
A UML Frontend for IP-XACT-based IP 
Management 

 
Tim Schattkowsky, Tao Xie, Wolfgang Mueller  

Paderborn University/C-LAB 
Paderborn, Germany 

 
 

Abstract—IP-XACT is a well accepted standard for the exchange of 
IP components at Electronic System and Register Transfer Level. 
Still, the creation and manipulation of these descriptions at the XML 
level can be time-consuming and error-prone. In this paper, we show 
that the UML can be consistently applied as an efficient and 
comprehensible frontend for IP-XACT-based IP description and 
integration. For this, we present an IP-XACT UML profile that 
enables UML-based descriptions covering the same information as a 
corresponding IP-XACT description. This enables the automated 
generation of IP-XACT component and design descriptions from 
respective UML models. In particular, it also allows the integration of 
existing IPs with UML. To illustrate our approach, we present an 
application example based on the IBM PowerPC Evaluation Kit. 

Keywords-ESL design, RTL design, IP-XACT, IP Management,  
                 UML Profile 

I.  INTRODUCTION 
IP-XACT [10] is an XML-based data format that became a 

widely accepted standard for vendor-neutral IP description and 
integration. The respective descriptions are suitable as direct 
input for other tools in the design flow and can thus serve as a 
foundation for accelerating design integration. 

However, the manual creation and handling of the 
respective XML files is rather uncomfortable and error-prone. 
The files are inherently hard to read and to manipulate as 
relevant information is scattered around various locations and 
follows complex rules. Consequently, tool support for the 
efficient manipulation of IP-XACT descriptions is mandatory. 
Such tool support is currently emerging with tools like 
Magillem 4.1 [6]. Still, the manipulation of IP-XACT 
specifications currently is strongly tied to the underlying XML 
schema.  

IP-XACT descriptions are structural models of individual 
components or whole designs. Despite the inherent domain-
specific semantic difference, the employed basic concepts 
largely correspond to those found in other languages and 
application domains such as in software engineering. This is in 
particular the case for the UML [9], which is the de-facto 
standard for modeling software systems and supported by a 
wide range of modeling tools. Recently, the UML is also 
emerging for SoC modeling [7].  

Structural modeling has always been the most prominent 
application of the UML in SoC design. For this, it provides a 
large number of concepts and provides a proven visual 
notation. Some of these concepts such as ‘component’ even 
correspond directly by name to respective IP-XACT concepts.  

We have investigated the application of the UML for 
modeling IP-XACT compatible component and system 
descriptions. This paper describes the resulting UML-based IP 
description approach, which enables the comprehensible visual 
modeling of IP-XACT components and designs.  

The resulting models are still fully IP-XACT compatible in 
our approach because they contain the same information as an 
IP-XACT description. Thus, the UML models can serve 
directly as the basis for the automatic generation of equivalent 
IP-XACT descriptions driving a respective design flow as 
shown in Fig. 1. 

UML IP-XACT Descriptions

(Bus/AbstractionDefinitions,
Components,Abstractors, Design) 

XML IP-XACT Descriptions

(Bus/AbstractionDefinitions,
Components,Abstractors, Design) 

Transformation

Makefile

Code Generation

Compilation and Simulation

Components 
and Abstractors

SystemC 
Models

Design 
SystemC Model

 

Fig. 1: SystemC design flow driven by UML IP-XACT descriptions  

 
In the remainder of this paper, we first give a brief overview 
of IP-XACT and related works before we describe our UML 
IP-XACT profile and its application to an actual design 
example based on the IBM PowerPC Evaluation Kit. 
However, given the extent of the ground covered by IP-XACT 
and our respective UML profile, this paper cannot provide a 
complete description of all relevant aspects. Therefore, we 
focus on the basic concepts driving the approach and 
emphasize the visual modeling aspect, which provides the 
main benefits of our approach in contrast to the direct 
application of IP-XACT. 

