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Abstract— Reliability concerns associated with upcoming tech-
nology nodes coupled with unpredictable system scenarios re-
sulting from increasingly complex systems require considering
runtime adaptivity in all possible parts of future on-chip systems.
We are presenting a novel configurable link which can change its
supported bandwidth on-demand at runtime (2X-Links) for an
adaptive on-chip communication architecture. We have evaluated
our results using real-time multi-media and the E3S application
benchmark suits. Our 2X-Links provide a higher throughput
of up to 36%, with an average throughput increase of 21.3%,
compared to the Normal-Full-Duplex-Links [12], [14], [17], [20]
and keep performance-related guarantees with as low as 50% of
the Normal-Full-Duplex-Links capacity. Our simulation shows
when some links fail, the NoC with 2X-Links can recover from
these faults with an average probability of 82.2% whereas these
faults would be fatal for the Normal-Full-Duplex-Links.

I. INTRODUCTION AND RELATED WORK

Semiconductor industries have kept alive Moore’s law with
the innovation of novel process technologies and this is ex-
pected to continue as long as our system requirements expand
at the present rate. In the current process technology shift
from 65nm to 45nm, the number of logic gates per square
millimeter has increased from 700,000 to 1,4 million [10].
Due to several practical limitations the process technology
is no longer able to provide reliable silicon fabrics with the
continuing technology scaling and therefore, reliable systems
have to be built from unreliable fabrics [1], [3], [16]. The
burden of continuing on the technology roadmap to meet the
increasing computational demand is now on the shoulders
of architecture and system-level engineers. In the continuing
process of novel architectures, a Multi-Processor System on
Chip (MPSoC) plays an important role in satisfying the
increased computational demand. The more complex a system
grows using these unreliable fabrics, the more it must also be
able to handle situations arising from these inherent defects
efficiently. These situations cannot be predicted at design time
and thus the System on Chip (SoC) needs to be designed with
the capability of self-adaptiveness in mind [1], [3], [11], [8].

The design methodology for the MPSoC and its on-chip
interconnect has already been shifted towards Networks-on-
Chip (NoCs) as it is envisioned that future MPSoCs will
be predominantly communication-centric [2], [5]. Recently,
several general-purpose NoCs such as Tile64TM by Tilera
[20] and an 80-core processor from Intel [12] have been
fabricated. So far, the research in the domain of NoC has
focused on application-specific1 NoCs [2], [15] and design-
time parameterized general-purpose2 NoCs [12], [20]. In order
to achieve reliable communication in a MPSoC, the NoC must
be extended with adaptive capabilities e.g. the ability to change
the traffic route at runtime in order to bypass faulty areas

1Application specific NoCs are design-time parameterized architectures
mainly with a custom topology, fixed routing scheme, and a fixed number of
allowed virtual connections at each output port [2], [8].

2Over designed (e.g. number of virtual channels) considering different
types of traffic scenarios and can not adapt architectural parameters i.e. buffer
assignment or link capacity at runtime (lower resource utilization).

efficiently. Here, fault-tolerance ability is limited to the faults
in the links between two adjacent routers.

Taking this reliability issue together with other issues,
e.g. the user-behavior, into consideration, we have proposed
a reliable adaptive on-chip communication infrastructure pro-
viding adaptivity in the architecture-level in [8]. Further-
more, the system-level adaptation is provided using a run-
time agent-based distributed application mapping [9]. The
architecture-level adaptation is implemented by using several
novel methodologies to increase the resource utilization of
the underlying silicon fabric, i.e. sharing the virtual channel
buffer among different output ports and changing the routing
at runtime [8]. In the scope of this paper we concentrate on
a novel part of the architecture-level adaptation namely the
runtime configurable links, the 2X-Links.

