
Optimizing Data Flow Graphs to Minimize

Hardware Implementation

D. Gomez-Prado, Q. Ren, M. Ciesielski

ECE Dept., University of Massachusetts

Amherst , MA 01003, USA

{dgomezpr, qren, ciesiel}@ecs.umass.edu

J. Guillot, E. Boutillon

LAB-STICC, CNRS, Université de Bretagne Sud,

Université Européenne de Bretagne, France

{jguillot, emmanuel.boutillon}@univ-ubs.fr

Abstract—This paper describes an efficient graph-based
method to optimize data-flow expressions for best hardware
implementation. The method is based on factorization, common
subexpression elimination (CSE) and decomposition of algebraic
expressions performed on a canonical representation, Taylor Ex-
pansion Diagram. The method is generic, applicable to arbitrary
algebraic expressions and does not require specific knowledge of
the application domain. Experimental results show that the DFGs
generated from such optimized expressions are better suited for
high level synthesis, and the final, scheduled implementations
are characterized, on average, by 15.5% lower latency and
7.6% better area than those obtained using traditional CSE and
algebraic decomposition.

I. INTRODUCTION

Many computations encountered in high-level design spec-

ifications are represented as polynomial expressions. They

are used in computer graphics designs and Digital Signal

Processing (DSP) applications, where designs are specified

as algorithms written in C/C++. To deal with such abstract

descriptions designers need efficient optimization tools to

optimize the initial specification code, prior to architectural

(high-level) synthesis. Unfortunately, conventional compilers

do not provide sufficient support for this task. On the other

hand, architectural optimization techniques, such as schedul-

ing, resource allocation and binding, employed by high-level

synthesis tools, do not address the front-end, algorithmic

optimization [1]. These tools rely on a representation that is

derived by a direct translation of the original design specifica-

tions, leaving a possible modification of that specification to

the designer. As a result, the scope of the ensuing architectural

optimization is seriously limited.

This paper introduces a systematic method to perform opti-

mization of the initial design specification using a canonical,

graph-based representation, called Taylor Expansion Diagram

(TED) [2]. TEDs have already been applied to functional

optimization, such as factorization and common subexpression

elimination (CSE). However, so far their scope was limited to

linear expressions, such as linear DSP transforms and to the

simplification of arithmetic expressions, without considering

final scheduled implementation [3], [4].

This paper describes how TEDs can be extended to handle

the optimization of nonlinear polynomial expressions, using

novel factorization and decomposition algorithms, to generate

optimized data flow graphs (DFG), better suited for high-

level synthesis. The optimization involves minimization of

the latency and of the hardware cost of arithmetic operations

in the final, scheduled implementations, and not just the

minimization of the number of arithmetic operations, as done

in all previous work. At the same time, expressions with

constant multiplications are replaced by shifters and adders

to further minimize the hardware cost. The proposed method

have been implemented in a software tool, TDS, available

online [5].

Experimental results show that the DFGs generated from

the optimized expressions have smaller latency than those ob-

tained using traditional algebraic techniques; they also require,

on average, less area than those provided by currently available

methods and tools.

II. PREVIOUS WORK

Research in the optimization of the initial design specifica-

tions for hardware designs falls in several categories.

HDL Compilers. Several attempts have been made to pro-

vide optimizing transformations in high-level synthesis, HDL

compilers [6], [7], and logic synthesis [8]. These methods rely

on the application of basic algebraic properties, applied by

term rewriting rules to manipulate the algebraic expressions.

In general, they do not offer systematic way to optimize the

initial design specification or to derive optimum data flow

graphs for high-level synthesis. While high-level synthesis

systems, such as Cyber [9] and Spark [10], apply methods

of code optimization, they do not rely on any canonical

representation that would guarantee even local optimality of

the transformations.

Domain Specific Systems. Several systems have been

developed for domain-specific applications, such as discrete

signal transforms. SPIRAL [11] generates optimized imple-

mentation of linear signal processing transforms, such as DFT,

DCT, DWT, etc. These signal transforms are characterized by

highly structured form with known efficient factorizations and

radix-2 decomposition. SPIRAL uses these properties to obtain

solutions in a concise form and applies dynamic programming

to find the best implementation. Those tools are very efficient

in the DSP domain but are not useful in the general case.