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



II. BACKGROUND 

The IP-XACT standard [10] defines an XML-based data 
format for IP description and integration. For this, it supports 
the description, configuration, and composition of IPs to actual 
system designs using a standardized, well-defined data format. 
This enables the creation of vendor-independent tools for 
automated IP-integration. 

IP-XACT defines four central elements, which are bus 
definition, abstraction definition, component, and design. A bus 
definition describes a bus, such as AHB or PLB, in terms of its 
most basic properties such as the supported number of masters 
and slaves. It basically serves as a reference for providing more 
detailed descriptions of the same bus at different levels of 
abstraction.  

An abstraction definition provides a complete description 
of the set of interfaces of a bus at a specific level of abstraction, 
e.g., TLM (Transaction Level Model). For this, all interfaces, 
such as the master and the slave interfaces, are described in 
terms of the respective ports. A port is a distinct interaction 
point on the bus, which may be a wire port carrying logic 
values, or a transactional port, typed by a high-level interface. 
The latter typically refers to a TLM port.  

A component packages an actual, potentially configurable, 
IP-core. It may contain multiple views at the core covering 
different aspects or levels of abstraction. In particular, a 
component describes the bus interfaces exposed by the core, 
and the mapping between component ports and the respective 
ports from the corresponding abstraction definition. In addition, 
model parameters that enable configuration of IP core itself 
can be defined, e.g., the actual width of a bus interface.  

A design describes an actual design as a set of 
interconnected component instances. These connections are 
usually made between bus interfaces, but component ports may 
also be connected directly (ad-hoc connections). Furthermore, 
the model parameters can be individually configured for each 
instance.  

If two components are connected through bus interfaces at 
different abstraction levels, e.g. one RTL and one TLM, an 
abstractor can be inserted between the two components to act 
as an interface adaptor. 

Finally, the Tight Generator Interface (TGI) enables 
external tools to perform operations related to an IP-XACT 
specification such as configuration or model generation. For 
this, it defines a comprehensive set of SOAP methods for 
retrieving and modifying all information in a SPIRIT XML 
file. It is required to be implemented by any IP-XACT-
conformant design tool. 

III. RELATED WORK 
There already exist some approaches discussing the relation 

between IP-XACT and the UML. Unfortunately, they provide 
only limited coverage of the current IP-XACT 1.4 standard 
with its significant extensions compared to IP-XACT 1.2, or 
just sketch initial ideas.  

In [4], an approach for UML-based modeling and code 
generation of HW/SW interfaces is presented. In this context, 
the authors consider leveraging the benefits of IP-XACT. This 
work focuses on functional aspects of IP modeling. Thus, the 
relation to IP-XACT is not further investigated.  

An initial alignment of the MARTE UML profile [2] with 
IP-XACT is presented in [3]. However, the approach is only 
sketched by an example. A similar approach can be found in 
[1], which maps the TUT UML profile for embedded system 
design to IP-XACT. The resulting IP-XACT design flow 
utilizing UML is also presented. It focuses on IP-XACT 
version 1.2, thus lacking the coverage of ESL (Electronic 
System Level) features. 

Finally, we already sketched some initial ideas of our 
approach in the context of the application example in [11]. 
Still, significant changes to these ideas were necessary to 
provide a generally applicable UML profile for IP-XACT, to 
increase usability of the visual notation, and to enable broad 
coverage of the IP-XACT standard that enables the application 
of the UML as a frontend for IP-XACT-based design flows. 