Communication links in the NoCs typically employ full-
duplex communication using two simplex links [12], [14],
[17], [20]. In between two adjacent routers there are two
simplex links i.e. one from Router 1 to Router 2 and another
from Router 2 to Router 1. Both of these uni-directional links
together form the full-duplex links. The links are design-time
parameterized (e.g. the bit-width of the link) and therefore,
provide a fixed link capacity in terms of bandwidth for a
certain clock frequency. We observed that there may be
several scenarios (some are given below) where we may
require configurable links which can adjust their supported
bandwidth capacity.

• As the number of possible simultaneous inter-task con-
nections increases in a link in one direction, it becomes
more difficult to meet the bandwidth requirements of all
tasks. Therefore, there might be situations where a certain
link requires an increase in link capacity (assuming all the
transactions are flowing in a single direction).

• Sometimes, the bandwidth requirements of tasks expand
according to user requirement changes (e.g. the user
wants to switch video playback to a higher resolution). If
in such a scenario current link capacity of one half of the
duplex link cannot meet the requirement then the other
half can be reversed to add more available bandwidth
(doubled the link capacity in our 2X-Links)

• When a hardware fault in a simplex link, e.g. in the link
from Router 1 to Router 2 occurs, the transactions via
this link in this direction will not succeed. In such a
scenario, if the other simplex link (from Router 2 to
Router 1) has the ability to reverse its direction while
free, it could transmit these transactions. Therefore, it
increases the resource utilization and improves reliability
factors through runtime adaptation.

To the best of our knowledge, there has been very little work
which we are reviewing in the following on configurable links
for NoC architectures. The state-of-the-art NoCs have full-
duplex links which are design-time parameterized and these
links do not consider scenarios where the demand for the given
link capacity can increase depending on the current traffic
load. A power-aware network which responds to the bursts
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Fig. 1. Motivational example to show the requirement of 2X-Links

and dips in traffic by turning links on and off at runtime
has been proposed by the authors in [18]. Their approach,
however, is based on the assumption that the future traffic
patterns are predictable based on the observation of the past
traffic. Hard-to-predict events e.g. rapid motion in a video
sequence cannot be treated efficiently. The FLUX network [19]
is proposed to establish interconnections on-demand before or
during program execution by adapting the physical network.
While creating point-to-point connections, the deployed links
need to be reserved. This approach does not scale well as
the number of required links increases exponentially with the
number of processing elements.

The rest of the paper is organized as follows. After pre-
senting the motivational case study analysis in Section II,
in Section III we introduce our runtime adaptive on-chip
communication architecture in short, whereas in Section IV
our novel 2X-Links mechanism is explained in detail. Our
hardware implementation for the 2X-Links is presented in
Section V. Experimental results are discussed in Section VI
with Section VII concluding the paper.

II. MOTIVATIONAL CASE STUDY ANALYSIS

For a motivational example of the proposed runtime con-
figurable links we consider a 3 × 3 mesh NoC, two applica-
tions: the LAME MP3 encoder and a set-top box application
(Fig. 1 (b,c)), and two macro libraries: the IP library not shown
in the figure and the communication link library Fig. 1 (a).
Fig. 1 (d) shows that using the current configuration Link1
can meet the requirement of each transaction while Link2 fails
(showing more than 100%) in 5 of the given transactions.

We now assume that at a certain time t0, both applications
need to be executed in parallel. In an initial routing attempt
by a normal NoC, the traffic from Coding (here task name
represents the tile where it is mapped to) is routed through
Analysis to Format in Fig. 1 (e). This however fails, as the
combined bandwidth required by the transactions exceeds the
link capacity. With the wXY-routing algorithm proposed in [8],
the tasks are able to choose different routes but in this scenario,
the algorithm is unable to find a valid route. We can also try
to use the runtime (re-)mapping mechanism proposed in [9]
to solve this problem, but for this case we have investigated
no instance of mapping can meet the bandwidth constraints.