Kernel-based Decomposition. Algebraic methods have

been used in logic optimization to reduce the number of literals

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



in Boolean logic expressions. Kernel-based decomposition,

employed by logic synthesis, has been recently adapted to

optimize polynomial expressions of linear DSP transforms and

non-linear filters [12]. While this method provides a systematic

approach to polynomial optimization, the polynomial represen-

tation is not canonical, which seriously reduces the scope of

optimization.

In this paper we show how TEDs can be extended to offer

an alternative solution not only to the generic problem of the

optimization of non-linear polynomials but also to the efficient

generation of DFGs, better suited for high-level synthesis.

III. POLYNOMIAL REPRESENTATION USING TED

TED is a graph-based representation for multi-variate poly-

nomials [2], [13] obtained from Taylor expansion:

f(x, y, ..) = f(0, y, ..)+xf ′(0, y, ..)+
x2

2
f”(0, y, ..)+ .. (1)

The expression is decomposed iteratively, one variable at a

time, in a predetermined order. The resulting decomposition

is stored as a directed acyclic graph whose nodes represent the

terms of the expansion. Each TED node is labeled with the

name of the decomposing variable. Each edge is labeled with

a pair (∧p, w), where ∧p represents the power of the variable

and w represents the edge weight. The resulting reduced,

normalized graph is canonical for a fixed variable order.

An example of a TED for expression F = a2c + a · b · c

is shown in Fig. 1(a). The two terms of the expression, a2 · c
and a · b · c can be traced as paths from the root to terminal

1 (ONE). The label (∧2, 1) on the edge from node a to node

c denotes quadratic term a2 with weight = 1. The remaining

edges are linear, each labeled with (∧1, 1).

F

a

1

b

^1 1

c

^2 1

^1 1

ONE

^1 1

F

a1

1

a2

^1 1

b

^0 1

c

^1 1

^1 1

ONE

^1 1

(a) (b)

Fig. 1. TED representation for F = a2c+ a · b · c; (a) Original, non-
linear TED; (b) Linearized TED representing factored form F =
a(a + b)c.

TED Linearization: It has been shown that the TED

structure allows for efficient factorization and decomposition

of expressions modeled as linear multi-variate polynomials

[3], [4]. For example, a TED for expression F = ab + ac,

for variable ordering (a, b, c) naturally represents the poly-

nomial in its factored form, a(b + c). Unfortunately, this

efficiency is missing when considering optimization involving

non-linear expressions. For example, in the TED for function

F = a2c + abc in Figure 1(a), node a should be factored out,

resulting in a more compact form F = a(a + b)c, but in its

current form, the TED in Fig. 1(a) does not allow for such a

factorization.

Fortunately, TED can be readily transformed into a linear

form that supports factorization. Conceptually, a linearized

TED represents an expression in which each variable xk, for

k > 1, is transformed into a product xk = x1 ·x2 · · ·xk, where

xi = xj , ∀i, j.

Consider the non-linear expression in (2). By replacing each

occurrence of xk by x1 · x2 · · ·xk, this expression can be

transformed into a linear form, shown in (3). A characteristic

feature of this form (known as Horner form) is that it contains

minimum number of multiplications, and hence is suitable for

synthesis.

F (x) = f0 + x · f1 + x2 · f2 · · · + xnfn (2)

= f0 + x1(f1 + x2(·f2 · · · + xn · fn)) (3)

By applying this rule, function F = a2c+abc can be viewed

as F = a1a2c + a1bc, which reduces to F = a1(a2 + b)c
= a(a + b)c, see Figure 1(b).

TED linearization can be performed systematically by it-

eratively splitting the high-order TED nodes until each node

has degree 1 and contains two children: one associated with

a multiplicative (solid) edge, and the other with an additive

(dotted) edge. The resulting linear TED is also canonical. A

linearized TED for the expression F = a2c + abc is shown in

Figure 1(b). In the remainder of this paper, we only consider

linear TEDs. Although TED linearization has been known

since the early TED stages, it has been used for purposes other

than functional optimization. For example, a binary Taylor

expansion diagram, BTD, [14] was proposed as a means to

improve the efficiency of the internal TED data structure.

Other, non-canonical TED-like forms have been used for the

purpose of functional test generation for RTL designs [15].