IV. UML PROFILE FOR IP-XACT 
To enable the consistent application of the UML and IP-

XACT, the UML models must provide the same information as 
a respective IP-XACT description. For this, we have mapped 
all IP-XACT concepts to corresponding UML concepts. This 
mapping is not straightforward as the UML represents some IP-
XACT concepts in a different, but it is consistent and often 
more intuitive. As an example, UML directly provides 
concepts such as subtyping, which IP-XACT reflects only 
through respective XML-attributes. A larger but more striking 
example is that IP-XACT scatters the ports for a master or 
slave around the standard document. Using our approach, the 
master and slave bus interfaces are explicitly modeled as a 
UML classifier containing all relevant ports. Furthermore, 
some of the concepts that are explicitly provided by IP-XACT, 
such as enabling the addition of descriptive text or vendor 
extensions, can be replicated directly using existing UML 
concepts, which in this case are UML notes and the profiling 
mechanism. Thus, such concepts are not explicitly reflected. 

«stereotype»
IP-XACT_ Library

«metaclass»
Pack age

«stereotype»
IP-XACT_ Identifier

vendor:  String [0..1]
version:  String

«metaclass»
Pack ageableElement

name provided by UML's 
NamedElement.name

vendor is implied by 
containing l ibrary 
unless eplicitly given

library

1 *

«extends»

owningPackage

0..1

packagedElement

*

«extends»

 

Fig. 2: IP-XACT profile - libraries and versioned identifiers diagram 



The versioned identifiers that underlie most elements of IP-
XACT are represented through IP-XACT_Identifier (see Fig. 
2), which serves as the base type for all stereotypes describing 
the respective derived IP-XACT elements. One such element is 
the IP-XACT_Library, which is a specialized UML package 
for holding component and bus definitions.  

An IP-XACT bus definition is represented by a UML class 
as shown in Fig. 3. As defined in Fig. 4 and Fig. 5, a 
corresponding abstraction definition is represented by a 
specialized UML package containing specialized UML classes 
that define the actual master, slave, and system interfaces of the 
bus. These specialized IP-XACT_PortsDefinition classes 
provide the context for the definition of the respective IP-
XACT ports through specialized UML ports. This is in contrast 
to IP-XACT. The rationale for this difference is that we found 
the resulting notation much more comprehensible. 

«stereotype»
IP-XACT_BusDefinition

isAddressable:  Boolean
maxMasters:  UnlimitedNatural = *
maxSlaves:  UnlimitedNatural = *

«stereotype»
IP-XACT_ Identifier

«stereotype»
IP-XACT_ DirectConnectionBus

IP-XACT's 
'directConnection' 
attribute is implemented
through the respective 
subclasses of this 
abstract model element

«stereotype»
IP-XACT_ MirroredConnectionBus

IP_XACT's 'extends' 
attribute is mapped 
to single inheritance 
on IP-
XACT_BusDefinition 
Interfaces

«metaclass»
Clas s

«extends»

 

Fig. 3: IP-XACT profile - bus definition diagram 

«stereotype»
IP-XACT_AbstractionDefinition

«stereotype»
IP-XACT_ Identifier {XP-XACT busType 

must be indicated 
through an Abstraction 
Dependency to the 
corresponding IP-
XACT_BusDefinition}

«stereotype»
IP-XACT_ MasterDefinition

«stereotype»
IP-XACT_ Slav eDefinition

«stereotype»
IP-XACT_SystemDefinition

«metaclass»
Pack age

«extends»

0..1

0..1

*  

Fig. 4: IP-XACT profile - abstraction definition diagram 

The actual ports of an interface are modeled as specialized 
UML ports of the respective IP-XACT_PortsDefinition class. 
The actual types of these ports are modeled as descendents of 
the IP-XACT_Port stereotype as shown in Fig. 6, Fig. 7, and 

Fig. 8. The service direction and type are modeled as a required 
or provided UML interface on the respective IP-
XACT_TransactionalPort. 

