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Abstract—The automated design of SoCs from pre-selected IPs
that may require different clocks is challenging because of the
following issues. Firstly, protocol mismatches between IPs need
to be resolved automatically before IPs are integrated. Secondly,
the presence of multiple clocks makes the protocol conversion
even more difficult. Thirdly, it is desirable that the resulting
integration is correct-by-construction, i.e., the resulting SoC
satisfies given system-level specifications. All of these issues have
been studied extensively, although not in a unifying manner. In
this paper we propose a framework based on protocol conversion
that addresses all these issues. We have extensively studied many
SoC design problems and show that the proposed methodology is
capable of handling them better than other known approaches. A
significant contribution of the proposed approach is that it nicely
generalizes many existing techniques for formal SoC design and
integrates them into a single approach.

1. INTRODUCTION

A system-on-a-chip (SoC) consists of multiple components
(IPs) that collaborate and communicate with each other to
achieve system behaviour. The SoC design process is affected
by several issues like the selection of IPs, their interconnection
into overall system, and validation of correctness of the
overall system. The main problems with the integration of
preselected IPs are, (a) the possibility of control, data or clock
mismatches [1] between IP protocols that prevent proper inter-
IP communication, and, (b) the problem of ensuring that IPs
(after mismatches are resolved) integrate such that desired
high-level behaviour is met.

The focus of this paper is to provide a unifying solution
for the automatic resolution of protocol mismatches and
the correct-by-construction design of SoCs that use multiple
clocks. Some preliminary ideas of the approach were first
published in [2]. These have been substantially extended and
reformulated in [3]. The proposed algorithm can automatically
generate a converter that can integrate two or more IPs such
that mismatches are resolved and the converted system satisfies
desired specifications.

The main contributions of this paper are as follows. Firstly,
an automatic design technique for multi-clock (which also
includes single clock systems as a special case) SoCs is
proposed. Precise conditions for the existence of converters
are identified. Furthermore, it is shown that SoCs can be
constructed in a single-step or by the successive (incremental)
addition of new IPs, called successive conversion.
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A. Related Work

A number of protocol conversion approaches for SoC have
been proposed earlier [4], [5], [1]. In [5], a correct-by-
construction SoC design technique is presented. The work
identifies precise conditions under which two IPs are compati-
ble, and an automatic algorithm is used to generate an interface
to make them compatible. A protocol conversion approach
based on [5] is presented in [4]. The main contributions
of this approach are the precise modelling of commercial
bus protocols, a protocol conversion algorithm that always
yields converters that can be translated to HDL, and converter
sizes that are bounded by the size of the given protocols.
However, this approach generates converters for protocol pairs
only and bridges data-width mismatches on an abstract level
by avoiding unbounded data operations on any path in the
converted system. Furthermore, both [5] and [4] are restricted
to single-clock systems and as the notion of compatibility
is limited to ensuring that IPs detect and respond to actions
performed by each other, the approach cannot guarantee that
a given system satisfied high-level functional specifications.
Passerone et al [1] present a game-theoretic formulation for
protocol conversion but no algorithm is provided, data or
clock mismatches are not handled, and only uni-directional
IP communication is allowed.

Tab. I presents a comparison between existing formal ap-
proaches. It shows that each technique uses different repre-
sentations for protocols and algorithms to find a converter!.
Furthermore, some approaches like [5] and [7] do not admit
additional specifications (describing the expected system be-
haviour) whilst the others require specifications to be repre-
sented as automata. Most approaches can generate converters
that control multiple (more than 2) protocols. Some approaches
[4], [5], [1] do not support uncontrollable signals while [6]
does not allow converters to explicitly buffer control signals.
The handling of data-width mismatches is limited in most
existing approaches while none handle the conversion of multi-
clock systems. In contrast, the approach proposed in this paper
is more general as it can deal with uncontrollable events,
arbitrary data width mismatches, clock mismatches and control
signal mismatches.

