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Abstract—In this paper we propose a novel statistical frame-
work to model the impact of process variations on semiconductor
circuits through the use of process sensitive test structures. Based
on multivariate statistical assumptions, we propose the use of
the expectation-maximization algorithm to estimate any missing
test measurements and to calculate accurately the statistical
parameters of the underlying multivariate distribution. We also
propose novel techniques to validate our statistical assumptions
and to identify any outliers in the measurements. Using the
proposed model, we analyze the impact of the systematic and
random sources of process variations to reveal their spatial
structures. We utilize the proposed model to develop a novel
application that significantly reduces the volume, time, and
costs of the parametric test measurements procedure without
compromising its accuracy. We extensively verify our models and
results on measurements collected from more than 300 wafers
and over 25 thousand die fabricated at a state-of-the-art facility.
We prove the accuracy of our proposed statistical model and
demonstrate its applicability towards reducing the volume and
time of parametric test measurements by about 2.5 − 6.1× at
absolutely no impact to test quality.

I. INTRODUCTION

Manufacturing process variations manifest themselves in
gate length variations, line edge roughness, dopant fluctua-
tions, and variations in the widths and heights of interconnects
[2], [9]. These variations impact the key electrical param-
eters of semiconductor devices and interconnects, leading
to variations in performance and power of fabricated chips.
Inter-die variations account for variations that arise between
different die in the same wafer or across different wafers,
while intra-die, or within-die, variations account for variations
that arise within the same die or more generally within a
reticle field. Within-die variations are caused, for example,
by lens aberrations and lithographic hot spots, while inter-
die variations are caused by wafer-level physical phenom-
ena as chemical-mechanical polishing and photoresist coating
mechanisms. Process variations typically have systematic and
random sources [2]. Systematic variations impact different die
or wafers in a deterministic manner, while random variations
are relatively unique to each die/wafer/lot. To cope with
process variations during design and/or manufacturing, it is
first important to analyze and develop models that explain
process variability.

Given the parametric test measurements of process sensitive
test structures, our overarching objectives are (1) to develop

a statistical model that analyzes and summarizes the obtained
measurements, and (2) to utilize the developed model to devise
applications that are of benefit for both designers and process
engineers. We summarize our contributions as follows.

• Based on multivariate statistical techniques, we pro-
pose using the Expectation-Maximization (EM) algorithm
to estimate accurately any missing values in the test
measurements. The EM algorithm enables maximum-
likelihood estimation techniques to produce accurate sta-
tistical parameters for the proposed multivariate distribu-
tion. We also describe a procedure to verify the accuracy
of our multivariate model and to detect any outliers in
the measurements.

• We propose techniques to analyze the systematic and
random sources of process variations and to reveal the
spatial structure in these sources. We use variograms to
model wafer-level random spatial variability trends.

• Based on the proposed model, we develop a new appli-
cation to reduce significantly the time and costs required
to carry out the parametric test measurements. The pro-
posed approach carries out the test measurements on few
selected sites and then uses the EM algorithm to estimate
and classify accurately the measurements at all skipped
sites. The proposed application drastically reduces the
volume of the measurements that need to be conducted.

• Using thousands of measurements from process sensitive
test structures, we validate the proposed techniques and
demonstrate their applicability and accuracy. The pro-
posed parametric test reduction application yields test
cost reduction factors of about 2.5 − 6.1× at absolutely
no impact to variability characterization quality.

The organization of this paper is as follows. In Section II we
provide background information on the test characterization
procedure carried out to procure the parametric measure-
ments. In Section III we develop the proposed multivariate
statistical framework and describe the proposed expectation-
maximization technique. In Section IV we decompose the
observed variations into systematic and random sources and
explore the spatial structure of each of them. Based on our
model, we propose novel applications in Section V, and finally
in Section VI we summarize the main conclusions of this
work.
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II. BACKGROUND ON THE MEASUREMENTS

