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Abstract—In on-chip multiprocessor communication, link fail-
ures and dynamically changing application scenarios represent
demanding constraints for the provision of suitable Quality of
Service. Networks-on-Chip (NoCs) featuring dynamic routing
are a known way to tackle these issues, but deadlock freedom
and message ordering concerns arise. NoCs with configurable
routing, whereby the communication routes are explicitly chosen
at runtime out of a set of statically predefined alternatives,
provide intelligent adaptation without impacting the consistency
of traffic flows.

However, configurable source routing on a NoC platform
requires a design that provides fast path lookup coupled with low
area and power consumption. This paper presents an exploration
and synthesis approach that, depending on the required amount
of routing flexibility, can for example reduce by 3 to 15 times
the area cost of the NoC routing tables by adopting partially
reprogrammable routing logic instead of fully reprogrammable
tables. Further optimizations based on path redundancy allow to
reduce up to 17 times the silicon cost.

I. INTRODUCTION

Global on-chip communication is becoming a problem as

silicon chips become larger, technology scales down, and the

clock frequency increases. Signals are predicted to take several

clock cycles to travel over the longest distances from corner

to corner of a chip [1]. Simultaneously, the increasing perfor-

mance requirements of highly parallel on-chip architectures

are unmet due to the bottlenecks imposed by traditional, bus-

based on-chip interconnects.

The Network-on-Chip (NoC) [2], [3] paradigm, which

brings packet-switching networking concepts to the on-die

level, has been proposed to systematically tackle these chal-

lenges. NoCs are a structured, predictable and scalable ap-

proach to the problem, centered around wire segmentation and

point-to-point signaling.

Generally, cores attached to a NoC do not have any informa-

tion about the NoC topology - only the destination addresses

are known. One of the key functional features of NoCs is

providing routing services among these endpoints. In a basic

implementation, NoC routing can be extremely simple. For

example, several proposed approaches just tag every packet

with a routing field in the header. The tagging is done at the

network endpoints (Network Interfaces or Network Adapters)

by leveraging routing Look-Up Tables (LUTs). The route

is deterministic, decided at design time. Yet, this minimal

approach is not able to tolerate changes in the operating

conditions at runtime, such as:

• Intervening faults (e.g. switch or link failures)

• Application switching (e.g. task migration or task switch-

ing, which may induce critical localized congestion)

• Power management events (e.g. power down of a portion

of the NoC)

Dynamic routing has often been suggested as the answer

to best handle these scenarios. Dynamic routing involves

forwarding packets along different paths depending on a

choice of decision variables, which are evaluated cycle-by-

cycle at runtime. For example, with dynamic routing, packets

would automatically find an alternate way around a faulty

NoC node. Unfortunately, dynamic routing introduces two

major problems: deadlocks and packet ordering. Since ev-

ery packet may follow a different route, it becomes hard

to avoid routing loops, which induce deadlocks. Sequential

packets travelling among the same endpoints on different

routes may also encounter different congestion, and reach their

common destination in swapped order - a condition which

is forbidden in several implementations, requiring reordering

queues. Therefore, dynamic routing can become impractical

in practice.

In this work, we follow an approach in between determin-

istic and dynamic routing, which we will call configurable

routing in the remainder of the paper. We acknowledge the

importance of adding reconfiguration capabilities into the NoC

routing policies, but we adopt an architectural design flow

which achieves them without incurring any of the major

downsides of dynamic routing. Referring to Figure 1 (left

side), we operate by leveraging one of the several proposed

approaches for NoC topology and route design [4], [5], [6],

[7], [8]. These works specifically focus on the generation

of NoCs whereby, depending on application needs, routes

are established to provide connectivity among communicating

Fig. 1. Reference NoC design flow. The routing customization proposed
in this paper operates on given NoC topologies to improve the results upon
physical synthesis.
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nodes. We assume that multiple sets of routing schemes are

available as an input. We then support runtime reconfiguration

of the NoC routes among one of the possible alternatives, with

the idea of performing a reconfiguration only upon one of

the rare events which really demand it (e.g. a power down

message), and not cycle-by-cycle. The rationale is that, by

pre-characterizing a finite set of possible routes, these can

be verified to be deadlock-free. Further, packets are again

delivered in-order by construction.

A remaining issue with configurable routing is that pro-

grammable NoC routing tables can have a prohibitive hardware

cost. The main novel goal of this paper is to mitigate this issue.