'The following abbreviations are used in Tab. 1. LTS = labelled transition
systems, SPA = Synchronous Protocol Automata, DES = discrete event
systems, SKS = synchronous Kripke structures, CTL = Computation Tree
Logic.
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Tivoli et al. [7] LTS X v Coverability-based v |V X implicit

Proposed approach || SKS | CTL | V module-checking v v v v

TABLE I
FEATURES OF VARIOUS PROTOCOL CONVERSION APPROACHES

B. Overview

The SoC design approach presented in this paper involves
the following steps. First, IP protocols are described using
synchronous Kripke structures, or SKS, that describe IPs’
behaviours with respect to their individual clocks. Next, each
SKS is oversampled [5], [7] with respect to the fastest clock
in the SoC, in order to ensure that all SKS describe the
behaviour of individual protocols with respect to a single-
clock system. All oversampled protocols are then composed
using synchronous parallel composition that produces their
maximal combined behaviour in the form of a single SKS. This
composition, along with a set of high-level specifications de-
scribed using Computation Tree Logic (CTL), is processed by
an automatic converter generation algorithm that, if possible,
automatically generates a converter to control the composition
in order to satisfy given specifications.

II. PRELIMINARIES
A. Protocol Representation

Protocols are represented as Synchronous Kripke structures,
or SKS, defined as follows.

Definition 1 (SKS). A4 Synchronous Kripke structure SKS
is a tuple (AP, S, so, I, O, R, L, clk) where AP =
APeontrot ) APgatq is a set of propositions where AP, ontrol is
the set of control labels and APyq,, is the set of data labels, S
is a finite set of states with sy € S being the initial state, I and
O are finite, non-empty sets of inputs and outputs respectively,
R C Sx{t}x B(I)x29 x S is the transition relation where
B(I) represents the set of all boolean formulas over 1 (the
event t represents ticking of the clock clk), and L : S — 24F
is the state labelling function.

A SKS has a finite set of states S with a unique start
state sg. Each state s is labelled by a subset of the atomic
propositions in AP. The labelling function L can be used
to obtain the labels of any state in the Kripke structure.
AP is partitioned into two sets: AP.ontror Which contains
propositions that indicate the control status of the SKS (status
flags), and AP, that contains propositions that signify data
/0.

All transitions in a Kripke structure trigger with respect
to the tick of the clock clk and a boolean formula over the
set of inputs (to be satisfied when clk ticks). For transitions

of the type (s,t,b,0,s") € R, the shorthand s b/o

—
used. For any transition s o, s’ leading to state s’ such
that s’ is labelled by a data label ([L(s") N APgqta] # 0), the
SKS performs a data-operation. Without loss of generality, it
can always be considered that the SKS have only complete
monomials as input labels [8]. In this paper, we restrict SKS
to be reactive and deterministic, that is, each state s € S
must have a single transition with respect to every complete
monomial b € B(I). The function Out(b) returns the set of
inputs that must be present for a monomial b to be true.

Fig. 1(a) shows the protocols of the IPs of an SoC based on
the AMBA ASB [9]. The SoC contains 2 masters: producer
(Pp) and consumer (P¢), and 2 slaves: reader (Pgr) and writer
(Pw ). For the sake of illustration, the bus protocol is abstracted
to just its arbiter (P4). The masters, slave and arbiter, each
modelled as a SKS, execute using the clocks mclk, sclk and
belk respectively. Consider the consumer master protocol Pc.
It contains 4 states with a unique initial state cy. At each tick
of mclk, there is a transition in Pc with respect to every
possible input combination. A transition to cs (labelled by
the data proposition DInig) results in a data-operation place
where P reads 16-bits from the SoC data bus. In the rest of
this paper, conversion is assumed to be carried out between
PA, PC and PW OIlly.

The IPs of the SoC shown in Fig. 1(a) execute using
different clocks. As clocks are usually derived from a common
on-chip clock (the fastest clock in the SoC), the relationship
between clocks can be described using a clock automaton.
The clock automaton C'A for the SoC example presented in
Fig. 1(a) is shown in Fig. 1(b). The clock automaton is a
synchronous FSM driven by the clock mclk. It emits melk at
every tick while the slower clocks sclk and bclk are emitted
at different instances, depending on their frequencies.