IV. TED DECOMPOSITION

The principal goal of factorization is to minimize the

number of arithmetic operations (additions and multiplica-

tions) in the expression. An example of factorization is the

transformation of the expression F = ac+bc into F = (a+b)c,

which reduces the number of multiplications from two to one.

If a sub-expression appears more than once in the expression,

it can be extracted and replaced by a new variable. This

process is known as common subexpression elimination (CSE).

A simplification of an expression by means of factorization or

CSE is commonly referred to as decomposition.

Decomposition operations can be performed directly on the

TED graph, taking advantage of its canonical representation.

In fact, TED encodes the expression in a compact, factored

form. The goal of TED decomposition described in this work

is to find a factored form that will produce DFG with minimum

hardware cost of the final, scheduled implementation. This is

different than a straightforward minimization of the number

of operations in the unscheduled DFG, which has been the

subject of the known previous work [3], [4], [12].



The TED decomposition method described here extends the

work of the original cut-based decomposition of Askar [4],

which was based on the identification and selection of ad-

missible cut sequences. The cut-based method was applicable

only to TED graphs characterized by the presence of simple

cuts: additive and multiplicative edges whose removal would

separate the graph into two disjoint subgraphs, and hence

was limited only to the disjoint decomposition. Many TEDs,

such as the one shown in Figure 2, do not have a disjoint

decomposition property.

F

x

1

p

^0 1

z

^1 1

y

^0 1 w

^1 1

r

^1 1

^1 1

q

^1 1

ONE

^1 1

u

^1 1

^0 1

^1 1

F

x

1

P1

^1 1

P2

^0 1

P1

z

1

u

^1 1

P2

p

1

w

^1 1

q

^0 1

ONE

^1 1

r

^1 1

y

^0 1

^1 1

^1 1

^1 1

ONE

^1 1

ONE

^1 1

(a) (b)
F

x

1

P1

^1 1

S1

^0 1

P1

z

1

u

^1 1

P2

p

1

w

^1 1

S1

P2

1

y

^0 1

ONE

^1 1

q

^0 1

ONE

^1 1

r

^1 1

^1 1^1 1

^1 1

ONE

^1 1

ONE

^1 1

(c)
Fig. 2. Complex TED decomposition for F = x · (z · u + q · r) +
(p · w + y) · r: (a) Original TED; (b) Simplified TED after product
term substitutions, P1 = z · u and P2 = p · w; (c) Simplified TED
after sum term substitution, S1 = P2 + y.

The decomposition developed in this work applies to an

arbitrary TED graph (linearized, if necessary), with both

disjoint and non-disjoint decomposition. It applies a series

of transformations of sum terms (
∑

vi) and product terms

(Πvi), represented by simple TED patterns, into irreducible

TED subgraphs. Each irreducible subgraph is then replaced

by a single node in a global, hierarchical TED, followed by

disjunctive and conjunctive decomposition of the hierarchical

TED. Disjunctive TED decomposition tries to identify additive

edges, called split edges, whose removal decomposes the

TED into two disjoint subgraphs. Conjunctive decomposition

tries to identify the dominators. Dominator is a TED node

with a property that all the paths from the root to terminal

node 1 pass through this node. By construction, such a node

defines a disjoint conjunctive decomposition. The resulting

expression is simply a product of the subgraph above and

below the dominator node. For example, node a2 in the TED

in Fig. 1(b) is a dominator, which decomposes the expression

F conjunctively into F = F1 · F2, where F1 = a1 and

F2 = (a2 + b)c. Similarly, node c is a dominator in F and F2.

If neither disjunctive nor conjunctive decomposition exists in

the graph, then the fundamental Taylor series decomposition is

applied to the graph, resulting in non-disjoint decomposition.

The TED decomposition is illustrated with the example in

Figure 2 for function F = x · (z ·u+q ·r)+(p ·w+y) ·r. This

TED does not have a single split-edge that would separate

the graph disjunctively into two disjoint subgraphs; neither

does it have a dominator that would allow it to decompose

it conjunctively into disjoint subgraphs (note that r is not a

dominator in this graph). Nevertheless, this function can be

represented as a disjunction of two expressions F1 +F2, with

F1 = x·(z ·u+q ·r) and F2 = (p·w+y)·r, sharing a common

subgraph rooted at node r. Such a non-disjoint decomposition

is accomplished in a systematic way on a TED as follows.

