗1 µC1 µC1 µC1 50 kHz 20 µs
2c µC∗1 µC∗2 µC2 µC1 50 kHz 20 µs
3c µC∗1 µC1 µC∗2 µC2 50 kHz 20 µs
4c µC∗1 µC1 µC1 µC1 80 kHz 15 µs
5c µC∗3 µC3 µC3 µC3 80 kHz 15 µs
6c µC∗4 µC∗1 µC1 µC4 80 kHz 15 µs

Fig. 6. Cooperative scheduling parametrization

of input packets di and the interrupt service latency lINT of
all interrupts ICDG. An asterisk denotes that the process is
initially started at the platform component. Of cause, these
parameters can be specified using intervals, complex input
stream patterns and different values for each interrupt. The first
cooperative configuration schedules all processes cooperatively
on a single resource. In the second cooperative configuration,
two processes at a time are mapped on one of the two identical
microcontrollers. In Configuration 3c, the mapping is changed.
In difference to Configuration 1c, Configuration 4c has a
higher input data rate and lower interrupt latency. The fifth
configuration executes all processes on a faster resource with the
same parameters as Configuration 4c. Configurations 6c maps
the processes with higher computation demand to resources
with higher computation performance. In Configuration 6c, the
processes dct and rleh are mapped to the same resource.
The configurations depicted in Fig. 7 characterize a static
scheduling of the four processes using a scheduler process in
µC1. The first two static configurations map the processes with
a variation of the scheduling overhead. Configuration 3s realizes
a static schedule in which each process is called twice with the
same parameters as in Configuration 2s.

CONF # Λ(d, q, z, r) di
−1 lINT tsched

1s d, q, z, r 50 kHz 20 µs 2 µs
2s d, q, z, r 50 kHz 20 µs 5 µs
3s d, d, q, q, z, z, r, r 50 kHz 20 µs 5 µs

Fig. 7. Static order scheduling parametrization

The table in Fig. 8 shows the resulting utilization numbers
of the single microcontrollers executing the scheduled processes
using the configurations from both parametrization tables. The
sum of component utilization in Configurations 1c, 2c, and 3c
is equal. If four processes are scheduled on one resource, four
context switches are needed for the complete computation of
64 packets according to the cooperative scheduling depicted in
Fig. 5. If two processes are scheduled to one processing unit,

CONF# µC1 µC2 µC3 µC4

1c 36–52%
1s 43–60%
2s 44–60%
3s 44–60%
2c 25–40% 12%
3c 22–23% 14–30%
4c 56–82%
5c 27–37%
6c 17–19% 9–17%

Fig. 8. JPEG encoder experiment results

two context switches are needed on each of the two processing
units. As result, the same number of context switches as in
Configuration 1c is inherited. Due to the same micro architec-
tural configuration, the same input rates and interrupt latencies,
the sum of utilizations is constant (in spite of inaccuracy due
to rounding errors). Further, the utilization numbers in Con-
figuration 3c show a good load balancing on the computation
resources, which can be important if input data rates shall be
increased without wasting computation resources. In Configura-
tion 4c, a 67% higher utilization can be stated at a 60% higher
input rate due to the effect of different interrupt latencies. The
ability to explore the underlying hardware resources is shown in
Configuration 5c. Due to that the same parameters (di, lINT) as
in Configuration 4c are used and all processes are scheduled the
same order on one a higher computation resource, a 55% less
maximal utilization can be calculated. In Configuration 6c, both
processes with the highest computation demand are scheduled
on the resource with the highest computation performance. As
result, the two cores µC1 and µC4 are nearly equally utilized
which is a benefit for achieving a high system utilization.
In comparison to Configuration 1c, Configuration 1s leads to
higher system utilization due to increased context switching
numbers with the scheduler process. Configuration 2s has a
higher utilization due to higher scheduling overhead costs. The
utilization of Configuration 3s is equal to the numbers of
Configuration 2s due to that the resulting number of overall
context switches is equal in both configurations. Please note
that this refers to the utilization. The end-to-end latency will be
increased, for example.

V. CONCLUSION AND FURTHER WORK

In this paper, a novel approach for the integration of cooper-
ative and static non-preemptive software scheduling in formal
white box performance analysis was presented. The approach is
based on an analysis methodology that abstracts communicating
processes in SystemC and performs communication analysis
with the objective to determine the temporal impact of com-
munication protocols, synchronization by communication and
blocking communication primitives. Extensions to the analysis
model were made that allow representing hierarchical behav-
ior in order to express static non-preemptive and cooperative
software scheduling. Restrictions towards analyzability were
formulated for reducing analysis complexity. An algorithm was
presented that flattens process activation call hierarchies and
transforms the scheduled processes to an equivalent represen-
tation on which previously developed analysis methods can be
applied. The described design flow and analysis extensions were

implemented and integrated in the SysXplorer framework. A
promising case study analyzing a JPEG decoder was presented
for showing the practical applicability of the presented approach
for exploration of arbitrary scheduling and platform configura-
tions. Further work will integrate additional access scheduling
policies of computation and communication for enabling the
applicability to a wider variety of domains and application areas.