«stereotype»
IP-XACT_Port

«stereotype»
IP-XACT_ MasterDefinition

«stereotype»
IP-XACT_PortsDefinition

«stereotype»
IP-XACT_ Slav eDefinition

«stereotype»
IP-XACT_SystemDefinition

«metaclass»
Port

«metaclass»
Clas s

«metaclass»
EncapsulatedClassifie r

«invariant»
{all  ownedMembers 
of the extended 
Class must be 
IP-XACT_Ports}

0..1

/ownedPort

*

«extends»

«extends»

 

Fig. 5: IP-XACT profile – port definition diagram 

«stereotype»
IP-XACT_Port

displayName:  String [0..1]
isOptional:  boolean = true

«stereotype»
IP-XACT_Wire

UML's 
NamedElement.name 
corresponds to the IP-
XACT 'logicalName' 
attribute

«stereotype»
IP-XACT_ TransactionalPort

IP-XACT's 
'presence' attribute 
maps to isOptional. 
Il legal Ports are just 
not defined in the 
respective 
PortsDefinition.

 

Fig. 6: IP-XACT profile - port types diagram 

«stereotype»
IP-XACT_ Wire

width:  int [0..1]
direction:  IP-XACT_Direction [0..1]

«stereotype»
IP-XACT_ ClockWire

«stereotype»
IP-XACT_ DataWire

«stereotype»
IP-XACT_ AddressWire

IP-XACT's 'qualifier' is 
implemented directly 
through the respective 
subtypes

«stereotype»
IP-XACT_MixedWire

«stereotype»
IP-XACT_ ResetWire

«enumeration»
IP-XACT_ Direction

«enum»
in
out
inout

 

Fig. 7: IP-XACT profile - wire ports diagram 



Ports of a component are modeled as IP-XACT_ 
PhysicalPorts owned by the respective IP-XACT_Component 
as defined in Fig. 9.  

The IP-XACT model parameters correspond directly to 
specialized attributes of the respective IP-XACT_Component. 
The actual values for these attributes are given for each 
instance of the component in an actual design model. 

The bus interfaces of a component are modeled as 
UML_Ports typed over the respective IP-XACT_ 
PortsDefinition. Their connection scheme is indicated using a 
respective stereotype as defined in Fig. 10.  

Using a mirrored connection scheme for a bus interface has 
the semantics of flipping the direction of each port on the 
interface. This in particular means that provided interfaces 
become required interfaces and vice versa. This is important 
because consequently such an IP-XACT_BusInterface is no 
longer directly typed by the respective IP-
XACT_PortsDefinition. Instead, the actual type is implicitly 
derived from the ports definition. 

«stereotype»
IP-XACT_ TransactionalPort

isImplicit:  boolean = false

«stereotype»
IP-XACT_ TransactionalDataPort

«stereotype»
IP-XACT_ TransactionalAddressPort

«stereotype»
IP-XACT_TransactionalMix edPort

IP-XACT's 'qualifier' 
attribute is implemented 
directly through the 
respective subtypes of IP-
XACT_TransactionalPort

IP-XACT's 'service' attribute 
corresponds the Type of the 
Port

IP-XACT's 'initiative' is 
modeled through 
respective provided and 
required interfaces

«stereotype»
IP-XACT_Port

displayName:  String [0..1]
isOptional:  boolean = true

Concrete Syntax: 
Port with 
T,TA,TD, or TM

 

Fig. 8: IP-XACT profile - transactional ports 

«stereotype»
IP-XACT_Component

«stereotype»
IP-XACT_ Identifier

«metaclass»
Class

«stereotype»
IP-XACT_ModelParameter

«metaclass»
Property

«invariant»
{all ownedMembers of the extended 
Class must be 
IP-XACT_ModelParameters or 
IP-XACT_Businterfaces}

«stereotype»
IP-XACT_BusInterface

«metaclass»
Port

«stereotype»
IP-XACT_PhysicalPort

«invariant»
{all ownedMembers of the 
Classifier (implicitly) typing the
extended Port must be 
IP-XACT_PhysicalPorts}

«invariant»
{the extended Port 
must be directly owned
by a Port extended by 
IP-XACT_BusInterface}

«extends»«extends»

class

0..1

ownedAttribute

*
{subsets
ownedMember}

«extends» «extends»

 

Fig. 9: IP-XACT profile - components diagram 

The logical-to-physical port mapping for an IP-
XACT_BusInterface is performed by interconnecting the 
respective IP-XACT_PhysicalPorts of the component with the 
corresponding IP-XACT_Ports of the bus interface. 