Under this presented scenario, the state-of-the-art mecha-
nism proposed in [13], splitting the traffic across multiple
routes between the source and destination (traffic-splitting)

may be used to expand the link capacity. However, this
approach leads to higher packet latency, flit rearranging,
unpredicted network situations, and may cause an increase
in communication bottlenecks. An ideal solution may be to
expand the link capacity of that particular link at runtime.
Therefore, we have investigated the possibility of using link re-
versal mechanisms e.g. if the link from Format to Analysis
can be reversed, then the bandwidth capacity in the opposite
direction will be doubled and all the transactions will be
successful (see Fig. 1 (f)). We have further investigated that
we are able to decrease the available bandwidth even more by
using only link2 from the communication library while still
being able to successfully accommodate all of the transactions
(see Fig. 1 (g)).

Our novel contribution is as follows: we present a
runtime configurable link (2X-Link) at the architecture-level
to compliment our existing adaptive on-chip communication
infrastructure. The 2X-Links can adapt the link capacity by
changing the direction at runtime on demand, thereby increas-
ing the resource utilization while considering the reliability
issues. The building blocks of 2X-Links are two half-duplex
links instead of simplex links.

III. OUR RUNTIME ADAPTIVE ARCHITECTURE

Our runtime adaptive on-chip communication architecture
is capable of supporting deadlock-free data transmission and
meets required bandwidth guarantees in a network exposed
to varying system constraints and/or mode switches. We
have used a transaction-level connection-oriented approach on
top of packet-based communication to provide performance-
related guarantees i.e. bandwidth requirements for critical
transactions, as well as a pure best effort approach for the rest
of the transactions (a hybrid approach). Similar to most NoCs,
we have taken a pipelined architecture. The communication is
packet-based with each packet being further partitioned into
flits to allow wormhole routing. The topology is kept as a
regular 2D mesh. Our runtime adaptive scheme is divided into
two main parts: the system-level, and the architecture-level.

A. System-level Adaptation

Adaptivity at system-level is deployed using a runtime
agent-based (an agent is a computational entity, realized in
software, and acts on behalf of other entities) distributed
application mapping. The detailed scheme is given in [9] and
is not part of this work. In summary, to obtain a scalable



Fig. 2. 2X-Link workflow together with our complete adaptive on-chip communication architecture

mapping solution we have reduced the computational load by
confining mapping to clusters which are a connected subset
of tiles. The clusters have a variable size that can be adjusted
at runtime and each cluster has one cluster agent which is
responsible for (re-)mapping.

There are several reasons for (re-)mapping at different levels
e.g. user-behavior from the application-level or hardware faults
from the architecture-level. The cluster agent first tries to find
a suitable (re-)mapping for a mapping request. If it is not able
to establish a mapping instance it informs a global agent. The
global agent then tries to resize the cluster associated with the
cluster agent. If this fails, a different cluster is chosen and a
new mapping is done. All agents are implemented in software
and may be migrated to run on any PE in every tile within
their deployment area (i.e. in a cluster or globally).

B. Architecture-level Adaptation

After the system-level has successfully set up a mapping
instance, it is up to the architecture-level to configure each
tile for the resulting connections. Once a transaction arrives at
a tile, all possible directions must first be checked for suitable
routes. To find a valid route which can meet the bandwidth
constraints for the transaction, we may need to use the concept
of 2X-links. The number of virtual channel buffers per port has
typically been a design-time parameter [2], [12]. On-demand
buffer assignment where virtual channel buffers are tied to
routers and not to individual ports allows a router to distribute
the virtual channel buffers as needed to any possible route.
Thus, the virtual channel buffers are assigned to transactions
which in turn are assigned to an output port

C. On-chip Communication Links

Some link-related terms to explain our proposed 2X-Link
are discussed below:
A simplex link is a link where the transaction is allowed in
only one direction. A half-duplex link provides communication
in both directions, but only in one direction at a time. A full-
duplex link allows communication in both directions simulta-
neously. Two simplex links may be combined together to form
a full-duplex link e.g. links in the current NoC architectures
[12], [14], [17], [20].