Given a SKS P that executes using a specific clock clk and
a clock automaton C A that emits clk at specific intervals, P
can be oversampled to represent its execution with respect to
the base clock clkc 4 that drives C' A. This approach, called

s’ is
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Fig. 2. The oversampled slave writer

SKS oversampling, allows representing the execution of all
IPs of an SoC with respect to the clock of the given clock
automaton. Fig. 2 shows the resulting SKS Py, when the
slave writer protocol Py, shown in Fig. 1(a), is oversampled
with respect to the base clock mclk of C'A shown in Fig. 1(b).
Each state in Py, corresponds to a unique state in Py and
a unique state in CA. Py, , has the same input and output
sets as P. The transitions of a state (w, ca) in Py,,, depends
on ca. If ca’s transition to its unique successor ca’ emits the
clock signal sclk (the driving clock of Py), (w,ca) allows
b/o

each transition w —— w’ of w by having a corresponding

.. b . .-
transition (w, ca) e, (w', ca’). However, if the transition
from ca to ca’ does not result in the emission of clk, w can

not sample environment inputs in this tick. Hence, state (w, ca)

true/Q
_

has a single transition (w, ca) (w, ca’), that models a

delay.

After all protocols have been oversampled, their syn-
chronous parallel composition, that describes their unrestricted
concurrent behaviour, is computed.

(b) The clock automaton

A multi-clock SoC

Definition 2 (Synchronous Parallel). Given two SKS P; =
<AP1, S], S04 Il, 01, Rl, Ll, Clk> and P2 = <AP2, Sg, S04
I, Oy, Ry, Lo, clk), such that Iy N Iy = (), their parallel
composition is the SKS Pi||[Pa=(APyj2, Sij2. 80, L1jj2,
01||2,R1||2, L1||2,Clk> where AP1||2 = AP, U AP, SlHQ =
S1 % 82, 80,5 = (80,5 80,), L1jj2 € L1 U2, Oppjz = O1 U Oy,
Lyj2((s1,82)) = L1(s1) U La(s2), and Ryjj2 € Syjjp x {t} x
B(I1H2) x 291112 x S1||2 is the transition relation such that

b b
Jor any (s1.52) € Syjj2), if 51 bijo, sy and so bafoa, sh,
b1 Abs/01Uo0
(s1,82) ———— (5}, 55)-

For the SoC example shown in Fig. 1(a), as the focus is
to generate a converter for the protocols P4, Pc and Py, we
compute the synchronous composition P4, ,||(Pcog . ||Pwe )

B. CTL Properties

To integrate the protocols P4, Pc and Py shown in Fig.
1(a) into an SoC, the following CTL properties are used.

[1] AGEFDInjs: The consumer master can always even-
tually read data from the system data bus.

[2] AGEFDOutss: The memory writer protocol can al-
ways eventually write data.

[ps] AGEFOpts: From every reachable state in the system,
there must be a path that reaches a state where he arbiter
grants access to the consumer master.

[ps] AG(—Idle. = Opts): Whenever the master is active
(not in its idle state), the arbiter should have granted it
bus access (by entering state Opts).

Control constraints state the desired sequence of control
states when IPs communicate with each other. The desired data
behaviour is described using data constraints. Data constraints
typically require that no data overflows or underflows during
inter-protocol communication. These are described using data
counters. We show how a data counter can be formulated for
the SoC example given in Fig. 1(a).

Firstly, each data label (DIn;g and Wriss) is assigned
a weight depending on the number of bits its correspond-



ing operation adds/removes to/from the data bus. Hence
Wit(DInyg) = —16 and Wi(Wrtsa) = +32. Next, weights
are normalized by dividing them by the greatest common
divisor GCD of the absolute weights of all data labels.
For labels Wrtss and DIngg, the normalized weights are
WEpm(Wrtse) = 2 and Wtu,(DIngg) = —1 (GCD =
gcd(32,16) = 16). Now, the bounds on the capacity K of
the data-bus are computed using the following constraints:

) K > maz(ue(Wrty)l,..., [ we(Wrty,)|, [we(Rdi)|, ...,
[we(Rdm)l)
2) K > GCD X [Imin(Wtnm (Wrti...n))| +

[min(Wepm (Rdi._n))| — 1]

The first constraint requires that the bus can allow the
largest read/write to happen. The second constraint ensures
that whenever the medium does not have enough data to
allow a read or a write, it must be able to allow the smallest
write/read operation. For the SoC example, as the data-bus
width is fixed, we must check if it conforms to the above
constraints. The first constraint requires that KX > 32 (largest
absolute weight of a data label), and the second constraint
requires that K > 16 x [2+ 1 — 1] or K > 32. The data-bus
width of 32 bits satisfies these constraints.