Parametric measurements occur throughout the fabrication
process to track its quality as the manufacturing steps unfold
[8], [4], [1]. These measurements are used to probe the various
process characteristics such as critical dimensions, transistor
thresholds, timing and leakage. The parametric data set we
consider in this paper consists of frequency measurements
from 65 nm Process Sensitive Ring Oscillators (PSROs). The
PSROs are embedded within a production chip, and they are
used as a quick parametric indicator of the overall process
quality. Previous results in the literature demonstrate that the
speeds of PSROs are strongly-correlated with the speeds of
their embedded chips [1]. To protect the sensitivity of our
data, we do not disclose the number of stages of the PSRO.
Each instance of the production chip holds 14 PSROs that are
spatially organized along a grid that spans the die’s area. Our
data set consist of measurements from 348 wafers that span
23 wafer lots. Each wafer contains slightly more than 100 die,
and the reticle field consists of only one die. In each wafer,
a good number of the parametric measurements are missing.
These missing measurements arise from a number of reasons
including, for example, errors in test probe landing locations,
failure in test probes, and manufacturing defects. The locations
of the missing measurements are typically random and differ
depending on the wafer. Furthermore, a few number of wafers
have received “special” processing steps in comparison to the
rest of the population of the wafers.

III. THE PROPOSED STATISTICAL MODEL

In this section we describe the proposed multivariate statistical
modeling framework.
• In Subsection III-A, we describe the foundations of our

multivariate statistical techniques.
• To address the problem of missing measurements and

its impact on the calculations of the statistical model pa-
rameters, we propose using the expectation-maximization
algorithm in Subsection III-B.

• In Subsection III-C, we describe techniques to verify the
correctness of our statistical assumptions and to detect
any outliers in the data set of measurements.

A. Multivariate Normal Modeling

In this work we make only one fundamental assumption
about the parametric measurements: we assume that the data
set comes from a multivariate normal (MVN) distribution with
potentially a number of outliers. The measurements obtained
from a wafer are considered as an observation that is mathe-
matically represented as a random vector w. Each observation
w consists of measurements on p variables, corresponding
to the number of parametric test sites on each wafer. The
number of variables or sites is equal to p = d × r, where
d is the number of die on a wafer and r is the number
of measurements conducted within each die. In the MVN
distribution, the probability density function for a random
vector w is equal to

p(w) =
1

(2π)p/2
√
|Σ|

e−
(w−µ)TΣ−1(w−µ)

2 , (1)

where µ is a p × 1 vector that gives the expected value of
the random vector w, and Σ is the p × p covariance ma-
trix. Let w1,w2, . . . ,wn denote the parametric measurements
from some n wafers, then the joint density function of all
observations is the product of marginal normal densities:{

joint density
w1,w2, . . . ,wn

}
=

n∏
j=1

{
1

(2π)
p
2 |Σ| 12

e−
(wj−µ)′Σ−1(wj−µ)

2

}
=

1
(2π)

np
2 |Σ|n2

e−
1
2

Pn
j=1(wj−µ)′Σ−1(wj−µ)

(2)
Equation (2), considered a function of µ and Σ for the fixed

set of observations w1,w2, . . . ,wn, is called the likelihood
function, and where

µ̂ =
1
n

n∑
j=1

wj (3)

Σ̂ =
1
n

n∑
j=1

(wj − µ̂)(wj − µ̂)′ (4)

are the Maximum Likelihood Estimators (MLE) of µ and
Σ respectively [6]. Our objective is to estimate accurately
the statistical parameters µ and Σ of the MVN Np(µ,Σ).
In our case, this estimation is complicated by the fact that
each observation wj could potentially have measurements
with missing values. Ignoring the missing values will produce
wrong estimates for µ̂ and Σ̂ that could significantly deviate
from the true µ and Σ of the process.

B. The Expectation-Maximization Algorithm

To compute the MLE distribution parameters from incom-
plete data, we propose utilizing the Expectation Maximization
(EM) algorithm [3]. The EM algorithm enables parameter
estimation in multivariate statistical models with incomplete
data. The algorithm is an iterative procedure for estimating
the values of some unknown quantities, given the values
of some correlated, known quantities. EM assumes that the
quantities are represented as values in some parameterized
probability distribution such as the MVN distribution. The EM
algorithm involves two main steps. The two steps are typically
the Expectation step and the Maximization step. A general
framework for the EM algorithm is as follows.
• Initialize the MLEs of distribution parameters (µ̂ and Σ̂).
• Repeat until convergence:

1) E-Step: estimate the Expected value of the missing
measurements, given the current MLEs (µ̂ and Σ̂)
of the distribution.