A 2X-Link is a combination of two half-duplex links and
their transmission can be configured to three different modes
(both in one direction, both in the reverse direction, and

both in opposite directions). For our runtime adaptive on-
chip communication architecture we have used these 2X-Links
which is the main contribution in this paper.

A Time-Division-Duplex-Link (TDD-Link) uses time divi-
sion multiplexing to separate inward and outward transactions.
It emulates full-duplex communication over a single half-
duplex link (the bit width of the single half-duplex link is
doubled to compare it with the 2X-Links). Time division
duplex has a strong advantage in case where the asymmetry
of the forward link and reverse link data speed is variable. As
the amount of forward link data increases, more bandwidth
can dynamically be allocated to that and as it shrinks, it can
be taken away.

IV. RUNTIME CONFIGURABLE LINKS

We have implemented configurable 2X-Links for adapting
the link capacity at runtime. If in a Normal-Full-Duplex-
Link the link capacity is “X” then our proposed 2X-Links
may adjust its link capacity among “Zero”, “X”, and “2X”.
We have also investigated the possibilities of incorporating
the TDD-Links as a runtime configurable link in our on-
chip communication architecture and then have compared
the TDD-Links with our configurable 2X-Links. The 2X-Links
have the advantage of lower area and fault-tolerance ability
over the TDD-Links. Its limitations are: transmission can only
be supported in one direction and the bandwidth granularity
in the link is course-grained (0, X, and 2X). On the other
hand, the TDD-Links can adjust their time slot to support bi-
directional transactions and at the same time can configure
the runtime link capacity in one direction in a fine-grained
way but suffer from higher area overhead and fault-tolerance
ability. Considering the area overhead and the fault-tolerance
ability we have implemented the 2X-Links as an integral part
of our runtime adaptive on-chip communication architecture.

The concept of link reversal used in the 2X-Links is not new
and has been borrowed from Telecoms [7] and Wireless Sensor
Networks [4] research. A diagram showing the workflow of
2X-Links mechanism incorporated in our runtime adaptive on-
chip communication architecture [8] is presented in Fig. 2.
At a given time t, application G is requested to be mapped
from the system-level part onto the NoC architecture-level. In
the architecture-level our purpose is to find a suitable route
allocation that meets all the requirements for the transactions,
i.e. the bandwidth is met and then assigning virtual channel



buffer on-demand to that direction (on-demand virtual channel
buffer assignment is not in the scope of this paper and it has
been published in [8]) for the current instance of mapping.
There are several possible situations after a mapping instance
has been passed down to the architecture-level while searching
for a suitable route (see Algorithm 1):

• If the adaptive router can find a suitable route for all the
transactions, then the virtual channel buffers are assigned
to the transaction direction.

• If the adaptive router for the current instance of mapping
can not meet the performance-related guarantees for all
the transactions, we search for an appropriate link which
may be reversed to form a 2X-Link in its transmission
direction to help performance-critical transactions. When
the feedback value is true, then the virtual channel buffers
are assigned accordingly.

• If no suitable link can be reversed then we have to
(re-)allocate some routes to relieve the link resource
congestion, since the computational complexity for the
route allocation is less than the (re-)mapping.

• If both the link reversal and route (re-)allocation do
not work, (re-)mapping is the only way to meet the
performance-related guarantees as proposed in [8], [9].

When the last option does not lead to a successful application
execution that meets performance-related guarantee then the
(re-)mapping request will be refused by the system.

Algorithm 1 2X-Links for Adaptive on-Chip Communication

avBdir : Available bandwidth in the direction dir
reqBdir : Bandwidth requested by transactions towards dir
usedB

dir−1 : Bandwidth used in the opposite direction of dir
QoS: performance-related guarantees (bandwidth, latency, etc.)