First, a series of nodes connected only by multiplicative

edges, representing a product term, is represented by an

irreducible TED and replaced with a single variable PI . In

this example, the following irreducible TEDs are identified

and replaced by new variables: P1 = z · u and P2 = p · w.

The resulting hierarchical TED is shown in Figure 2(b).

Next, the sum terms are identified in the TED and substi-

tuted by new variables. A sum term appears in the TED graph

as a set of variables, incident to the edges with a common

node, and linked together by one or more additive edges. Such

patterns can be readily identified by traversing the graph in a

bottom-up fashion and creating, for each node v, a list of nodes

reachable from v by a multiplicative edge. The procedure

starts at terminal node 1 and traverses all the nodes in the

graph bottom-up, in a reverse variable order. In our example,

the set of nodes reachable from terminal node 1 is {P1, r}.

Since these nodes are not linked by an additive edge, they

do not form a sum term in the expression. The list of nodes

reachable from node r is {q, y, P2}, of which {P2, y} are

linked by an additive edge. Hence, they correspond to a sum-

term (P2+y). Such a term is substituted by a new variable S1
and represented as an irreducible TED. No other irreducible

TED subgraph can be extracted. The resulting hierarchical

TED, with the sum term (P2 + y) replaced by variable S1,

is shown in Figure 2(c).

This procedure is repeated iteratively until the top level TED

is reduced to the simplest, irreducible form. The resulting

TED is then subjected to the final decomposition using the

fundamental Taylor expansion principle. The graph is traversed

in a topological order, starting at the root node. At each visited



node v the expression F (v) is computed as F (v) = F0+v ·F1,

where F0 is the function rooted at the first node reached from

v by an additive edge, and F1 is the function rooted at the

first node reached from v by a multiplicative edge.

Using this procedure, the following expressions are derived

for the global TED in Figure 2(c) (Here f(v) refers to a

function of an irreducible TED rooted at node v): F = f(x) =
f(S1) + x · f(P1), where f(S1) = S1 · f(r), f(r) = r,

f(P1) = P1 + f(q), f(q) = q · r, P1 = z · u, P2 = p ·w, and

S1 = (P2 + y).

V. DFG OPTIMIZATION

The recursive TED decomposition procedure described in

the previous section produces a simplified algebraic expression

in factored form. By imposing additional rules regarding the

ordering of variables in the expression, such a form can be

made unique. We refer to such a form as Normal Factored

Form (NFF).

Definition 1: The factored form expression associated with

a TED is called a Normal Factored Form (NFF) for that TED

if there is one-to-one mapping between the operations in the

factored form and the TED, and if the ordering of variables

in the expression is compatible with that of the TED.

The normal factored form for the TED in Figure 1(b) is

a1(a2 + b)c. Although several other factored forms can be

derived from this TED, such as: c(a2 +b)a1, (b+a2)a1c, etc.,

only a1(a2 + b)c satisfies the condition for NFF. Specifically,

there is exactly one addition (a2 + b), corresponding to the

additive edge (a2, b), and two multiplications associated with

the dominator nodes a2 and c. Furthermore, the ordering of

variables in the expression is compatible with that of the TED.

An important feature of the NFF is that it is unique for a TED

with fixed variable order.

Lemma 1: Normal Factored Form derived from a linear

TED is unique.

The proof comes directly from the construction of the TED

decomposition algorithm, described in Section 4, where each

split edge defines a disjunctive decomposition and a dominator

defines a conjunctive decomposition.

It should be emphasized that the NFF of the decomposed

TED depends only on the structure of the initial TED, which

in turn depends on the ordering of its variables. Hence, vari-

able ordering plays a central role in deriving decompositions

that will lead to efficient hardware implementations. Several

variable ordering algorithms have been developed, including

static ordering and dynamic re-ordering schemes, similar to

those in BDDs. However, the significant difference between

variable ordering for BDDs and for TEDs is that ordering for

linearized TEDs is driven by the complexity of the NFF and

the structure of the resulting DFGs, rather than by the number

of TED nodes.