In order to do so, we first observe that configurable routing

crucially requires a certain amount of design-time activities -

for example, coming up with the static routing sets. Therefore,

in this paper, we present a design-time analysis step whose

purpose is to identify, out of the various alternatives, the

cheapest architecture to support variable amounts of routing

reconfigurability, and to further optimize it. As can be seen

again in Figure 1 (center), the proposed novelty plugs into

existing NoC design flows: given a NoC optimized for a

certain application, and namely given a set of possible routes

over a topology, our objective is to assess and optimize the cost

for rendering those routes into configurable routing LUTs.

In the following, we will present a detailed study of various

possible mechanisms to support the routing LUT reconfigura-

bility, keeping in mind the area cost metric. Such mechanisms

include RAM- and register-based LUTs, or cheaper solutions

whereby the routing LUTs can be only partially reconfigured.

Completely static routing is kept as a benchmark. We will

also present a comparison of three different synthesis flows

of these architectures, with the goal of reaching the most

effective physical implementation. Our experiments show that

it is critical to pick the right architecture for a given set of

requirements. For example, across a wide range of numbers of

nodes in the NoC, partially configurable LUTs have shown an

excellent trade off between route reconfigurability, area-power

cost, and performance. Area savings from 3X to 15X can be

achieved compared to fully reconfigurable circuitry, depending

on the routing flexibility requirements. A further proposed

optimization allows to drastically reduce the programmable

elements, additionally saving up to 20% of the area cost in

our test case.

II. RELATED WORK

Networks-on-Chips (NoCs) have been proposed by numer-

ous authors [3], [2], [9], [10] as a way to tackle multiple

on-chip interconnection challenges of multicore devices, such

as scalability to ever larger numbers of IP cores, increasing

bandwidth demands, and worsening propagation delays of

global on-chip wires.

As NoCs are becoming the focal point of the system

integration process, several authors have investigated ways to

embed advanced features into them. For example, work has

been done on NoC-centered mechanisms for fault tolerance,

power management and performance optimization. One of

the crucial degrees of freedom in NoC design, which has

been leveraged to solve some of the above problems, is

routing. Routing is normally categorized as either deterministic

(packets follow statically know routes) or adaptive, also called

Fig. 2. Example routing mechanism for deterministic source routing NoCs.
For each transaction, the Processing Element provides a destination address.
This address is then translated into a NoC path, which is merely the ordered
sequence of bits representing the codes of the switch ports that packets need
to take to reach their destination. The NI uses a LUT to store the route map.

dynamic (packets follow different routes over time depending

variables such as congestion states or fault conditions). Deter-

ministic routing is often implemented with lookup tables at the

NoC endpoints [11], although in some regular topologies, such

as spidergon or mesh, it can be performed in switches based

on a destination tag [12], [13]. The work in [14] proposes a

mixed approach based on irregular meshes. Dynamic routing

needs decentralized decision processes and is therefore often

achieved with dedicated logic in every router [15]. Determin-

istic routing is characterized by its simplicity and minimal

overhead; it can easily be configured to avoid deadlocks [16]

and natively guarantees in-order delivery. Unfortunately, deter-

ministic routing does not adjust to the system evolution over

time; on the contrary, dynamic routing has been proposed to

achieve goals such as bypassing faulty nodes and minimizing

congestion [17], [15].

Unfortunately, dynamic routing generally induces deadlock

conditions, which must be resolved, and, in many imple-

mentations, can deliver packets out-of-order, mandating the

presence of reordering buffers. These provisions can become

impractically expensive on silicon. In [18], a mechanism

that compresses lookup tables for adaptive routing has been

presented. This solution is however not suitable for irregular

topologies. The work in [19] proposes a region-based routing

mechanism (adaptive routing) to tackle unreliable hardware in

network on chips.

In this paper, in order to support configurable routing

instead, first of all we leverage several previous efforts aimed

at NoC topology synthesis for a given application [4], [5], [6],

[7], [8]. Configurable routing allows bypassing faulty nodes

or links, safely shutting down chip regions, and readjusting

traffic patterns upon a change in the software application

running on the chip. Configurable routing has been proposed

in several forms; for example, in [20], the authors propose

a custom methodology, based on packet rerouting, to handle

data transfers upon power management events or system faults.

However, their approach is not general and is actually working

around faults in the attached cores, not in the NoC itself. More

in general, a novel contribution of this paper is an exploration

of the design space for configurable routing implementation.

In this paper, we will explore the area impact of synthesizing

routing tables in multiple ways. To this extent, we will use

the built-in logic optimizer of industry-standard Synopsys

tools [21], as well as BOOM II [22] and ABC [23]. BOOM is a



tool specialized in minimizing multiple-output combinational

logic, and generates two-level logic as an output. ABC is more

flexible and can handle generic circuits, including sequential

and multi-level logic.