2) M-Step: given the expected estimates of the missing
measurements, re-estimate the distribution parame-
ters (µ̂ and Σ̂) to Maximize the likelihood of the
data.



Because the results of the E-Step and M-Step depend on
each other, the EM algorithm is iterated a number of times
until the convergence of µ̂ and Σ̂. The key to the success
of the EM algorithm lies in the operation of the E-Step. To
understand how the estimation is carried out in the E-Step, it
is necessary to introduce some notation. For an observation
vector wj with some missing values, let wu

j denote the un-
known or missing measurements, and let wk

j denote the known

measurements. Thus, wj can be partitioned as wj =
[
wu

j

wk
j

]
,

and accordingly µ̂ and Σ̂ can be partitioned as µ̂ =
[
µ̂u

µ̂k

]
and

Σ̂ =
[

Σ̂u,u Σ̂u,k
Σ̂k,u Σ̂k,k

]
. Then the conditional probability of wu

j

given wk
j is normal, where the

mean/expectation of wu
j = µ̂u + Σ̂u,kΣ̂−1

k,k(wk
j − µ̂k).(5)

Equation (5) is the key method used for the E-Step, and
it can be intuitively explained as follows (formal derivations
can be found in [3], [6]). The equation basically says that the
expected values for the missing measurements of wafer j are
equal to the estimated means at their locations µ̂u plus some
term that estimates the deviations of the missing measurements
of wafer j from their mean µ̂u. This term is estimated to be
equal to the deviations of the known measurements of wafer j
from their mean (wk

j − µ̂k) multiplied by some weight. This
weight is the product of:

a. the covariance, Σ̂u,k, between the unknown and the
known measurements, which reflects the dependencies
between the known measurements and the missing mea-
surements; and

b. the inverse of the variance of the known measurements
Σ̂−1
k,k, which reduces the contribution of the known

measurements towards the estimation if they have large
variances (and consequently they should not be quite
“trusted”).

Another interesting aspect of the EM algorithm is that it
also computes the covariance of the estimated measurements
as follows

covariance of wu
j = Σ̂u,u − Σ̂u,kΣ̂−1

k,kΣ̂k,u. (6)

The diagonal elements of the covariance matrix of Equation
(6) give the variances in the estimations of the missing
measurements. Small variances indicate that the EM algorithm
is confident in its estimation of the missing measurements,
and large variances indicate that the estimated values for the
missing measurements might significantly deviate from their
true values.

Figure 1 shows an example where the EM algorithm fills
the missing measurements of one of the wafers. The color of
a measurement gives its value (or speed in this case). Visual
inspection shows that predicted values seem to “fit” within the
range of the rest of the measurements. Because the predicted
values were missing in the first place, there is no way to verify

Fig. 1. An example of filling missing measurements on wafer using the EM
algorithm.

the accuracy of the algorithm in this setting. However, we will
thoroughly demostrate the accuracy of our approach in Section
V by deleting existing measurements and then use the EM
algorithm to predict them.

Our method is more powerful than spatial-based Kriging
estimators [7] because it makes use of the entire data set,
i.e., measurements from all wafers, to estimate the missing
measurements for each wafer. Note that our method does not
make any explicit use of the spatial locations on the wafers,
so even if some “adversary” has permuted the measurements
on all wafers in the same manner, our method will still
correctly estimate the missing values. Kriging estimators are
good for geospatial studies where there is typically only one
set of measurements on a given spatial field; however, in
semiconductor fabrication there are typically hundreds and
thousands of wafers that are generated roughly using the
same process. Our proposed method exploits the variance-
covariance structure between the various measurements on
the different wafers to estimate the missing measurements.
Furthermore, our model is more accurate and versatile that
deterministic approaches [10] that attempt to fit a deterministic
mathematical model that is a function of spatial location
onto a given data set. In contrast to deterministic approaches,
our approach does not require calculating fitting constants
that generally change depending on the wafer, and besides
estimating the measurements, it provides variances for the
estimations. These variance provide “safety nets”, or formally
speaking, confidence intervals for the estimations as we will
further elucidate in Section V.