DFG Generation: Once a TED has been decomposed,

a structural Data Flow Graph (DFG) representation of the

expression is constructed from its Normal Factored Form.

Each irreducible TED is first transformed into a simple DFG

using the basic property of the NFF: each additive edge in the

TED maps into an addition operation and each multiplicative

edge maps into a multiplication operation in the resulting

DFG. All the DFGs are then composed together to form the

final DFG.

DFG construction for the expression F = x · (z · u + q ·
r)+ (p ·w+ y) · r from its Normal Factored Form is shown in

Figure 2(c). The five multiplications in this NFF correspond

to the three nontrivial multiplicative edges in the top TED

graph and two nontrivial multiplicative edges in the subgraphs

for P1 and P2 (S1 does not have non-trivial multiplications).

Similarly, there are three additions corresponding to the three

additive edges.

It should be emphasized, however, that unlike Normal

Factored Form the DFG representation is not unique. While

the number of operators remains fixed, the DFG can be further

restructured and balanced to minimize its latency. Traditional

methods known from logic synthesis can be used for this

purpose [8].

These two steps, variable ordering and DFG balancing, are

at the core of the optimization techniques employed in this

work. The actual delay of the operators and their arrival times

are considered during such a restructuring in order to minimize

the latency of the final implementation.

Replacing Constant Multipliers by Shifters: It is well

known that multiplications by integers can be implemented

more efficiently in hardware by converting them into a se-

quence of shifts and additions/subtractions. Standard tech-

niques are available to perform such a transformation based on

Canonical Signed Digit (CSD) representation. However, these

methods do not address common subexpression elimination or

shifter factorization.

We now present a systematic way to transform integer

multiplications into shifters using the TED structure. This is

done by introducing a special left shift variable into a TED,

while maintaining its canonicity. The modified TED can then

be optimized using all the known TED simplification methods.

First, each integer constant C is represented in CSD format

as C =
∑

i(ki · 2
i), where ki ∈ (−1, 0, 1). By introducing a

new variable L to replace constant 2, C can be represented as∑
i(ki · 2

i) =
∑

i(ki ·L
i). The term Li in this expression can

be interpreted as left shift by i bits. The next step is to generate

the TED with the shift variables, linearize it, and perform

the TED decomposition. Finally, in the DFG generated by

the TED decomposition, the terms involving shift variables,

Lk, are replaced by actual shifters (by k bits). The final DFG

representation is minimal in terms of the hardware cost of its

operators.

An example in Figure 3 illustrates this procedure for the

expression F = 7a+6b. The original TED for this expression

is shown in Figure 3(a), and its DFG in Figure 3(b). The

expression is then transformed into an expression with a shift

variable L: F = (L3 − 1)a + (L3 − L1)b = L3(a + b) −
(a + L · b), shown in Figure 3(c). The nonlinear term, L3,

is then linearized and the TED ordered, as shown in Figure

3(d). The TED is then decomposed into the DFG, shown in



Figure 3(e). After replacing variables Li by L, the DFG in

Figure 3(f) is obtained. Finally, all constant multiplications

with inputs Lk are replaced by k-bit shifters, as shown in

Figure 3(g). The optimized expression corresponding to this

DFG is F = ((a + b) << 2 − b) << 1 − a, where “<< k”

refers to left shift by k bits This implementation requires only

three adders/subtracters and two shifters, a considerable gain

compared to the two multiplications and one addition of the

original expression F = 6a + 7b.

F0

a

1

b

^0 6

ONE

^1 7

^1 1

F0

+

a

*

7 b

*

6

F0

L

1

a

^0 -1

b

^1 -1 a

^3 1

ONE

^1 1

^1 1

^0 1

^1 1

F0

L1

1

a

^0 -1

L2

^1 1

ONE

^1 1 b

^0 -1

L3

^1 1

^1 1

a

^1 1

^0 1

^1 1

(a) (b) (c) (d)

F0

-

L1

*

L2

*

L3

*

a

+

b

-

F0

-

L

*

*

*

a

+

b

-

F0

-

1

<<

2

<<

a

+

b

-

(e) (f) (g)

Fig. 3. Replacing constant multiplications by shift operations for
expression F0 = 7a+6b: (a) Original TED; (b) Initial DFG; (c) TED
after introducing a shift variable L; (d) Linearized TED; (e) DFG
derived from the linearized TED; (f) DFG after combining variables
Li into L; (g) Final DFG after replacing multipliers by shifters.