After the above computation, a data counter cntr is
introduced to track the status of the communication medium.
cntr is initialized to O to signify that the medium is empty
initially. To ensure that no overflows or underflows happen,
the following CTL property is used:

v¢ = AG(0 < entr < 32)

The above property requires that in any execution of the
(converted) system, if the counter is updated with respect to
each data label, it must never exceed the bounds [0, 32]. For
example, we must never encounter two consecutive Wriso
without read operations in between them. We can also describe
properties that combine control and data aspects of a design.
For the SoC example, one such property that requires the data-
bus to be empty when all IPs are idle, is:

w5 = AG(Idle, N Idle, A Idle,) = (cntr = 0)

Control and/or data constraints describe the desired be-
haviour of protocols after integration. We now introduce
converters to guide protocols to meet these constraints.

III. CONVERTERS

A converter acts as an interface between IPs and their
environment (other IPs). It controls the participating protocols
at each clock tick (of the base clock of the given clock
automaton) by following a precise sequence of interactions
with the environment and the protocols (shown in Fig. 3).

Firstly, the converter samples the environment for any
uncontrollable signals (environment signals are uncontrollable
because the converter has no control over their emission).
Next, the converter emits to the protocols a set of signals that
triggers a unique transition in the current state of the protocols.
This set of signals must contain all environment signals present
in the current tick, and may additionally contain some signals

Environment

Participating
Protocols

Fig. 3.
ment

The exchange of signals between converters, protocols and environ-

that the converter has previously buffered (read from the
protocols earlier) and signals that the converter generates
artificially (protocol inputs emitted neither by the environment
nor by the protocols). The signals emitted by the protocols
during this transitions are read back by the converter. Some of
these signals (that are shared) are buffered by the converter.
The converter maintains a 1-place buffer for each bufferable
input. The remaining signals are emitted to the environment.
These micro-steps can be written as a single transition of the
current state C of the converter (a macro-step) as follows:

c bune/0;0emitiipur %
where b,,. is a complete monomial over uncontrollable
signals, o and o, are the sets of signals emitted to the
protocols and environment respectively, and %,y is the set
of signals buffered by the converter. A converter state C
always controls a unique state s of the given protocols. The
C-transition fires the following s-transition.

out(b)/0emitUlpe ¢ s

Each ¢ and (the corresponding) s transitions combine to
form the following transition in their lockstep-composition:

C//S bunc/omnit C///S/

The lock-step composition of a converter and protocols is
reactive and deterministic with respect to the set of uncontrol-
lable environment signals (see [3] for details).

A. Converter Generation Algorithm

Converters are automatically generated by a conversion
algorithm (details appear in [3]). This is a variant of the
module checking problem [10] that is an approach for verifying
(model checking) if an open system satisfies a given temporal
property under arbitrary environments. Similarly, in protocol
conversion, the goal is to generate an environment under which
a given system (composition of protocols) satisfies one or more
specifications.
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Fig. 4. Conversion for the SoC example

The proposed algorithm reads the synchronous composition
of participating IP protocols and a set of CTL formulas
describing the constraints on the interaction of the given IPs.
The algorithm then involves the construction of a tableau
[11] where the initial goal (of the initial state of parallel
composition satisfying all given specifications) is recursively
broken down into sub-goals. If a successful tableau (where
all subgoals are satisfied) is generated, conversion succeeds
and a converter is extracted automatically from the tableau.
However, if a failed tableau is obtained (when a subgoal cannot
be satisfied), a converter cannot be generated. A successful
tableau is shown to be the sufficient and necessary condition
for the existence of a converter.