1: upon receiving Mapping, and Route do
2: if QoS are not met then

// try to reverse links
3: for all links with avBdir < reqBdir do
4: if usedB

dir−1 = 0 then
5: reverse link
6: end if
7: end for
8: if QoS requirements are not met then

// link reversal failed
9: re-route

10: if QoS requirements are not met then
// retry to reverse links

11: for all links with avBdir < reqBdir do
12: if usedB

dir−1 = 0 then
13: reverse link
14: end if
15: end for
16: end if
17: if QoS requirements are not met then

// re-routing failed
18: (re-)map task graph onto NoC
19: call self
20: end if
21: end if
22: end if

A. Adaptive 2X-Link Routing Algorithm

A modified version of the wXY-routing algorithm [8] is
able to successfully deal with the 2X-Links by doubling the
link bandwidth in the weight calculation. The wXY-routing
algorithm is a dynamic routing method for 2D mesh networks.
It is designed to be adaptive on the packet/transaction level
but remains deterministic on the flit level. The wXY-routing
algorithm selects a route based on X and Y distances and
available bandwidth. Unlike the XY-routing algorithm which
routes first in the X direction and then in the Y direction, it
assigns a weight to each output port based on the available
bandwidth as well as the horizontal and vertical distances
from the current tile to the destination tile. The latter two
are considered in order to maximize sensible routing choices
along a packets route.

Eq. 1 shows the weight function which is suitable for the
2X-Links system. In this equation, avBdir represents the
available bandwidth in the direction dir (N,E,S,W), while
Odir indicates the number of hops between the current and
the destination tile in the direction dir (i.e. Y for N,S; X
for E,W ). Adding the total link bandwidth Bdir assures that
packets are routed in the appropriate direction if possible. For
instance, if |Odir| = 1, not adding the total bandwidth would
result in the weights going towards the destination’s dir and
going away from it being the same. The key variable in this
equation is r. If the 2X-Link is activated, the link capacity
will be doubled.

wdir =







avBdir × |Odir| + r × Bdir if dir towards dest
0 if avB < reqB
r × avBdir otherwise

(1)
subject to: r=2 if 2X-Link is activated; r=1 else.
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Fig. 3. Hardware of 2X-Links using tri-state gates

V. HARDWARE PROTOTYPE

The architecture of the bi-directional link control using half-
duplex links is presented in Fig. 3. Two tri-state logic gates
e.g. G1 and G2 work as a group. They are controlled by
the same control signal ¯EN1. When the value of ¯EN1 is 0,
the tri-state gate G1 is active while G2 is stalled. Then data
can be transmitted from neighboring virtual channel buffers
through Link1,2 to the component input decoder. On the other
hand, if the value of ¯EN1 is 1, the tri-state gate G1 will be
stalled and data can be sent from the virtual channel buffer
to the adjacent router’s input decoder via Link1,2. Therefore,
the half-duplex communication on one link is realized. In
this architecture, the signal ¯EN1 and ¯EN3 control the data
transmission via Link1,2 while signal ¯EN2 and ¯EN4 control
the data transmission via Link2,1. They must be assigned
different values, or there will be some conflict on the link
and an unpredictable situation may occur.
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Fig. 4. Overhead of TDD-Links compared to the 2X-Links

We have implemented the 2X-Links and the TDD-Links on
a XILINX Virtex2 XC2V-6000 FPGA prototyping board for
the analysis. The extra hardware that we need to implement
either a single 2X-Link or a single TDD-Link on top of our
adaptive on-chip router as detailed in [8] is 74 slices. Each
TDD-Link additionally requires one control unit to control the
data transmission direction and the time slot allocation. The
extra hardware needed to implement this control unit is another
49 slices. Fig. 4 shows the additional slice requirements for the
TDD-Links compared to the 2X-Links. With the increasing size
of the NoC, a NoC with the TDD-Links requires more slices



compared to the NoC with the 2X-Links e.g. in a 7× 7 NoC,
the TDD-Links require 4116 more slices than the 2X-Links.