VI. EXPERIMENTAL RESULTS

The TED decomposition described in this paper was im-

plemented as part of a prototype system TDS [5]. The design,

written in C, is first compiled by a high-level synthesis system,

GAUT, [16] [17]. to produce an initial data flow netlist. TDS

transforms this netlist into a set of TEDs and performs all

the TED- and DFG-related optimizations including: variable

ordering, TED linearization, factorization, decomposition, re-

placement of constant multiplications by shifters, DFG con-

struction, DFG balancing, etc. The optimized DFG is passed

back to GAUT, which produces synthesizable VHDL code for

final logic synthesis.

The results shown in the tables are reported for the

following delay parameters: multiplier=18ns, adder/sub=8ns,

shifter=9ns; clock period=10ns. Table 1 compares the im-

plementation of a Savitzky-Golay (SG) filter using: 1) the

original design; 2) the design produced by CSE decomposition

system of [12]; and 3) produced by TDS. The table reports the

number of arithmetic operations (adders, multipliers, shifters,

subtractors) for each DFG solution; the actual number of

resources used for a given latency; and the implementation

area using GAUT (datapath only) and Synopsys DC Compiler

(datapath, steering and control logic) synthesis tools. The

results for circuits that cannot be synthesized for a given

latency are marked with ’–’ (overconstrained).

Design
Original CSE TDS

design solution solution

Latency

(ns)
+,×,≪,−

Area

+,×,≪,−

Area

+,×,≪,−

Area

GAUT GAUT GAUT

SynDC SynDC SynDC

S
G

F
il

te
r

DFG → 2,16,6,0 4,14,3,0 6,11,3,0

L=120 – – 1,5,2,0
439

1,4,1,0
348

22,057 20,849

L=130 – – 1,5,1,0
431

2,3,1,0
273

22,057 18,021

L=140 – – 1,4,1,0
348

1,3,1,0
265

19,952 18,160

L=150 – – 1,4,1,0
348

1,3,1,0
265

19,648 17,862

L=160 1,4,2,0
356

1,3,1,0
265

1,2,1,0
182

20,442 17,428 14,795

TABLE I
SG FILTER IMPLEMENTATIONS SYNTHESIZED WITH THE GAUT

AND SYNOPSYS DC.

The minimum latency for the DFG extracted from the orig-

inal SG design, without any modification, is 160 ns. The DFG

solution produced by both CSE and TDS has minimum latency

of 120 ns. However, the TDS implementation requires smaller

area than both the original and CSE synthesized solution, as

measured by both synthesis tools. In fact, all entries in the

table show a tight correlation between the synthesis results of

Synopsys DC and GAUT, which allows us to limit the results

of other experiments to those produced by GAUT only.

Table 2 presents a similar comparison for designs from

different domains (filters, digital transforms, computer graphic

algorithms, etc.), synthesized with GAUT. A closer look at the

Quintic Spline design shows that the CSE solution has smallest

number of operations in its DFG and the latency of 140 ns. The

DFG obtained by TDS produced the implementation with 110

ns, i.e., 21% faster, even though it had more DFG operations.

And for the minimum latency of 140 ns, obtained by CSE,

it produced implementation with area 22% smaller than CSE.

Similar behavior can be seen for all the remaining designs. In

all cases the latency of DFGs produced by TDS was smaller;

and with the exception for Quartic Spline design, all of them

have also smaller hardware area for the minimum latency

produced by CSE.

Table 3 summarizes the implementation results for these

benchmarks. We can see that the implementations obtained

by TDS have latency smaller on average by 15.5% and

27.2% w.r.t. the CSE and original design.And for the reference

latency (defined as the minimum latency obtained by the other

two methods), the TDS implementations have, on average,



7.6% and 36.3% smaller area w.r.t. the CSE and original

design, respectively.