C. Verifying the MVN assumption

A formal way to assess the joint normality of a data set is
based on calculating the squared Mahalanobis distances d2

j of
the observations, where

d2
j = (wj − µ)′Σ−1(wj − µ), j = 1, . . . , n. (7)

Essentially Equation (7) summarizes all the measurements of
a wafer by a single number. It can be shown [6] that

d2
j = (wj − µ)′Σ−1(wj − µ) =

p∑
i=1

z2
i , (8)

where z1, z2, . . . , zp are independent standard normal vari-
ables. Since

∑p
i=1 z

2
i = χ2

p, then (wj − µ)′Σ−1(wj − µ) has
a chi-square distribution with p-degrees of freedom. For a
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Fig. 2. Subfigure (a) shows the chi-square plot for the entire data set.
Subfigure (b) gives the the chi-square plot after removing the few outlier
wafers. The x-axis of the plots gives the chi-square quantiles, and the y-axis
gives the Mahalanobis distance quantiles.

data set of w1,w2, . . . ,wn observations, we can assess its
multivariate normality by plotting the chi-square plot. We use
the following procedure to construct the chi-square plot.

a. Use Equation (7) to calculate the squared Mahalanobis
distances for all observation vectors. Then order the dis-
tances from smallest to largest d2

(1) ≤ d
2
(2) ≤ . . . ≤ d

2
(n).

b. Graph the pairs (qp((j − 1/2)/n), d2
j ), where qp((j −

1/2)/n) is the 100((j−1/2)/n) quantile of the standard
chi-square distribution with p degrees of freedom.

If the MVN assumption is indeed true, then the chi-square plot
should be a straight line that passes through the origin with a
slope equal to 1.

To tune the fabrication process, process engineers occa-
sionally experiment with some wafers to assess any pro-
posed process changes. The parametric measurements of these
wafers, which are included with the rest of the measurements,
may constitute unusual observations, or outliers, within the
population of observations. One method to detect outlier
wafers is to examine the calculated Mahalanobis distances
using Equation (7) for unusually large numbers. In a chi-square
plot, the outliers would be the points farthest from the origin.

Figure 2.a gives the chi-square plot for our entire data set of
measurements after filling the missing values and calculating
the MLEs µ̂ and Σ̂. The x-axis of the plot gives the chi-
square quantiles, and the y-axis gives the Mahalanobis distance
quantiles. As it clear from the figure, there are points with
extreme values that are apart from the rest of the points.
Checking these points against the manufacturing recipes of
the different wafers confirms that the wafers corresponding to
these points received special processing steps. After removing
these outlier wafers (37 wafers from a total 348) from our
data set, we re-calculate the estimated values of the missing
measurements as well as the MLEs µ̂ and Σ̂. We then re-plot
the chi-square plot in Figure 2.b. In contrast to Figure 2.a,
Figure 2.b displays quite a linear plot that passes close to the
origin with a near unity slope. The linearity of the chi-square
plot verifies that our MVN assumption is an accurate way to
model the parametric measurements in hand.

IV. ANALYSIS OF THE SYSTEMATIC AND RANDOM
SOURCES OF VARIATIONS

Given the MLEs µ̂ and Σ̂ of the MVN distribution of the
data set using the methods of Section III, the objective of
this section is carry out further analysis on the structure of
both µ̂ and Σ̂. µ̂ gives the mean value of the parameter under
test for every location on the wafers; thus, one can think of
µ̂ as the result of the systematic process variations sources.
While the residual of each wafer, wi − µ̂, can be thought of
as the result of the random process variations sources with
the covariance that is given by Σ̂.