VI. RESULTS AND CASE STUDY ANALYSIS

In order to evaluate the proposed runtime configurable
2X-Links different simulations are performed using the multi-
media applications and the E3S benchmark [6] suit. In Fig. 5
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the average throughput for different types of links for the
Automotive application mapped onto a 5× 5 NoC having the
link capacity of 15 MB/s for the Normal-Full-Duplex-Links
and for each half-duplex component of the 2X-Links, and
30MB/s for the TDD-Links is shown. The average throughput
is calculated as follows:
Thaver = Thtot/(2 × ((M − 1) × N + (N − 1) × M)) (2)

In Eq. 2, (M ×N) is the dimension of the NoC and Thtot the
total throughput. We observe from the figure that the average
throughput of the NoC with the Normal-Full-Duplex-Links is
much lower than the average throughput of the NoC with the
2X-Links or the TDD-Links at relatively high data injection
rates. In scenarios where there is only asymmetric traffic on
the NoC, there is no difference between the 2X-Links and the
TDD-Links. On the other hand, if bidirectional communication
exists, the average throughput of the NoC with the 2X-Links
is slightly lower than the NoC with the TDD-Links.
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Fig. 6 shows the timeliness of the Telecom application (5×5
NoC having the link capacity of 20 MB/s for the Normal-Full-
Duplex-Links and for each half of the 2X-Links and 40MB/s
for the TDD-Links) with different data injection rates. The
timeliness is the ratio of the number of deadlines met to the
total number of deadlines of an application (hit rate). Here,
we see that most of the time the Normal-Full-Duplex-Links
timeliness, is lower than the other two types.
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Fig. 7 depicts the required link capacity of the NoC with
three different types of links when VOPD is running on the

NoC (5 × 5 NoC having the link capacity of 500 MB/s for
the Normal-Full-Duplex-Links, two times 500 MB/s for the
2X-Links, and 1000MB/s for the TDD-Links). Obviously, the
NoC with the Normal-Full-Duplex-Links requires much more
link capacity than the 2X-Links and the TDD-Links at design-
time. Since the 2X-Links can dynamically adapt their data-
transmitting direction to meet the bandwidth requirement and
the TDD-Links support bidirectional communication, both of
them can guarantee the required bandwidth with lower link
capacity compared to the Normal-Full-Duplex-Links.
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Fault-tolerance ability is important to the MPSoC design. In
this simulation, we focus on the average timeliness (different
from “Timeliness” shown in Fig. 6) of the NoC with different
types of links when some links fail randomly. We enumerate
all the possible combinations of the failed-links and calculate
the average timeliness of them. We define the Tk,aver as the
average ratio of the number of deadlines met to the total
number of deadlines of a given application when k links fail
randomly. In Eq. 3 #Comb is the un-ordered collection of k
failed links among all the links.

Tk,aver = (

#Comb
∑

i=1

timeliness ) / ( #Comb ) (3)

The Normal-Full-Duplex-Links are static. If one link fails, the
NoC will lose the ability to transmit data from the port which
the link is tied to. Analog to the Normal-Full-Duplex-Links,
the TDD-Links also do not have the ability of fault-tolerance.
The 2X-Links can adapt their data-transmitting direction to
meet the performance-related guarantees. From the Fig. 8
we can see that the average timeliness of the NoC with the
2X-Links is much higher than the NoC with the Normal-Full-
Duplex-Links (for the Robot application which is mapped
onto 3× 3 NoC having the link capacity of 30.7 MB/s for the
Normal-Full-Duplex-Links, two times 30.7 MB/s for the 2X-
Links, and 61.4 MB/s for the TDD-Links). The fault-tolerance
ability (ftk) is calculated according to the following equation
(NFDL represent the Normal-Full-Duplex-Link):

ftk =
Tk,aver,2X−Links − Tk,aver,NFDL

1 − Tk,aver,NFDL

(4)

For a simple example, if the number of failed-links is 1,
the fault-tolerance ability of the 2X-Links is (97.50% −
94.17%)/(1 − 94.17%) = 57.12%. This result means that
the NoC with the 2X-Links can still work properly with the
probability of 57.12%, when only one link fails randomly.