Design
Original CSE TDS

design solution solution

Latency
+,×,≪,− Area +,×,≪,− Area +,×,≪,− Area

(ns)

C
o
si

n
e

w
av

el
et

DFG → 9,12,9,14 10,10,4,5 9,10,12,7

L=110 – – – – 3,2,4,1 447

L=120 – – 2,4,1,1 402 3,3,2,1 364

L=130 – – 2,4,1,1 402 2,3,2,1 356

L=140 – – 2,3,1,1 319 2,3,2,1 273

L=150 – – 1,3,1,1 311 2,2,2,1 273

L=160 – – 2,2,1,1 236 1,2,2,1 265

L=170 – – 1,2,1,1 228 2,2,1,1 236

L=180 2,5,1,1 476 1,2,1,1 228 2,2,1,1 236

C
h
ro

m
a DFG → 8,12,0,2 10,6,7,8 7,13,0,9

L=100 – – – – 2,5,0,3 455

L=110 2,4,0,2 364 2,3,3,2 413 2,4,0,2 364

C
h
eb

y
sh

ev
p
o
ly

s

DFG → 3,15,5,0 7,7,4,1 6,7,10,6

L=100 – – – – 2,3,2,1 347

L=110 – – – – 2,2,2,1 264

L=120 – – 1,3,1,1 302 1,2,2,1 256

L=130 – – 1,2,1,1 219 1,2,1,2 227

L=140 – – 1,2,1,1 219 1,2,1,1 219

L=150 – – 1,2,1,1 219 1,2,1,1 219

L=160 – – 1,2,1,1 219 1,2,1,1 219

L=170 1,3,1,0 265 1,1,1,1 136 1,1,1,1 136

Q
u
in

ti
c

S
p
li

n
e

DFG → 5,28,2,0 5,13,3,0 6,14,4,0

L=110 – – – – 1,5,1,0 460

L=120 – – – – 2,4,2,0 422

L=130 – – – – 1,4,1,0 377

L=140 – – 1,4,1,0 377 1,3,1,0 294

L=150 – – 1,3,1,0 294 1,3,1,0 294

L=160 – – 1,3,1,0 211 1,3,1,0 294

L=170 – – 1,2,1,0 211 1,3,1,0 294

L=180 1,5,1,0 460 1,2,1,0 211 1,2,1,0 211

Q
u
ar

ti
c

S
p
li

n
e

DFG → 4,21,2,0 5,11,4,0 5,13,4,0

L=100 – – – – 2,5,1,0 468

L=110 – – – – 1,5,1,0 460

L=120 – – – – 2,4,1,0 385

L=130 – – 1,3,1,0 294 1,4,1,0 377

L=140 – – 1,3,1,0 294 1,3,1,0 294

L=150 – – 1,2,1,0 211 1,3,1,0 294

L=160 1,5,0,0 423 1,2,1,0 211 1,3,1,0 294

V
C

I
4
x
4

DFG → 11,12,0,0 11,0,8,9 9,2,4,6

L=70 4,7,0,0 613 – – 4,2,4,4 406

L=80 4,6,0,0 530 – – 4,2,2,2 302

L=90 3,4,0,0 356 – – 2,2,2,2 286

L=100 3,4,0,0 356 2,0,4,2 208 2,1,2,2 203

TABLE II
COMPARISON OF MINIMUM ACHIVABLE LATENCY AND AREA FOR

DIFFERENT DESIGNS. THE AREA REPORTED IS FOR GAUT.

Design

TDS vs

Original CSE

Latency (%) Area (%) Latency (%) Area (%)

SG Filter 25.00 27.62 0.00 20.73

Cosine 38.88 50.42 8.33 9.45

Chrome 9.09 0.00 9.09 11.86

Chebyshev 41.17 48.68 16.66 15.23

Quintic 38.88 54.13 21.42 22.02

Quartic 37.50 30.50 23.07 -28.23

VCI 4x4 0.00 42.98 30.00 2.40

Average 27.22 36.33 15.51 7.64

TABLE III
PERCENTAGE IMPROVEMENT OF TDS VS ORIGINAL AND CSE ON

ACHIEVABLE LATENCY; AND AREA AT THE MINIMUM

ACHIEVABLE LATENCY.

VII. CONCLUSIONS

As shown by our results, a simple-minded minimization of

the number of arithmetic operations in an algebraic expression,

advocated in previous work, does not necessarily translate

into a minimum hardware cost or a minimum latency in

a scheduled DFG, and hence it does not guarantee a good

hardware implementation. In contrast, the optimization method

presented here is better suited for hardware implementations.