It is important to note that the IP-XACT_BusInterface is by 
itself an UML port, which becomes the actual interaction point 
on the component for the bus. Thus, despite the fact that in the 
respective UML Composite Structure Diagram the component 
ports usually appear on the border to the outside, it is in fact the 
contained bus interface that forwards incoming requests to the 
component. Furthermore, such requests are duplicated if 
multiple bus interface instances are connected to the same 
component port. 

Finally, as defined in Fig. 11, an actual design is 
represented similar to a library using a specialized UML 
Package containing a valid instance of interconnected IP-
XACT_Components. This instance can be described using an 
instance level UML Composite Structure Diagram illustrating 
the interconnections of the ports and the actual values of for 
model parameters. 

«stereotype»
IP-XACT_BusInterface

connectionRequired:  boolean = false

«stereotype»
IP-XACT_ MasterBI

«stereotype»
IP-XACT_Slav eBI

«stereotype»
IP-XACT_SystemBI

«stereotype»
IP-XACT_MirroredMasterBI

«stereotype»
IP-XACT_MirroredSlav eBI

«stereotype»
IP-XACT_MirroredSystemBI

«stereotype»
IP-XACT_ MonitorBI

 

Fig. 10: IP-XACT profile - bus interfaces diagram 

«stereotype»
IP-XACT_Design

«metaclass»
Pack age

«stereotype»
IP-XACT_ Identifier

«extends»

 

Fig. 11: IP-XACT profile - design diagram 

V. CORECONNECT EXAMPLE 

For further illustration, we describe how the UML IP-
XACT profile is employed to model individual IPs and their 
integration in actual designs. For this, we present a basic 
master/slave design around the CoreConnect Processor Local 
Bus (PLB). The example is based on CoreConnect TLM 



components from the IBM PowerPC 405 Evaluation Kit (PEK) 
[5]. 

A. Library Definition 
In our approach, an IP-XACT library is mapped directly to 

a corresponding UML package containing all bus and 
component definitions of the library. Fig. 12 shows the 
contents of the TLM CoreConnect library as discussed in this 
example.  

The bus and abstraction definitions for the PLB are given in 
Fig. 13. The UML package representing the abstraction 
definition contains classes defining the actual bus interfaces for 
PLB masters and slaves in terms of their ports. In this example, 
we note that each of these interfaces hosts a single port 
providing or requiring one transactional interface. 

The width of data and address busses of the CoreConnect 
architecture is configurable for each components. Thus, we 
decided to introduce a common base type for all respective 
CoreConnectComponents that host the respective model 
parameters (see Fig. 14). The actual components such as the 
PLB_BUS are now modeled as descendents of this base type. 

«IP-XACT_Library»
CoreConnectTLM

+ CoreConnectComponent
+ PLB_BUS
+ PLB_BusDef
+ plb_master_generic
+ plb_slave_generic
+ PLB_AbsDef

tags
vendor = 'ibm.com'
version = '2.0'

 

Fig. 12: Package defining the contents of the CoreConnect TLM library 

 

«IP-XACT_AbstractionDefinition»
PLB_AbsDef

tags
version = '2.0'

«IP-XACT_MasterDefinition»
PLB_Master

PLB_Master_port   T

«IP-XACT_SlaveDefinition»
PLB_Slave

T   PLB_Slave_port

«IP-XACT_MirroredConnectionBus»
PLB_BusDef

tags
isAddressable = false
version = '2.0'

PLB_BUS_ IF PLB_SLAVE_ IF

«abstraction»

 

Fig. 13: Bus definition and TLM abstraction definition for the Processor Local 
Bus (PLB) 

 

The actual PLB_BUS component with master and slave bus 
interfaces is defined by the Composite Structure Diagram 
shown in Fig. 15. This diagram also defines the port mapping 
between component and bus interface ports.  