Systematic Sources. The vector µ̂ gives the mean of the
measurements at each location of the set of tested wafers.
Figure 3.a shows the values of µ̂ as a function of their
location on the wafer. One can observe the general trend that
the measurements towards the center of the wafer are on
the average higher in value than the measurements towards
the periphery. Furthermore, one can observe the impact of
systematic within-die variations which leads to a “repetitive”
structure in µ̂. The spatial dependency in µ̂ can be confirmed
by plotting the values of µ̂ as a function of the radius from
the center of the wafer as shown in Figure 3.b. The plot
shows that the average values of the measurements generally
decrease in a linear fashion as the distance from the center
increases.

Random Sources. One can think of the measurements of a
wafer wj as the result of the systematic variation sources µ̂
plus some random field residual rj = wj − µ̂ that gives the
unique impact of the random lot/wafer/die variations on the
measurements of wafer wj. Figure 4 shows the measurements
of two wafers broken into two parts: (1) the µ̂ part which is
shared between the two wafers (and any other wafer as well);
and (2) the random residual part rj which is unique for every
wafer. While the residuals are random in nature, they have
correlations that are quantified by the covariance matrix Σ of
the MVN distribution. The contribution of both systematic and
random sources towards the total variability can be broken up
as given in Figure 5. In our data set, we believe systematic

(a) (b) 

Fig. 3. Subfigure (a) gives the mean of the parametric measurements (µ̂) as
a function of its location on the wafer. Subfigure (b) gives the average value
(speed) of the parameter under test as a function of the distance (radius) from
the center of the wafer.
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Fig. 4. Decomposition of the process variation into systematic and random
residuals.

effects contribute towards 48% of the total variability across
all die, while random effects contribute 52%.

To reveal insights into the wafer-level spatial structure of
the residuals, we propose using variograms. Variograms can
reveal any spatial trends in the random variations. Variograms
have been previously proposed in the literature to analyze
the spatial trends of within-die process variations [11], [7],
[5]. In variograms the variance in measurements is plotted
as function of the distance, or lag h, between them. Since
we have subtracted the mean µ̂ from the measurements, we
can directly express the variogram function of the residuals of
some wafer j as follows

γj(h) =
1

2Ni(h)

∑
Nj(h)

(rj(u)− rj(u+ h))2, (9)

where rj(u) is the residual of wafer j at location u, rj(u+h)
is the residual of wafer j at location u + h, and Ni(h)
gives the number of measurements that are at distance h
from each other on wafer i. If there is a spatial structure
in the data, then we would expect that nearby measurements
to have similar values, and thus γj(h) would be close to
zero in this case. As the distance between the measurements
increases, the measurements would be more independent,
and thus γj(h) would increase (potentially leveling up at a
particular value). Figure 6 gives the variograms of 16 wafers
in one of our lots. The variograms reveal a spatial correlation
structure in the random residuals, where the independency
in the measurements increases linearly (or equivalently the
dependency between the measurements decays linearly) as the
distance between the measurements increases. The trend in
the decay of the dependency depends on the parameter being
measured; different parameters might yield different variogram
trends [11].

systematic 

random 

Fig. 5. Budgeting the contribution of process variations from systematic and
random sources.

Fig. 6. Variograms for 16 wafers one lot.

V. APPLICATIONS: REDUCING PARAMETRIC TEST
VOLUME AND COSTS

In this section we propose using the EM algorithm to reduce
the volume, time and costs of parametric test measurements.
Our basic idea is to measure only a few random or psuedo-
random sites on the different wafers, and then use the EM
algorithm to estimate the results of the measurements at all
skipped test sites. For example, Figure 7.a shows the test
results if all the sites of a wafer are measured; Figure 7.b
shows the test results after skipping the measurements of 50
die; and Figure 7.d shows the test results after skipping the
measurements of nearly 70 die. Given a subset of measure-
ments, we execute the EM algorithm to estimate all skipped
measurements as well as the MLEs µ̂ and Σ̂ of the model. For
the measurements in Figure 7.b and Figure 7.d, the estimation
results are given in Figures 7.c and Figure 7.e respectively.
There are two important points to stress:
• While we skip the measurements pseudo-randomly on all

wafers, the skipped sites differ for different wafers.
• The EM algorithm does not make any use whatsoever

of any earlier characterization results or from any µ
and Σ that could have been calculated from previous
characterizations. Making use of earlier characterization
results can only strengthen the accuracy of our methods.