It can discover solutions that have lower latency, unmatched

by other methods; and and for the minimum latency obtained

by those methods, require on average less area.

ACKNOWLEDGMENTS

This work has been supported by a grant from the National

Science Foundation, award No. CCR-0702506; and by a grant

from CNRS PICS/3505.

REFERENCES

[1] S. Gupta, M. Reshadi, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau,
“Dynamic Common Sub-expression Elimination during Scheduling in
High-level Synthesis”, in ISSS ’02: Proceedings of the 15th international

symposium on System Synthesis, New York, NY, USA, 2002, pp. 261–
266, ACM Press.

[2] M. Ciesielski, P. Kalla, and S. Askar, “Taylor Expansion Diagrams: A
Canonical Representation for Verification of Data Flow Designs”, IEEE

Trans. on Computers, vol. 55, no. 9, pp. 1188–1201, Sept. 2006.
[3] J. Guillot, E. Boutillon, D. Gomez-Prado, S. Askar, Q. Ren, and

M. Ciesielski, “Efficient Factorization of DSP Transforms using Taylor
Expansion Diagrams”, in Design Automation and Test in Europe, DATE-

06, 2006.
[4] M. Ciesielski, S Askar, D. Gomez-Prado, J. Guillot, and E. Boutillon,

“Data-Flow Transformations using Taylor Expansion Diagrams”, in
Design Automation and Test in Europe, 2007, pp. 455–460.

[5] University of Massachusetts, Amherst, “TDS
- TED-based behavioral transformation system”,
http://www.ecs.umass.edu/ece/labs/vlsicad/tds.html

[6] M. Potkonjak and J. Rabaey, “Optimizing Resource Utilization Using
Transformations”, in IEEE Transactions on Computer Aided Design,
1994.

[7] S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau, “Using
Global Code Motion to Improve the Quality of Results in High Level
Synthesis”, IEEE Trans. on CAD, pp. 302–311, 2004.

[8] G. DeMicheli, Synthesis and Optimization of Digital Circuits, McGraw-
Hill, 94.

[9] K. Wakabayashi, Cyber: High Level Synthesis System from Software

into ASIC, pp. 127–151, Kluwer Academic Publishers, 1991.
[10] S. Gupta, R.K. Gupta, N.D. Dutt, and A. Nicolau, SPARK: A Paralleliz-

ing Approach to the High-Level Synthesis of Digital Circuits, Kluwer
Academic Publishers, 2004.

[11] M. Püschel, J.M.F. Moura, J. Johnson, D. Padua, M. Veloso, B.W.
Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen,
R.W. Johnson, and N. Rizzolo, “SPIRAL: Code Generation for DSP
Transforms”, Proceedings of the IEEE, vol. 93, no. 2, 2005.

[12] A. Hosangadi, F. Fallah, and R. Kastner, “Optimizing Polynomial
Expressions by Algebraic Factorization and Common Subexpression
Elimination”, in IEEE Transactions on CAD, Oct 2005, vol. 25, pp.
2012–2022.

[13] D. Gomez-Prado, Q. Ren, S. Askar, M. Ciesielski, and E. Boutillon,
“Variable Ordering for Taylor Expansion Diagrams”, in IEEE Intl. High
Level Design Validation and Test Workshop, HLDVT-04, 2004, pp. 55–
59.

[14] A. Hooshmand, S. Shamshiri, M. Alisafaee, B. Alizadeh, P. Lotfi-
Kamran, M. Naderi, and Z. Navabi, “Binary Taylor Diagrams: an
Efficient Implementation of Taylor Expansion Diagrams”, in ISCAS

(1). 2005, pp. 424–427, IEEE.
[15] Bijan Alizadeh, “Word level Functional Coverage Computation”, in

ASP-DAC, Fumiyasu Hirose, Ed. 2006, pp. 7–12, IEEE.
[16] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and E. Martin, High

Level Synthesis from Algorithm to Digital Circuits, Springer, 2008.
[17] Université de Bretagne Sud, Lab-STICC, “GAUT, Architectural Syn-

thesis Tool”, http://http://www-labsticc.univ-ubs.fr/www-gaut/, 2008.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