In the scope of this work load balancing means to spread
communication over all the links to avoid producing communi-
cation bottlenecks and to relieve the link resource congestion.
The advantage of applying load balancing techniques is that
hardware resource utilization will be optimized and therefore,
it may make the on-chip communication more capable to
meet the requirements of unforeseen traffic circumstance. In
our simulation, we measure the bandwidth occupancy factor
of each port through B occupancy factor = Butilized/B.
The lower the factor is, the higher the potential available link
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Fig. 9. Bandwidth occupancy factor of the consumer application

capacity is. Therefore, the NoC is more flexible to support
unforeseen traffic (e.g. new connections etc).

Fig. 9 (Consumer application is mapped onto 4 × 4 NoC
with the link capacity of 9 MB/s for the Normal-Full-Duplex-
Links, two times 9 MB/s for the 2X-Links, and 18 MB/s for
the TDD-Links) represents the bandwidth occupancy factor of
all ports with different types of links. Obviously, the bars of
the 2X-Links (Fig. 9 (b)) and the TDD-Links (Fig. 9 (c)) are
much lower and the communication is spread more homoge-
neously on the NoC than with the Normal-Full-Duplex-Links
(Fig. 9 (a)). This indicates that the NoCs with the 2X-Links and
the TDD-Links have more potentially available link capacity
than the NoC with the Normal-Full-Duplex-Links.

In order to make the on-chip communication more adaptive,
we additionally use the wXY-routing algorithm to determine
the communication route instead of the static XY-routing
proposed in [5]. Fig. 9 (d,e,f) depict the bandwidth occupancy
factor using the wXY-routing algorithm. According to the new
route, bandwidth requirements of several links are changed.
Even after this adaptive routing algorithm, the result from the
2X-Links and the TDD-Links are far more better than using
the Normal-Full-Duplex-Links.

In our experiments we have observed that both the 2X-
Links and the TDD-Links provide better performance results
than the Normal-Full-Duplex-Links considering the metrics:
average throughput, timeliness, required link capacity, and the
traffic load balancing. Our proposed 2X-Links provide fault-
tolerance ability unlike both the Normal-Full-Duplex-Links
and the TDD-Links. Therefore, considering the area overhead
and the lack of fault-tolerance ability of the TDD-Links we
have integrated the 2X-Links in our runtime adaptive on-chip
communication architecture.

VII. CONCLUSION

We have introduced a novel runtime configurable link which
can change its supported bandwidth on-demand at runtime
for an adaptive on-chip communication architecture. We have
achieved an increase in throughput of up to 36% (21.3%
on average) using either the 2X-Links or the TDD-Links
compared to the Normal-Full-Duplex-Links. Our proposed 2X-
Links (the TDD-Links also provide similar result) can assure
the performance-related guarantees with nearly 50% of the
Normal-Full-Duplex-Links capacity. The TDD-Links have no
fault-tolerance ability and utilize more hardware than 2X-
Links e.g. in a 7 × 7 NoC, TDD-Links require an additional
4116 slices more than the 2X-Links. Our observation shows
when some links fail, the NoC with the 2X-Links can recover
from faults (at most 3 faults) which would cause Normal-Full-
Duplex-Links to fail with an average probability of 82.2% for

the E3S benchmark, the VOPD, and the Robot applications
(the Normal-Full-Duplex-Links and the TDD-Links have no
capability to recover from the unforeseen link faults).
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