After the measurements of the skipped test sites on all
wafers are estimated, the estimates are compared to the ac-
tual measurements which have been “hidden” throughout the
estimation process. To assess the accuracy of the estimation,
we calculate the absolute error between the estimations of the
skipped sites and their actual measurement values. For a test
volume and time reduction factor of 2.53× (Figure Figure 7.b),
the average absolute prediction error is equal to 0.69%, and
for a test volume and time reduction factor of 6.05× (Figure
7.d), the average absolute prediction error is equal to 1.17%.

One of the interesting aspects of the proposed approach is
that not only it can estimate skipped measurements, but it also
estimates the variances in the estimations as given by Equation
(6). The variance of an estimate gives the confidence of the
EM algorithm in its estimation of a skipped measurement.
The variance enables the calculation of a confidence interval
where the true measurement of a skipped site would likely
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Fig. 7. Estimating skipped parametric test measurements.

to fall. For example, if we denote an estimated measurement
of a skipped site by ms and the variance in estimation by
σs,s then one can be almost certain that the true value of the
measurement at the skipped site will fall between ms−3√σs,s
and ms+3√σs,s. Calculating the confidence interval can help
in situations where die classification is required. For example,
in many occasions after a test characterization measurement
is conducted, the value of the measurement is evaluated to see
whether the die parameters falls within some certain accept-
able manufacturing range [PL, PU ]. The proposed estimation
technique can classify a die based on the following three cases:

a. If the estimated range [ms − 3√σs,s,ms + 3√σs,s]
falls entirely within [PL, PU ] then the proposed method
can declare that the die parameter is acceptable without
testing the die.

b. If the estimated range [ms−3√σs,s,ms+3√σs,s] falls
entirely outside [PL, PU ] then the proposed method can
declare that the die parameter is unacceptable without
testing the die.

c. If the estimated range [ms− 3√σs,s,ms + 3√σs,s] par-
tially overlaps with [PL, PU ] then the proposed method
can flag the unmeasured die for measurement to accu-
rately classify it.

Thus, our proposed application not only classifies a die
(cases 1 and 2) but it also tells when it thinks that the clas-
sification cannot be possible (case 3). To assess the strength
of our proposed classification approach, we apply it to 26310
die from our wafers. Instead of testing all die, we initially
only test 5351 die for an average of 13 die per wafer. Then
the proposed classification method is used to calculate the
estimates and variances for all skipped test measurements.
The results indicate that 18237 die are classified as either
acceptable or unacceptable (cases 1 and 2), and 2722 die
are flagged to be further tested (case 3). When we compared
the classification results of our approach against the actual
test measurements, we found that our approach manages to
correctly classify (whether acceptable or unacceptable) all of
the 18237 die. Furthermore, after counting all required tests

(5351+2722), our proposed method yields a reduction in test
measurements by a factor of 3.25× at absolutely no impact to
test quality.

VI. CONCLUSIONS

In this paper we have proposed a novel modeling
technique to characterize process variability based on
statistical multivariate techniques. We have proposed using
the expectation-maximization algorithm to estimate the values
of the missing test measurements, and to accurately estimate
the statistical model parameters. Using chi-square plots, we
have proposed techniques to verify the accuracy of our model
and to detect any outliers. We have also carried out further
analysis to reveal the spatial trends in the systematic and
random sources of the variations. Based on our model, we
have proposed two important applications to estimate the
contribution of process variations sources and to reduce the
costs and time of parametric tests. Our novel parametric
test cost reduction approach uses the EM algorithm to give
accurate estimation for any skipped test sites and to flag any
sites that need to be measured. Thus, our method provide
a natural mechanism to avoid any mischaracterization. Our
results demonstrate that it is possible to reduce parametric
test time and costs by 2.5 − 6.1× at absolutely no impact to
the accuracy of the parametric test procedure.
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