III. CONFIGURABLE SOURCE ROUTING NOCS

Network Interfaces (NI) seamlessly connect existing IP

modules to a Network-on-Chip. They play a crucial role in

a NoC context, determining the performance of the whole

system. NIs, given a request from the attached processing

element, generate packets that will be sent to the destination

core, and all the information needed to manage the flow

control. As commonly seen, we assume as a reference a NoC

with deterministic source routing. For each message coming

from the attached core, the NI generates in a deterministic

manner the routing bits needed to traverse the NoC switches.

An LUT is used for this purpose, converting the memory-

mapped address into routing bit sequences. Figure 2 shows

the routing mechanism: the core request is processed, and

depending on the destination address, the NI generates the

path across the NoC switches, up to the destination element.

The routing bits are stored in the packet header. When the

packet is sent through the NoC switches, a physical channel

is created between the packet source and destination.

Depending on how reconfigurable they are, we classify

routing LUTs in three categories:

• Hard Wired

• Fully Configurable

• Partially Configurable

As LUT configurability increases, the system becomes more

flexible. A highly configurable LUT could for example be

reprogrammed to route packets around a large number of NoC

faults, while a less configurable LUT may not be able to work

around more than one fault, and a hard wired LUT may not

tolerate any single faulty link in the NoC. Similarly, more

configurability could lead to better performance in a system

where many different tasks may be switched over time, etc..

Unfortunately, in general, more configurable LUTs are also

more expensive in area. This section gives an overview of

various possible architectural implementations of NI LUTs.

The designer is ultimately in charge of picking one alternative,

but our approach makes clear the trade-off among the area cost

and the achievable flexibility for the given NoC topology. In

the following we explain in detail the possible architectural

implementations of the LUTs.

A. Hard Wired

This first solution is presented as a reference. Logically,

it is simply a ROM; circuit synthesis tools will actually

render it with a netlist of combinational gates. The routing

information is permanently stored and no changes are possible

at runtime. The address decoder translates the addresses issued

by the attached core to properly drive the multiplexer selector.

Figure 3a illustrates in detail the logic implementation.

B. Fully Configurable

In this architecture, the routing information is stored on

either registers or memory banks. Unlimited remapping of

NoC routes is allowed at run time, with maximum routing

flexibility. Very different reconfiguration circuits are needed

depending on whether the memory elements are rendered as

plain flip-flops or whether the designer instantiates a RAM

macro instead. The register programming can take a place

by injecting a setup vector through a scan chain, depicted

in Figure 3b. On the contrary, the RAM-based LUT uses

a dedicated data structure, and as depicted in Figure 3c, a

serial-to parallel converter is needed to properly initialize the

memory. The number of memory elements is in both cases

n ∗ m, n being the number of destinations (LUT entries) and

m being the number of bits required to encode the longest

path. Both solutions use a large amount of scan registers -

namely n ∗ m for the former and m for the latter - for the

programming operations. This also means that several clock

cycles are needed to change the route map, during which the

NI is forced to stay idle. This high programming latency is,

however, consistent with the fact that the LUT reprogramming

is expected to happen only upon rare events, such as upon

failures or power downs.

C. Partially Configurable

Partially configurable LUTs represent a hybrid solution

between the previous schemes. Figure 3d gives an overview of

this solution. Up to i NoC paths are allowed for each possible

destination. These are hard coded, and through a setting logic

block, the desired path is enabled. No memory element is

required to store the LUT content itself; however, some flip-

flops are still needed as the choice of which route to enable

is again performed via a scan chain. Since the scan chain

injects only the ID of the desired configuration, and not the

entire NoC map connectivity, sequential resources decrease

drastically and the total amount of clock cycles needed to

reprogram the table is much lower compared to the fully

configurable scheme.

IV. SYNTHESIS OF CONFIGURABLE SOURCE ROUTING

LOGIC

We chose to base our integration effort on the ×pipes [8],

which supports arbitrary connectivity, and on its instantiation

toolchain [24]. Thus, we can leverage a full design flow up to

the layout level, as depicted in Figure 1.

For the sake of simplicity, and without losing generality, we

choose a simple and regular NoC topology, a mesh. We assume

a full connectivity among the cores: each core communicates

with all others. An internal tool outputs LUT description, in

Verilog, for each NI. As per the default, the tool creates a

code which is interpreted as a hard wired structure, with each

reachable endpoint node hard coded as one entry of the LUT.