REFERENCES

[1] A. Donlin, “Transaction level modeling: flows and use models,” in
CODES+ISSS ’04, 2004.

[2] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-
Performance Timing Simulation of Embedded Software,” in Proceedings
of the Design Automation Conference (DAC), 2008.

[3] M. Radetzki and R. S. Khaligh, “Accuracy-Adaptive Simulation of Trans-
action Level Models,” in Proceedings of DATE, 2008.

[4] P. Gerin, H. Shen, A. Chureau, A. Bouchhima, and A. Jerraya, “Flexible
and executable hardware/software interface modeling for multiprocessor
SoC design using SystemC,” in ASP-DAC ’07: Proceedings of the 2007
conference on Asia South Pacific design automation, 2007.

[5] A. Viehl, M. Schwarz, O. Bringmann, and W. Rosenstiel, “Probabilistic
Performance Risk Analysis at System-Level,” in CODES+ISSS ’07, 2007.

[6] K. Albers, F. Bodmann, and F. Slomka, “Hierarchical Event Streams and
Event Dependency Graphs: A New Computational Model for Embedded
Real-Time Systems,” in ECRTS ’06: Proceedings of the 18th Euromicro
Conference on Real-Time Systems, 2006.

[7] W. Haid and L. Thiele, “Complex task activation schemes in system
level performance analysis,” in CODES+ISSS ’07: Proceedings of the 5th
IEEE/ACM international conference on Hardware/software codesign and
system synthesis, 2007.

[8] P. Pop, P. Eles, Z. Peng, and T. Pop, “Analysis and optimization of dis-
tributed real-time embedded systems,” ACM Trans. Des. Autom. Electron.
Syst., vol. 11, no. 3, 2006.

[9] M. Gonzalez Harbour, J. Gutierrez Garcia, J. Palencia Gutierrez, and
J. Drake Moyano, “MAST: Modeling and analysis suite for real time
applications,” in Proc. Real-Time Systems, 13th Euromicro Conference
on, J. Gutierrez Garcia, Ed., 2001.

[10] A. Viehl, T. Schönwald, O. Bringmann, and W. Rosenstiel, “Formal
Performance Analysis and Simulation of UML/SysML Models for ESL
Design,” in Proceedings of the Design Automation and Test in Europe
Conference (DATE), Munich, Germany, 2006.

[11] S. Schliecker, S. Stein, and R. Ernst, “Performance Analysis of Com-
plex Systems by Integration of Dataflow Graphs and Compositional
Performance Analysis,” in Proc. Design, Automation & Test in Europe
Conference & Exhibition DATE ’07, S. Stein, Ed., 2007.

[12] E. Wandeler and L. Thiele, “Optimal TDMA time slot and cycle length
allocation for hard real-time systems,” in ASP-DAC ’06: Proceedings of
the 2006 conference on Asia South Pacific design automation, 2006.

[13] T. Pop, P. Pop, P. Eles, and Z. Peng, “Bus access optimisation for FlexRay-
based distributed embedded systems,” in DATE ’07: Proceedings of the
conference on Design, automation and test in Europe, 2007.

[14] M. Hendriks and M. Verhoef, “Timed automata based analysis of em-
bedded system architectures,” Parallel and Distributed Processing Sym-
posium, 2006. IPDPS 2006. 20th International, 25-29 April 2006.

[15] J. Trowitzsch, A. Zimmermann, and G. Hommel, “Towards Quantitative
Analysis of Real-Time UML Using Stochastic Petri Nets.” in IPDPS,
2005.

[16] K. Albers and F. Slomka, “Efficient Feasibility Analysis for Real-Time
Systems with EDF Scheduling,” in DATE ’05: Proceedings of the confer-
ence on Design, Automation and Test in Europe, 2005.

[17] A. Siebenborn, A. Viehl, O. Bringmann, and W. Rosenstiel, “Control-
Flow Aware Communication and Conflict Analysis of Parallel Processes,”
in Proceedings of the 12th Asia and South Pacific Design Automation
Conference ASP-DAC 2007, Yokohama, Japan, 2007.

[18] M. Krause, O. Bringmann, and W. Rosenstiel, “Target Software Gener-
ation: An Approach for Automatic Mapping of SystemC Specifications
onto Real-Time Operating Systems,” Springer: Design Automation for
Embedded Systems, 2007.

[19] A. Hergenhan and W. Rosenstiel, “Static Timing Analysis of Embedded
Software on Modern Processor Architectures,” in Proceedings of the DATE
2000 Conference, Paris, France, 2000.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