We generally note that attribute values for attributes of the 
stereotype are – like in UML – either given directly as part of 
the compartment for tagged values or, in the case of boolean 
meta attributes, also as respective constraints like for 
connectionRequired. 

Finally, the definitions of the generic PLB master and slave 
components are given in Fig. 16 and Fig. 17. Both definitions 
are quite similar and introduce additional model parameters for 
these components.  

«IP-XACT_Component»
CoreConnectComponent

«IP-XACT_ModelParameter»
DATA_BUS_WIDTH:  CC_BusWidth = CC_ 128
ADDRESS_BUS_WIDTH:  CC_BusWidth = CC_ 64

 

Fig. 14: Definition of the basic (abstract) parameterizable CoreConnect  
component 

CoreConnectComponent

«IP-XACT_Component»
PLB_ BUS

tags
version = '2.0'

slave_port   T

plb_bus_if   T

«IP-XACT_MirroredSlaveBI»
slav e1 :PLB_Slave

PLB_Slave_port   T

«IP-XACT_MirroredMasterBI»
master :PLB_Master

constraints
{connectionRequired}

PLB_Master_port   T

«IP-XACT_MirroredSlaveBI»
slav e2 :PLB_Slave

PLB_Slave_port   T

PLB_SLAVE_ IF

PLB_BUS_ IF

 

Fig. 15: Definition of the generic PLB bus component 

CoreConnectComponent

«IP-XACT_Component»
plb_master_generic

«IP-XACT_ModelParameter»
MASTER_ID:  int = 0

tags
version = '2.0'

bus   T

«IP-XACT_MasterBI»
plb_master :PLB_Master

constraints
{connectionRequired}

PLB_Master_port   T
PLB_BUS_ IF

 

Fig. 16: Definition of the generic PLB master component 



CoreConnectComponent

«IP-XACT_Component»
plb_slav e_generic

«IP-XACT_ModelParameter»
ADDRESS_LOW:  int = 0x00000
ADDRESS_HIGH:  int = 0x1ffff

tags
version = '2.0'

plb_slave_if   T

«IP-XACT_SlaveBI»
plb_slave :PLB_Slave

constraints
{connectionRequired}

PLB_Slave_port   T
PLB_SLAVE_ IF

 

Fig. 17: Definition of the generic PLB slave component 

 

B. Design Example 
A simple design based on the introduced components is 

shown in Fig. 18. This particular design corresponds to a PLB 
bus with a single master and two slaves, which is represented 
by instances of the respective IP-XACT_Components. 
Instances are interconnected based on their BusInterfaces, 
which now serve as ports with provided and required 
interfaces.  

 

«IP-XACT_Design»
PLB Master with two Slav es

tags
vendor = 'C-LAB'
version = '1.0'

«IP-XACT_Component»
plb :PLB_BUS

DATA_BUS_WIDTH = CC_128
ADDRESS_BUS_WIDTH = CC_64

|M   master

|S   slave2

|S   slave1

«IP-XACT_Component»
cpu :plb_master_generic

DATA_BUS_WIDTH = CC_128
ADDRESS_BUS_WIDTH = CC_64

plb_master   M

«IP-XACT_Component»
slav e1 :plb_slav e_generic

DATA_BUS_WIDTH = CC_128
ADDRESS_BUS_WIDTH = CC_64
ADDRESS_LOW = 0x00000
ADDRESS_HIGH = 0x0ffff plb_slave   S

«IP-XACT_Component»
slav e2 :plb_slav e_generic

DATA_BUS_WIDTH = CC_128
ADDRESS_BUS_WIDTH = CC_64
ADDRESS_LOW = 0x10000
ADDRESS_HIGH = 0x1ffff plb_slave   S