In order to evaluate the impact of synthesis tools on the

cost of routing LUTs, three different synthesis flows have been

explored as a contribution of this work:

• Standard synthesis flow with Synopsys tools [21]

• Boolean Optimization with BOOM II [22] before the

standard synthesis flow

• And-Inverter Graphs (AIG) Optimization with ABC [23]

and GTECH mapping before the standard synthesis flow

In the standard Synopsys synthesis flow, the LUTs come

as a Verilog behavioral description, where a parallel switch



Fig. 3. Different logic implementation of the Source Routing LUT: a) Hard Wired: each route is encoded as hard wired sequence of 0s and 1s; b) Fully
Configurable RAM based: each route is stored in a memory cells and can be fully reprogrammed at any time with a scan chain; c) Fully Configurable register
based: each route is stored in a register and can be fully reprogrammed at any time with a scan chain; d) Partially Configurable: alternate fixed routes are
available for each destination and can be selected by programming a few control bits via a scan chain.

statement implements the LUT logic. Since the NoC paths

may show different depth, don’t care usage may improve the

quality of synthesis results. During the synthesis stage, Design

Compiler performs a preliminary optimization check by using

a PRESTO boolean minimizer.

As the number of paths grows, the LUT increases in

complexity, suggesting that a preliminary optimization before

the logical synthesis may be useful. This motivates our effort to

explore different optimization alternatives, like BOOM II [22]

and ABC [23].

BOOM II is a heuristic two-level multiple-output boolean

minimizer. As it is compatible with the Berkeley standard

PLA format, we use a Perl script to translate the behavioral

Verilog description into a PLA file, getting an optimized PLA

file as the output of BOOM II. This file is then used for the

subsequent synthesis step.

We also try ABC [23], a powerful tool for the synthesis of

combinational or sequential logic circuits. With a modifica-

tion to its generic technology library, ABC can be asked to

synthesize the same PLA files that we generate for BOOM

II into a netlist of GTECH cells. GTECH is the generic

netlist format used by Design Compiler to describe circuits

just before mapping them onto a specific technology library,

and can therefore be passed as an input to Design Compiler

for the final synthesis.
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Fig. 4. Three different synthesis flow have been adopted; a) standard
synthesis flow; b) Boolean Optimization before the standard synthesis flow;
c) And-Inverter Graphs (AIG) Optimization and GTECH mapping before the
standard synthesis flow

V. EXPERIMENTAL RESULTS

The proposed solutions have been synthesized and mapped

on the UMCE-Faraday 130nm CMOS Technology library, then

the Place and Route and the verification have been performed

to check the correctness and evaluate the area cost, timing

performance and power consumption.

With respect to partially configurable LUTs, we identify

two scenarios of interest. The first is the minimum cost one,

when only one redundant path per possible NoC destination is

provided. The maximum number of redundant entries, on the

other hand, is potentially almost unbounded, depending on the

topology and on its size. However, due to deadlock freedom

constraints, many fewer routing combinations will be valid. If

the fault tolerance is factored in, alternate routes should use as

disjoint sets of links as possible, further reducing the solution

space. It is not the focus of this paper to calculate how many

possible route sets may exist in any given topology; for this

specific experiment, based on our experience with enumeration

in small meshes, we consider at most six such alternate routes.

We present experimental results sweeping among these bounds

- two to six alternate routes per LUT entry.

Our first experiment is summarized in Figure 5, where

we compare the silicon cost, expressed in equivalent gates,

of three possible LUT implementations. We assume 14 bits

of routing information per LUT entry. The hard wired LUT

shows a very efficient area utilization, respectively 18 and 30

times smaller compared to the fully configurable register- and

RAM-based LUTs for 6 to 8 LUT entries (the lower bound).

This can be explained by the fact that in completely static

LUTs the synthesis tool can tap into a huge optimization

potential, as the address decoder and the multiplexer can be

merged as glue logic. As the number of LUT entries increases,

the silicon cost increase in a linear fashion, mainly due to

the multiplexer. Concerning the RAM-based solution, four

memories have been generated with the UMCE-FARADAY

130nm memory compiler. This tool allows the designer to

specify some parameters (word length, number of columns,

number of words, etc.). We selected four values for the number

of words in the LUT - 8, 16, 32 and 64. As expected, RAMs

of few words experience a high hardware overhead due to

memory handling logic, but this solution is quite efficient when

the number of entries grows, since in fact its cost slope is



comparable to the hard wired solution. Finally, the register-

based fully configurable LUT is very efficient for small LUTs,

but its cost slope is steep. Beyond about 10 LUT entries, this

solution shows poor area efficiency as compared to the RAM-

based solution.