Fig. 4(a) presents a converter C for the protocols
Pa \|(Poeal|Pwe ). The labels of each converter state
shows the signals buffered by the converter at that state. The
converter executes using the clock mclk. The resulting system
(the lock step composition C//(Paq ||[(PogallPwea))) is
shown in Fig. 4(b). It can be seen that the converted system
satisfies all given control and data constraints.

IV. RESULTS
No. | Problem Mismatches
1 Integration of Bus Policies (ASB) C
2 ASB/AHB, 1 master with burst transfer | C;Clk
3 APB, single master with burst transfer C;CIk
4 Producer-consumer over ASB C:D;Clk
(related width ratios: 1:2, 2:1, 1:1)
5 Producer-consumer over ASB C;D;Clk
(arbitrary width ratios: 7:3, 3:8, 4:15)
6 Sequencing of activation in 5-IP SoC C;CIk
7 Sequencing of data in 5-IP SoC C:D;Clk
8 SoC with multiple data-channels C;D;Clk
9 Single step construction of 7-IP SoC C;D;Clk
10 3-step construction of 7-IP SoC C;D;Clk

TABLE II
IMPLEMENTATION RESULTS

Tab. II highlights the range of problems that can be ad-
dressed by the proposed technique. The first two columns
identify the goal of conversion, and the third columns shows
the types of mismatches (C=control, D=data, Clk=clock)
between each set of IPs. Problem 1 involves building a com-
plex bus (AMBA ASB) from simple components (that model
bus policies) by using an automatically generated converter.
Problems 2 and 3 involve constructing a converter that can
allow a master (using a different clock) to carry out 4-packet
burst transfers over different AMBA buses. For the ASB and
AHB (that allow burst transfers), converters merely provide
synchronization between IPs. For the APB, the converter
mimics a burst transfer by activating the bus 4 times for every
activation of the master.

Problems 4 and 5 show that the proposed approach is
capable of bridging data-width mismatches between IPs with
related (multiples of each other) or arbitrary data-widths.
Problems 5 and 6 show that a converter can achieve a precise
sequence of activation (and/or data transfer) between the IPs
of a multi-clock SoC. Problem 8 involves the construction of
a converter for a SoC where IPs communicate over multiple
data channels (data bus and buffers).

Finally, problems 9 and 10 involve building an SoC from 7
IPs. In problem 9, the SoC is built in a single step (a single
converter) while in problem 10, the SoC is built in 3 steps (3
converters) by adding 2 IPs during each stage of conversion.
Traditional SoC design favors one-step construction where
systems are built only after all IPs are identified. One-step con-
struction eliminates the user effort required in the intermediate
stages for successive conversion. However, a single converter
to control all IPs (as in one-step conversion) is difficult to
realize due to an increase in on-chip wiring congestion (that
may cause latency errors due to leakage [12]). In successive
conversion, converters can be built to control IPs located closer
to each other. This allows reuse of SoCs as existing systems
can be extended by adding more IPs.

Problems such as arbitrary data-widths between multiple IPs



or sequencing of control and data states cannot be handled by
existing techniques, even for single clock designs. For exam-
ple, the data-width mismatch between a consumer-producer
protocol pair with word sizes of 2 and 9 bits respectively
cannot be bridged by any other approach.

V. CONCLUSIONS

This paper proposes a unifying framework for the design
of SoCs in which control, data-width and clock mismatches
between multiple IPs can be resolved, and those IPs can
be integrated into a correct-by-construction SoC. This is
unlike existing approaches that focus exclusively on mismatch
resolution or correct-by-construction design. In the proposed
setting, IP protocols are described using Synchronous Kripke
Structures, each executing using its individual clock. An
automatic converter generation algorithm based on tableau
construction is used to generate a converter, if possible, that
bridges mismatches and guides the IPs such that their interac-
tion is consistent with high-level control and data constraints,
described using CTL. Experimental results show that the
proposed approach can handle a wider variety of mismatches
than existing techniques.

Future extensions to the proposed framework include the
generation of more powerful converters (for example a con-
verter with ”n”-place buffers for control signals) and optimiza-
tions to increase efficiency and scalability. Another exciting
direction is the automatic extraction of CTL properties that
describe the interaction between IPs of an SoC.
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