 

Fig. 18: Sample design based on the PLB and the generic master and slave 
components 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have shown that the UML can be 
employed as a frontend for modeling IP-XACT-based IP 
description and integration. For this, we have presented a UML 
profile for IP-XACT, which enables comprehensive and fully 
IP-XACT-compatible visual modeling of IP-components and 

their integration in an intuitive manner. The application of this 
profile has been illustrated by components from the IBM 
PowerPC Evaluation Kit. We have also shown that resulting 
models cover the same information as a corresponding IP-
XACT description. Consequently, such descriptions can be 
automatically generated and serve as the input to IP-XACT 
based tools in the ESL design flow. 

Future work will cover the evaluation of our approach in 
large scenarios and different design flows. Furthermore, we are 
working on an alignment with other ongoing work in UML-
based SoC modeling and currently apply parts of the profile for 
SysML tool configurations in the context of SystemC-based 
modeling and code generation in the SATURN project with 
ARTiSAN Studio. 

 

ACKNOWLEDGMENT 
The work described herein is supported by the FP6 project 

SPRINT - Open SoC Design Platform for Reuse and 
INTegration of IPs (IST-2004-027580) and the FP7 project 
SATURN - SyML bAsed modeling, architecTUre exploRation, 
simulation and syNthesis for complex embedded systems (FP7-
216807). 

 
 

REFERENCES 
[1] Arpinen, T., Salminen, E., Hännikäinen, M., Hämäläinen, T. D.: Model-

Driven Approach for Automatic SPIRIT IP Integration. In: Proc. 5th Int. 
UML-SoC DAC Workshop, Anaheim, USA, 2008. 

[2] André, C., Cuccuru, S., Dekeyser, J.-L., De Simone, R., Dumoulin, C., 
Forget, J., Goutier, T., Gérard, S., Mallet, F., Radermachenr, A., Rioux, 
L., Shaunier, T, Sorel, Y.: MARTE: A New OMG Profile RFP for the 
Modeling and Analysis of Real-Time Embedded Systems. In: Proc. 2nd 
Int. UML-SoC DAC Workshop, Anaheim, USA, 2005. 

[3] Charles André, Frédéric Mallet, Aamir Mehmood Khan and Robert de 
Simone: Modeling SPIRIT IP-XACT with UML MARTE. In: Proc. 
DATE Workshop on Modeling and Analysis of Real-Time and 
Embedded Systems with the MARTE UML profile, 2008.  

[4] Ecker, Wolfgang, Esen, Volkan, Steininger, Thomas, Velten, Michael: 
UML based SW Generation for the HW/SW Interface. In: Proc. 5th Int. 
UML-SoC DAC Workshop, Anaheim, USA, 2008. 

[5] IBM: IBM PowerPC 405 Evaluation Kit with CoreConnect SystemC 
TLMs. Available at www.ibm.com/developer works/ power/pek/, 2006. 

[6] Magillem Design Services: Magillem tool suite home page. Avaialble at 
www.magillem.com/, 2008. 

[7] Martin, Grant, Müller, Wolfgang (eds): UML for SOC Design. Springer 
Verlag, Heidelberg, 2005. 

[8] Object Management Group: UML Profile for System on a Chip (SoC). 
OMG formal/06-08-01, 2006. 

[9] Object Management Group: Unified Modeling Language: 
Superstructure, V 2.1.2. OMG ad/2007-11-01, 2007. 

[10] SPIRIT Consortium: IP-XACT v1.4: A specification for XML meta-data 
and tool interfaces. Available at www.spiritconsortium.org, 2008. 

[11] Schattkowsky, Tim, Xie, Tao: UML and IP-XACT for Integrated 
SPRINT IP Management. In: Proc. 5th Int. UML-SoC DAC Workshop, 
Anaheim, USA, 2008. 

 


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