In many designs, the LUT may fall in the critical path of the

Network Interface block, therefore the timing performance of

the whole NoC may degrade if the LUT is too slow. Figure 5b

summarizes the timing cost: hard wired and register-based

solution show the same timing properties, since the latency is

dominated by the multiplexer, while in case of a RAM-based

LUT the latency is dominated by the memory access time. This

cost however grows slowly as compared to the other solutions,

confirming the intuitive finding that the RAM usage becomes

suitable for very complex designs with large LUTs.

As we introduced in the previous section, we explored three

different synthesis flows for partially configurable LUTs. A

detailed comparison of the outcome is presented in Figure 6.

BOOM II demonstrates clear area savings. Figure 6a illustrates

the silicon cost for a fixed latency between input and outputs,

while Figure 6b shows the area cost with a maximum operating

frequency goal. Thanks to boolean minimization the area

reduction ranges from 7% up to 20% with respect to the

standard flow. ABC optimization on the other hand does

not bring any significant benefits and shows results that are

comparable whith a standard Synopsys flow.

Figure 7 illustrates the silicon cost to implement the partially

configurable approach. This experiment is based on a 4x4

mesh topology, with a routing depth of 21 bits and boolean

optimization before the synthesis. We sweep the number of

nodes and redundant paths to investigate the trade offs in

hardware complexity. Figure 7 also presents an exhaustive

comparison between partially configurable, fully configurable

and hard wired routing. Partially configurable solutions exhibit

clearly better results across all the design points we consider

here. LUTs with 6 and 2 alternate entries are respectively 3

and 15 times smaller than the equivalent register-based fully

configurable LUT, and up to 40% of their area is required by

the setting registers. The total area increase compared to a hard

wired routing LUT is just approximately 20% for 6 options,

and 7% in case of 2 options. Factoring in the area cost of the

rest of the NI, the gain is still very clear. An NI equipped

with partially configurable LUTs needs approximaltely 79%

less area in case of 6 option, and 103% in case of 2 options,

Fig. 5. Cost of hard wired and fully configurable LUTs for a 3x3 mesh: a)
area cost (equivalent NAND2 gates); b) propagation delay between input and
output ports (FO4 delays)

Fig. 6. Area Cost for three synthesis flows: standard flow (PRESTO), boolean
minimization (BOOM) and AIG optimization (ABC). a) The area is optimized
with fixed timing constraints; b) the area is optimized for maximum operating
frequency

compared to one with fully configurable register-based LUTs.

This proves the importance of the study in this paper and that

a considerable amount of routing flexibility can be supplied at

a low cost.

As a last experiment, we try to minimize the configuration

register cost for partially configurable LUTs. n configuration

bits (assuming just one per LUT entry) allow for 2
n possible

route combinations, a number which is likely to be much larger

than needed. A partially configurable LUT of 16 entries with

two options each includes 15 registers used to store the setup

information, therefore 2
15 different configurations are possible.

Since many of these configurations are certainly invalid, for

example due to deadlocks, we now decrease the number of

legal configurations, removing 10 of the 15 setting flip-flops.

The 15 configuration bits will therefore be generated with 5

flip-flops and combinational gates.

Figure 7 illustrates the area savings by adopting this opti-

mization. The sequential area becomes 3.6 times smaller, and

the total cost is reduced by 20%.

A visual comparison of the considered alternative architec-

tures is given in Figure 9, which presents layout screenshots.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach which al-

lows NoC designers to deploy NoCs based on configurable

routing. Our contributions include a way to evaluate con-

figurability/cost/latency trade-offs among different alternate

architectures, plus several investigations on how to optimize

the quality of the physical-level results.

Fig. 7. Area cost of partially configurable LUTs for a 4x4 mesh when
sweeping both the number of entries and the number of possible alternatives
per entry



Fig. 8. 2-option and optimized partially configurable LUT. Sequential area
is reduced by 3.6 times, with a total cost decrease of 20%

In our tests, hard wired LUTs prove the least expensive.

But if routing flexibility is needed, reconfigurable tables are

mandatory. Among register-based, RAM-based, and partially

configurable LUTs, the first shows better performance for

small tables (e.g. up to 10 words of 14 bits each). Beyond

that size, RAM-based solutions are better in area. The area

overhead however is still high. Partially configurable LUTs

offer a good trade off between routing flexibility, area cost

and performance. The area gain ranges from 3x to 15x (1,2x

to 5,2x as regard to RAM based scheme) depending on the

routing flexibility requirements. Further optimizations allows

to drastically reduce the programmable elements, saving up to

20% extra area cost in our test case.

Future work will involve a more detailed study of the whole

toolchain required to support configurable routing, e.g. by

considering in more detail the process of selecting alternate

routing table sets with deadlock freedom and fault tolerance

objectives in mind.
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